Department of Chemical Engineering

Graduate Handbook

2018-2019

Victoria Heberling, Graduate Program Coordinator
Professor Alexander Shestopalov,
Director of Graduate Studies
Table of Contents

Requirements for Master’s Degree 3
 General and Core Course Requirements
 Plan A Requirements
 Plan B Requirements
 Master’s Student Rights and Responsibilities Link
 MS Program of Study Example

Thesis Proposal Funding 8
Master’s Thesis Registration 10

Ph.D. Requirements:
 General and Core Course Requirements 11

 PhD Program of Study Example
 First Year Examinations
 Qualifying Examinations
 Ph.D. Student Rights and Responsibilities

Teaching Assistants: 21
 Responsibilities
 Requirements

Graduate Student Residency, Vacations, and Leaves of Absence 22

Research Laboratory Safety Training 24

Academic Honesty Policy Link 26

Information for New Graduate Students 26
 Credentials
 Registration
 Dropped Courses
 Visa Forms, Appointments and Awards, Outside Work, Financial Aid
 Student Health Program
REQUIREMENTS FOR THE MASTER OF SCIENCE IN CHEMICAL ENGINEERING

1. BACKGROUND COURSES

Basic Sciences

All students who intend to follow a Master of Science degree program in chemical engineering should have acquired technical background in chemistry, mathematics and physics. Prior coursework should include at least include one full semester course in general chemistry, organic chemistry, physical chemistry, differential equations, and calculus-based Newtonian mechanics (physics). If such courses are absent from a student’s undergraduate curriculum, the student must upgrade his/her technical background to at least these minimum standards by taking the necessary courses.

Chemical Engineering

The requisite background in chemical engineering is normally provided by a series of one semester courses in each of the following areas: fundamentals of transport processes, thermodynamics, separation processes and reactor design. These requirements are automatically satisfied by a BS degree in Chemical Engineering. Those graduate students who do not have an undergraduate degree in chemical engineering may satisfy these minimum engineering requirements by taking at least two additional courses in core areas offered by the department. Master of Science students who do not have a baccalaureate degree in engineering should normally select all their courses from those offered by the School of Engineering and Applied Science. Background courses in chemistry, mathematics and physics cannot be included as part of the coursework requirement for an advanced degree in chemical engineering.

2. MASTER OF SCIENCE DEGREE PROGRAMS

The faculty advisor and the Dean for Graduate Studies must approve all Master of Science programs by approving your Program of Study form. (See an example Program of Study on page 6.) The Master of Science degree may be earned with or without writing a thesis; the general requirements for the degree are described in the University of Rochester’s Graduate Studies Bulletin. Graduate students have the option to complete the MS degree with a thesis (Plan A) or coursework-only non-thesis (Plan B). Full time students receiving a stipend must complete a thesis (Plan A) unless the research advisor and the Graduate Committee approve the Plan B program.
Master of Science with Thesis (Plan A)

The MS degree with thesis (Plan A) requires **30 credit hours** of which **at least 18 should be formal coursework** acceptable for graduate credit. The balance of credit hours required for the degree is earned through MS reading and/or research courses (ChE 495). A minimum of six research credits are required for a Plan A. Satisfactory completion of the Master's thesis is also required for the degree.

Master of Science without Thesis (Plan B)

Students who pursue the MS degree without thesis (Plan B) must earn a minimum of **32 credits of coursework acceptable for graduate** credit. **At least 18 of these credits** should be taken from courses **within the department**. Overall no more than 6 credits towards the degree may be earned by research and/or reading courses. The additional courses in the Plan B program (over Plan A) are intended to compensate for the elimination of a thesis as a degree requirement, and they must support a MS in chemical engineering even if offered outside of the department.

All students in Plan B must pass a thirty minute oral exit exam before a committee comprised of at least three Chemical Engineering faculty members. A written report is **not required**. Two weeks prior to the exam, the M.S. candidate will be provided three recently published papers, one of which he or she must choose to evaluate. Students are not allowed to discuss their chosen manuscript with other students or faculty. The exam begins with the candidate presenting a ten minute oral summary and critique of the chosen manuscript. The presentation should consist of projected slides (e.g. PowerPoint). Slides should introduce the chosen manuscript, demonstrate a solid understanding of relevant physical principles, and offer an evaluation / critique of the manuscript. The examination committee members will then ask questions for approximately twenty minutes to evaluate (i) the student's ability to identify and clearly explain the physical principles upon which the paper is based, (ii) the scientific basis and appropriateness of the student's critique, and (iii) student competency in chemical engineering subjects, particularly those related to completed M.S. coursework.

It is considered important that the total exam time (30 minutes for each student) be rigorously maintained. As a result, students are reminded that it is very important for them to use their time well during both the presentation and question portions of the exam. Students are encouraged to rehearse their presentations and will be stopped after ten minutes.

Following the exam, the committee will recommend to the Director of Graduate Studies that the student pass, pass with contingency, or fail. **Possible Outcomes:**

- **pass**
- **contingent pass**: either take additional course(s) or write a follow-up document to be reviewed and voted on by the committee
- **failure**: can retake the exam the next time it is offered. Students who fail the exam twice are terminated from the program.

The oral exams will normally be held twice a year, after spring break and after fall break. Exams will normally be held in a single block, with students following each other at half-hour intervals.
NOTE: For both the Plan A and B degree options, all courses must be at the 400 level or above and 12 must be courses taken from within the department. The formal courses must also include four “core” chemical engineering courses as described below.

All incoming Chemical Engineering MS and PhD students will be required to take four core classes:

Graduate Level Kinetics
- CHE 461 Advanced Kinetics and Reactor Design (Spring) (or petition to take ChE 431)*

Transport Phenomena
- CHE 441 Advanced Transport Phenomenon (Fall) or petition to take both ChE 443 &444)*

Thermodynamics
- CHE 485 Thermodynamics and Statistical Mechanics (Spring)

Mathematics
- CHE 400 Applied Boundary Value Problems (Fall)

*It will be up to the students to determine if they need to petition for a change to a course, and to use the standard Chemical Engineering petition form.

Find courses at: https://cdcs.ur.rochester.edu/

Master’s Student Expectations and Responsibilities
Find this information at:

http://www.rochester.edu/college/gradstudies/policies/masters.html
UNIVERSITY OF ROCHESTER

ARTS, SCIENCES AND ENGINEERING

PROGRAM OF STUDY FOR THE MASTER'S AND/OR PHD DEGREES

Name: EXAMPLE OF A PLAN B PROGRAM OF STUDY
URID: 12345678
Program: Chemical Engineering
Date: September, 2016

- [] PhD
- [x] Master's Plan B

INSTRUCTIONS: This program of study must be prepared by the student in consultation with the department. Courses completed should include the grade earned in the course. Courses in progress should be marked with an asterisk (*). Courses taken at other institutions for transfer credit should be listed separately and an official supporting transcript attached, except that if a Master's degree is presented for 30 hours transfer credit, the individual courses need not be listed.

<table>
<thead>
<tr>
<th>Subject/Course #</th>
<th>Check if Master's PoS</th>
<th>Grade (if completed)</th>
<th>Descriptive Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 441</td>
<td></td>
<td>A</td>
<td>Advanced Transport Phenomenon #</td>
<td>4.0</td>
</tr>
<tr>
<td>CHE 400</td>
<td></td>
<td>B</td>
<td>Applied Boundary Value Problems #</td>
<td>4.0</td>
</tr>
<tr>
<td>CHE 460</td>
<td>A</td>
<td></td>
<td>Solar Cells</td>
<td>4.0</td>
</tr>
<tr>
<td>CHE 496</td>
<td>A</td>
<td></td>
<td>Department Research Seminar (required every semester)</td>
<td>0.0</td>
</tr>
<tr>
<td>CHE 485</td>
<td>A</td>
<td></td>
<td>Thermodynamics & Statistical Mechanics #</td>
<td>4.0</td>
</tr>
<tr>
<td>CHE 461</td>
<td>B</td>
<td></td>
<td>Advanced Kinetics & Reactor Design #</td>
<td>4.0</td>
</tr>
<tr>
<td>CHE 465</td>
<td>A</td>
<td></td>
<td>Sustainable Chemical Processes</td>
<td>4.0</td>
</tr>
<tr>
<td>CHE 496</td>
<td>A</td>
<td></td>
<td>Department Research Seminar (required every semester)</td>
<td>0.0</td>
</tr>
<tr>
<td>CHE 458</td>
<td>*</td>
<td></td>
<td>Electrochemical Engineering and Fuel Cells</td>
<td>2.0</td>
</tr>
<tr>
<td>CHE 482</td>
<td>*</td>
<td></td>
<td>Processing Microelectic Devices</td>
<td>2.0</td>
</tr>
<tr>
<td>CHE 495</td>
<td>*</td>
<td></td>
<td>Master's Research in Chemical Engineering</td>
<td>4.0</td>
</tr>
<tr>
<td>CHE 496</td>
<td>*</td>
<td></td>
<td>Department Research Seminar (required every semester)</td>
<td>0.0</td>
</tr>
<tr>
<td>CHE 497</td>
<td>*</td>
<td></td>
<td>Teaching Chemical Engineering (TA) required one semester</td>
<td>0.0</td>
</tr>
<tr>
<td>CHE 897</td>
<td>n/a</td>
<td></td>
<td>Master's Continuation of Enrollment or Dissertation</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Total Hours (at least 30 credit hours for Master's and 90 credit hours for PhD): 32

Remarks

= Required Core Course

- Check here to verify that any 200 level courses on this Program of Study are advanced in content, rigor, and requirements.

APPROVED, Faculty Advisor: [Signature]
Date: 9/5/18

APPROVED, Dean of Graduate Studies: [Signature]
Date: [Signature]

DISTRIBUTION:

[CGO Student File and Department]

Rcr 5/16
3. PROGRAM OF STUDY

A faculty advisor will generally be named for each student by the end of the first semester. The advisor assists the student in developing a complete program of study for the anticipated degree. Each program and all subsequent changes must be approved by the student’s advisor and the associate dean for graduate studies. Students who take courses without the approval of the advisor and the associate dean, or without registering for them, may not receive credit toward their degree requirements. Master’s degree programs must be filed no later than the date specified by the college, generally the beginning of the second semester. It is important that students keep a copy of their program of study form, as it will need to be updated every semester with grades received for each course.

4. RESEARCH SEMINAR REQUIREMENT

All students are required to register for the Chemical Engineering Departmental Seminar Series (CHE 496), unless they are in-absentia. The department chairperson should be indicated as the instructor for the course with zero credit hours. Grading for this course is based on attendance. Attendance at all the seminars is expected. Students may miss one seminar per semester and still receive a grade of “A”. Each additional seminar missed will lower the grade by one letter. The dates and times of the seminars are posted on the departmental web page and announced via e-mail.

A sign in sheet will be passed around during the seminar. If you do not sign in, you will not get credit for attendance, so be sure to find the clipboard with the sign in sheet before you leave the seminar. If you attend another department’s seminar, please find a way to provide some proof that you attended, perhaps take a picture and email it to the graduate coordinator. The dates and times of the seminars are posted on the departmental web page and announced via e-mail. If there is a conflict with another class or workshop, the student must email the chair of the department to explain the situation, and copy the graduate director and graduate coordinator. The student must be sure to receive a reply from the chair excusing the student, and be sure the graduate coordinator has received the reply.

5. EVALUATION: RESEARCH PROGRESS REVIEW (RPR)

In order to evaluate student’s research performance, all students pursuing a M.S. Plan A degree are required to submit the Research Progress Review (RPR) at the conclusion of every semester (Fall and Spring). At the same time, faculty advisors will inform the graduate studies committee of student’s research progress and include recommendations for the following semester. After all forms have been submitted to the Graduate Program Coordinator, the graduate committee will review students’ academic records and research accomplishments within the concluding semester. A full report will be submitted to the Graduate Studies Office.
6. TA REQUIREMENT

All graduate students are required to TA, once for MS students and twice for PhD students. TAs must register for CHE 497, “Teaching Chemical Engineering” with zero credits. If the registration asks for the instructor, please enter the name of the professor/instructor that teaches the class you will be a TA for. Satisfactory performance is expected in each TA assignment, and new this year, will carry a letter grade. TA training is available in late August, and possibly at some time during the academic year. Please check with your graduate coordinator.

MS Degree Maximum Time of Completion*

A candidate must complete all the requirements for the master’s degree within five years from the time of initial registration for graduate study, and must maintain continuous enrollment for each term after matriculation. Students who for good reason have been unable to complete a program within five years may, upon recommendation by the faculty advisor and department chair, petition the associate dean for an extension of time. Such extension, if granted, will be of limited duration. * All categories including “Leave of Absence” count towards the time limit

REQUIREMENTS FOR THE THESIS PROPOSAL FOR MASTER’S FUNDING

Proposal Description:
The thesis proposal serves two primary purposes. First, it is the means by which the funding committee evaluates the merit of the research. The objective of the Master’s funding program is to support research experiences for our students wanting to pursue Plan A degrees, while seeding new research directions within the laboratories of departmental faculty. Our department emphasizes original, innovative, high impact research on important applied and scientific problems. The proposal should present your proposed approach to a problem or open question – demonstrating your technical acumen and convincing the committee of the likelihood of its success. Second, the proposal is used to judge your writing abilities. A Plan A Master’s degree requires that you conduct original research, and then prepare and defend a dissertation to be read and evaluated by a thesis committee. From UR’s Preparing Your Thesis manual (http://www.rochester.edu/Theses/ThesesManual.pdf), “At the University of Rochester, the doctoral [also master’s] thesis is expected to be an original work by the student, formulated in a scholarly manner and with content of a quality consistent with respected publications in your field.” This statement is not intended to dissuade you from pursuing a Plan A degree but rather emphasize the importance of strong writing skills required to produce a high quality, defendable thesis.

The thesis proposal should describe the research topic, impress the scientific interest or practical utility of the topic, review the current status in the field and previous results from your advisor’s laboratory, and describe your proposed approach to an important question or problem.
Proposal Instructions:
The proposal must be prepared solely by you. You are encouraged to seek assistance from friends and the UR Writing Center (writing.rochester.edu), but the text and ideas must be developed by you independently. Do not copy text from other sources, including materials that your perspective advisor might provide you.

The written reports should be no more than 1600 words in length (the cover page, figure captions, references, and budget justification are excluded from the word count). The report should contain enough information that an outside reviewer with a technical background but who is not an expert in the field can fully understand and critique it. The formatting and the technical content of the proposal is left to your discretion, but it should be a highly polished document written at a technical level. Feel free to discuss the content of the proposal with your advisor, but some examples and suggestions are provided below:

- **Introduction and Background**: Describe the research topic. Why is it important? What is its technological relevance or what fundamental property/phenomenon do you expect to uncover?

- **Previous work**: What has been achieved? What are recent breakthroughs? What contributions has your advisor’s lab made and how is your research distinct?

- **Proposed work**: Thoroughly describe your idea – specifically, what experiments do you intend to do. Justify your proposed approach.

- **Conclusion**: Briefly summarize the main points.

- **References**: (required)
 - Must be cited in the body of the text
 - Should come from high quality, reliable sources - often peer-reviewed publications and/or books
 - A consistent formatting of the references and in-text citations should follow the general practice of your discipline, but the ACS Style Guide is a good starting point: http://pubs.acs.org/isbn/9780841239999

- **Figures**: (required)
 - Should be embedded throughout main body of the text (not listed at the end)
 - At least some should be original figures that you have prepared (not reproduced from references)
 - If you do reproduce a figure, it should be cited appropriately.

- **Appendix, Budget Justification**: (limited to 1 page)
o Maximum allowable budget is $5000
o With input from your PI, describe and justify the requested budget.
o *A table categorizing the various expenses is an effective way to present the budget, but concise justification of each line is required.*
o Examples of allowed costs: small equipment, chemicals, supplies & consumables, user facility instrument fees, conference registration fees, specialized software, etc.
o Unallowed costs: salaries, equipment maintenance & service contracts, new computers & office equipment for your advisor’s group

Document formatting (do not deviate)
- 8-1/2 x 11” paper
- 1” margins on all sides
- Font: 11 pt., Times New Roman or Arial. Other fonts are not allowed.

Master’s Thesis Registration Instructions
- Plan ahead: Contact Vicki at least 4 weeks prior.
- Thesis must be registered at least 10 full working days prior to defense date. Earlier is better!
- All paper work must be completed BEFORE those 10 days.(See #1)
- Program of study must be completed.
- Student must have completed or will have completed 30 hours of study by the anticipated graduation day.
- Student coordinates committee members prior to thesis registration. Committee must consist of the following faculty members:
 - Two full-time (assistant professor or higher) from within ChE’
 - One non-department full-time (assistant professor or higher)
 - If non-department student advisor, need additional committee member from within ChE’
- Student needs to contact Vicki to reserve room for defense.
- Thesis registration:
 - Examination Appointment Form must be completed
 - One bound copy of the thesis must be registered with the Graduate Students Office (218 Lattimore) at least 10 working days prior to defense date along with Examination Appointment Form.
- Student needs to provide and deliver a copy of their thesis to each committee member. This is done the same day the thesis is registered.
- Student needs to provide Vicki with the abstract & title of their thesis. This is done the same day the thesis is registered
- Master’s defense guidelines:
 - http://www.rochester.edu/college/gradstudies/masters-defense/before.html#writing-guidelines

After your defense and any corrections are made to the thesis, two final unbound copies are delivered to Grad Studies. One unbound copy and one on CD are provided to Vicki http://www.rochester.edu/college/gradstudies/current/
COURSE REQUIREMENTS FOR THE DOCTOR OF PHILOSOPHY
IN CHEMICAL ENGINEERING

For the doctoral degree the University requires a total of 90 credit hours. In practice, most of these are research credits. Note that, during the first year of residence, students are typically asked to take a total of 32 credits. (To maintain the full-time student status, a minimum of 12 credits/semester should be taken.) In addition to research, it is required that entering students with an MS degree complete a minimum of 18 credit hours of formal coursework. Those students entering the Ph.D. program without an MS degree must complete a minimum of 30 credit hours of formal coursework. Of the formal coursework, four courses must satisfy the “core” fundamentals of Chemical Engineering as defined below.

All incoming Chemical Engineering MS and PhD students will be required to take four core classes:

Graduate Level Kinetics
- CHE 461 Advanced Kinetics and Reactor Design (Spring) (or petition to take ChE 431)*

Transport Phenomena
- CHE 441 Advanced Transport Phenomenon (Fall) or petition to take both ChE 443 & 444)*

Thermodynamics
- CHE 485 Thermodynamics and Statistical Mechanics (Spring)

Mathematics
- CHE 400 Applied Boundary Value Problems (Fall)

*It will be up to the students to determine if they need to petition for a change to a course, and to use the standard Chemical Engineering petition form.

Find courses at: https://cdcs.ur.rochester.edu/
UNIVERSITY OF ROCHESTER
ARTS, SCIENCES AND ENGINEERING

PROGRAM OF STUDY FOR THE MASTER'S AND/OR PHD DEGREES

Name Student, PhD Example

Program Chemical Engineering

☑ PhD

☐ Master’s

Date September, 2017

URID 87654321

INSTRUCTIONS: This program of study must be prepared by the student in consultation with the department. Courses completed should include the grade earned in the course. Courses in progress should be marked with an asterisk (*). Courses taken at other institutions for transfer credit should be listed separately and an official supporting transcript attached, except that if a Master’s degree is presented for 30 hours transfer credit, the individual courses need not be listed.

<table>
<thead>
<tr>
<th>Subject/ Course #</th>
<th>Check if Master’s Pass</th>
<th>Grade (if completed)</th>
<th>Descriptive Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 441</td>
<td></td>
<td>*</td>
<td>Advanced Transport Phenomenon</td>
<td>4.0</td>
</tr>
<tr>
<td>CHE 400</td>
<td></td>
<td>*</td>
<td>Applied Boundary Value Problems</td>
<td>4.0</td>
</tr>
<tr>
<td>CHE 476</td>
<td></td>
<td>*</td>
<td>Polymer Synthesis & Characterization</td>
<td>4.0</td>
</tr>
<tr>
<td>CHE 480</td>
<td></td>
<td>*</td>
<td>Solar Cells</td>
<td>4.0</td>
</tr>
<tr>
<td>CHE 496</td>
<td></td>
<td>*</td>
<td>Research Seminar (required each semester)</td>
<td>0.0</td>
</tr>
<tr>
<td>CHE 485</td>
<td></td>
<td>*</td>
<td>Thermodynamics & Statistical Mechanics</td>
<td>4.0</td>
</tr>
<tr>
<td>CHE</td>
<td></td>
<td>*</td>
<td>Advanced Kinetics & Reactor Design</td>
<td>4.0</td>
</tr>
<tr>
<td>CHE 486</td>
<td></td>
<td>*</td>
<td>Polymer Physics</td>
<td>4.0</td>
</tr>
<tr>
<td>CHE 487</td>
<td></td>
<td>*</td>
<td>Surface Analysis</td>
<td>4.0</td>
</tr>
<tr>
<td>CHE 497</td>
<td></td>
<td>*</td>
<td>Research Seminar (required each semester)</td>
<td>0.0</td>
</tr>
<tr>
<td>CHE 496</td>
<td></td>
<td>*</td>
<td>Teaching Chemical Engineering ^</td>
<td>0.0</td>
</tr>
<tr>
<td>CHE 497</td>
<td></td>
<td>*</td>
<td>Research Seminar (required each semester)</td>
<td>0.0</td>
</tr>
<tr>
<td>CHE 595</td>
<td></td>
<td>*</td>
<td>PhD Research in Chemical Engineering</td>
<td>58.0</td>
</tr>
<tr>
<td>CHE 997</td>
<td></td>
<td>*</td>
<td>Doctoral Dissertation</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Total Hours (at least 30 credit hours for Master’s and 90 credit hours for PhD) 90

Remarks

1=ChE required core course. ^=The semesters in which you are a TA (2 semesters for PhD students.)

☐ Check here to verify that any 200 level courses on this Program of Study are advanced in content, rigor, and requirements.

APPROVED, Faculty Advisor Date

APPROVED, Dean of Graduate Studies Date

DISTRIBUTION:
GSO Student File and Department

Rev 5/16
2. PROGRAM OF STUDY (POS)
A faculty advisor will generally be named for each student by the end of the first year of study. The advisor assists the student in developing a complete program of study for the anticipated degree. Each program and all subsequent changes must be approved by the student's advisor and the associate dean for graduate studies. Students who take courses without the approval of the advisor and the associate dean, or without registering for them, may not receive credit toward their degree requirements.

Ph.D. programs, approved by the department chair, program director, or their representative, should be filed with the department and the associate dean for graduate studies no later than two years after initial registration as a matriculated student.

3. WAIVING THE CORE COURSE REQUIREMENTS
Students who have taken similar graduate courses elsewhere may in some instances be allowed to waive the core course requirements. Interested students must file a petition for accepting courses taken elsewhere in lieu of the recommended core courses to the Director of Graduate Studies and the Chair with research advisor's endorsement. Waiving the core course requirements will not eliminate the requirement that students with MS degrees complete 18 credit hours of formal coursework as part of the Ph.D. program of study.

4. RESEARCH SEMINAR REQUIREMENT
All students are required to register for the Chemical Engineering Departmental Seminar Series (CHE 496), unless they are in-absentia. The department chairperson should be indicated as the instructor for the course with zero credit hours. Grading for this course is based on attendance. Attendance at all the seminars is expected. Students may miss one seminar per semester and still receive a grade of “A”. Each additional seminar missed will lower the grade by one letter. The dates and times of the seminars are posted on the departmental web page and announced via email.

5. TA REQUIREMENT
All graduate students are required to TA, once for MS students and twice for PhD students. TAs must register for CHE 497, “Teaching Chemical Engineering” with zero credits. If the registration asks for the instructor, please enter the name of the professor/instructor that teaches the class you will be a TA for. Satisfactory performance is expected in each TA assignment, and new this year, will carry a letter grade. TA training is available in late August, and possibly at some time during the academic year. Please check with your graduate coordinator.

6. EVALUATION: RESEARCH PROGRESS REVIEW (RPR)
In order to evaluate student’s research performance, all students pursuing a and Ph.D. degree are required to submit the Research Progress Review (RPR) at the conclusion of every semester (Fall and Spring). At the same time, faculty advisors will inform the graduate studies committee of student’s research progress and include recommendations for the following semester. After all forms have been submitted to the Graduate Program Coordinator, the graduate committee will review students’ academic records and research accomplishments within the concluding semester. A full report will be submitted to the Graduate Studies Office.
7. Ph.D. MAXIMUM TIME OF COMPLETION*

All work for the Ph.D. including the final oral examination must be completed within seven years from date of initial registration, expect that a student who enters with a master’s degree or its equivalent for which the full 30 credit hours is accepted in the doctoral program must complete all work with six years from date of initial registration. Students who for good reasons have been unable to complete a program within the above stated limits may, upon recommendation by the faculty advisor and department chair, petition the associate dean for an extension of time. Such extension, if granted, will be of limited duration and must be reapproved at least annually. Requests for extension beyond 12 years must be approved by the University dean of graduate studies.

* All categories including “Leave of Absence” count towards the time limit

Elective Courses in Chemical Engineering:

CHE 414 Math Meth for Optics & Phy (Fall)
CHE 420 Biomedical Nanotech (Fall)
CHE 447 Liquid-Crystal Materials & Optical Applications (Fall)
CHE 458 Electrochemical Engineering & Fuel Cells (2 cr.)(Fall)
CHE 460 Solar Cells (Fall)
CHE 462 Cell & Tissue Engineering (Spring)
CHE 464 Biofuels (Fall)
CHE 465 Sustainable Chemical Processes (Spring)
CHE 466 Bioprocess Engineering (Spring)
CHE 469 Biotechnology & Bioengineering (Spring)
CHE 476 Polymer Synthesis & Characterization (Fall)
CHE 477 Advanced Numerical Methods (Fall)
CHE 482 Processing of Microelectronic Devices (2 cr.)(Fall)
CHE 486 Polymer Physics (Spring)
CHE 487 Surface Analysis (Spring)
CHE 488 Introduction to Energy Systems (Spring)
CHE 489 Biosensors (Spring)

Find courses at: https://cdcs.ur.rochester.edu/
QUALIFYING EXAMINATIONS FOR THE PH.D DEGREE IN CHEMICAL ENGINEERING

Philosophy

It is essential that the Ph.D. bound graduate student have a sound technical background and the creativity and judgment necessary to conduct independent research. In addition, it is critical that the student have demonstrated a breadth of knowledge of Chemical Engineering fundamentals before proceeding to specialized Ph.D. research. The purpose of the qualifying examination procedure is to assess these qualities in each student who desires admission to Ph.D. candidacy. The graduate student’s competence and promise are evaluated by his/her performance in graduate courses, by a critique of a recently published research article, on thesis research, and by an oral defense of a proposal for Ph.D. thesis research.

Selection of First Faculty Advisor

An incoming first-year student is assigned with a faculty advisor. This faculty member may or may not be the thesis advisor for the student. Students will attend faculty research presentations as scheduled (usually early to mid September). After the presentations, students will indicate their top three choices. Faculty and students will be matched based on research interests and openings.

Selection of Ph.D. Thesis Advisor

The students are required to formally declare their Ph.D. thesis advisors by submitting an email to the Graduate Program Coordinator before the end of January of their first year of residence. Students should discuss their research interests with the faculty members in the Department and receive prior endorsement from the faculty members that they intend to work with. Failure to declare a Ph.D. thesis advisor by the end of January in the first year will jeopardize your financial support.

PhD First Year Exam:

The examination is based upon the student’s critical evaluation of a recently published research article, which will be given to the student by mid-April. The paper will be outside the student’s main research interest. The student must evaluate the paper in a written report and oral presentation. In particular, the student is asked to:

(a) Identify the questions addressed by the author
(b) Formulate a critical appraisal of the author’s approach and contribution
(c) Propose research to extend and improve upon the study presented in the article

The purpose of the exam is to determine student’s ability to critically analyze scientific literature and to successfully complete our PhD program. The exam is administered in the first year at the end of the spring semester by the faculty committee.
Students are asked to:

- Submit a **written document** not longer than fifteen double-spaced typewritten pages plus appendices which contain three sections: Questions addressed by the author, critical appraisal of the article and proposal for additional research.
- Give a **20 minute presentation** that overviews and critically analyses the paper.
- Participate in a **discussion** assesses:

 (a) The students ability to evaluate published research critically
 (b) The students creativity in suggesting new lines of research
 (c) The strength of the written document with respect to both content and style
 (d) The student’s grasp of Chemical Engineering fundamentals (i.e. transport phenomena, thermodynamics and reaction engineering.

The goal is to determine the student’s general knowledge in the proposed area, his/her command of the relevant literature and the ability to plan and execute experiments that will test the research hypothesis.

The committee will report their evaluation of the student’s performance to the Graduate Committee. In addition, the committee will examine the student’s entire record (coursework, research performance, and examination results) and recommend to the department faculty whether the student should be encouraged to proceed toward PhD candidacy.

Recommendations of the committee include, among others:

 (a) The student should be regarded as suitable for doctoral work and should proceed accordingly.
 (b) The student should proceed with MS research and might be considered for PhD candidacy after repeating the First-Year Examination.
 (c) The student should be regarded as an MS candidate only and should be encouraged to plan accordingly.

An affirmative decision may include recommendations to the student to redress deficiencies by taking specific technical courses or courses designed to improve written or oral communication skills.

Example of First-Year Examination Scheduling/Timeline

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 12 2019</td>
<td>Grad Program Coordinator will email three papers for you to choose one that you will use for the written portion of the exam</td>
</tr>
<tr>
<td>April 18, 2019</td>
<td>Send email to Grad Program Coordinator informing the department which paper you selected by 12:00 p.m.</td>
</tr>
<tr>
<td>May 17, 2019</td>
<td>Email written document to Grad Program Coordinator by 12:00 p.m.</td>
</tr>
<tr>
<td>Examinations</td>
<td>Week of May 20, 2019</td>
</tr>
</tbody>
</table>

Example only, dates subject to change.
FIRST YEAR EXAMINATION

STUDENT PERFORMANCE EVALUATION FORM

Student: ______________________________

Faculty Member: ______________________________

PART A: Assign a numerical score (1: poor – 5: excellent) to the following aspects of the student’s performance:

1) Understanding of the scientific basis of the topic 1 2 3 4 5
2) Understanding of major issues and objectives 1 2 3 4 5
3) Technical judgment – Ability to distinguish between relevant and irrelevant issues 1 2 3 4 5
4) Substance of proposed research
 - Relevance 1 2 3 4 5
 - Originality 1 2 3 4 5
 - Technical details 1 2 3 4 5
5) Communication skills
 - Oral presentation 1 2 3 4 5
 - Written document 1 2 3 4 5
6) Chemical Engineering fundamentals
 - Transport Phenomena 1 2 3 4 5
 - Reaction Engineering 1 2 3 4 5
 - Thermodynamics 1 2 3 4 5

PART B: Provide specific comments on the student’s performance in the exam. Specifically, identify deficiencies that require remedy.

These forms should be given to the chair of the committee who, in turn, should give an examination report and a copy of the evaluation forms to the Graduate Committee.
PhD Proposal Exam:

The purpose of the exam is to determine the student’s ability to carry out high-quality research and to successfully complete our PhD program.

The exam is administered in the 2nd year at the end of the spring semester by the student’s PhD committee. Students are asked to:

- Submit a **proposal document** that (1) assesses intellectual merit of the research project; (2) summarizes the research hypothesis, project aims and the experimental plan for the entire project, and (3) discuss already collected data and results. The document is limited to 25 pages (double-spaced typewritten pages, excluding reference and experimental details.)
- Give a **30 minute presentation** about the proposal document.
- **Participate in a ~60 minute discussion** with the goal to determine student’s general knowledge in the proposed area, his/her command of the relevant literature, and the ability to plan and execute experiments that will test the research hypothesis.

Possible Outcomes of the Proposal Exam:

- Pass
- Pass with contingency that does not require another oral examination.
- Fail with a possibility to retake the exam over the summer or at the beginning of the fall semester.
- Fail with a possibility to complete an MS degree.

After the proposal, PhD students are required to have annual committee meetings, where the students give reports on their progress and the committee makes additional suggestions and recommendations relevant to the research project.

Thesis Defense

Collaborative Work in Dissertation/Thesis: The Graduate Studies Bulletin and The Preparation of Doctoral Theses: A Manual for Graduate Students (page four, www.rochester.edu/Theses) state that if a candidate for the degree Doctor of Philosophy has collaborated with others in carrying out the research upon which the dissertation is based, the character and extent of the candidate’s own participation in the project must be stated clearly in a Foreword to the dissertation. **The Foreword is a separate section immediately preceding the text and is numbered as page 1.** Each co-authored chapter must be identified in the Foreword, listing its co-author(s). This would apply to articles already published or accepted for publication, manuscripts that have been submitted for publication, or any other manuscripts.

Defense Committee: A defense committee should consist of two full-time faculty members from ChE and one full-time faculty member outside ChE. **The outside member cannot be your co-advisor.** See the graduate bulletin for full details.
Ph.D. Student Expectations and Responsibilities

http://www.rochester.edu/college/gradstudies/policies/phd.html

RESPONSIBILITIES OF TEACHING ASSISTANTS, PhD and MS

SUPERVISED COLLEGE TEACHING

All Ph.D. students admitted to the program are offered graduate fellowships that provide a competitive 12-month stipend and cover the costs of tuition and other fees. Support is guaranteed for four years subject to satisfactory academic progress. As part of their educational experience, all Ph.D. students are expected to provide undergraduate teaching assistance for two semesters.

As part of educational experience, all Master’s students are expected to provide undergraduate teaching assistance during their program of study.

Expectations and Responsibilities of TAs:

1. TAs should be polite, courteous, and respectful to all students.
2. TAs should have 2 hours/week of office hours, at a time that is convenient for the students in the course.
3. TAs are not expected to be available to answer students’ questions outside of office hours.
4. Students in courses are expected to observe the above restrictions on office hours.
5. TAs should be prepared to answer questions on the material being presented in class.
6. TAs share in the grading of homework and examinations.
7. TAs should grade and return homework assignments within a week after the due date of the assignments.
8. The department, if requested, will provide each graduate student with the opportunity to make classroom presentations.
GRADUATE STUDENT RESIDENCY, VACATIONS, AND LEAVE OF ABSENCE
(Approved 8/29/01)

General Guidelines and Principles

Graduate students are expected to be in residence the entire calendar year. Students must recognize that the periods when classes are not in session are the ideal times to devote to research and should plan to spend as much of that time as possible in productive research.

The need to take reasonable time off for vacation and time away from the academic program is recognized. However, graduate students should expect to take off no more than 10 working days per year. Such periods should be carefully arranged far in advance with the research advisor, a full semester or six months in advance is not too early. Graduate students need to be cognizant of all possible deadlines for manuscripts, abstracts, proposals, grant reports, and academic requirements such as TA assignments and the qualifying exam so that any vacation time does not adversely affect fulfilling these obligations.

If it becomes absolutely necessary for students to take leaves of absence for any time longer than a normal vacation period, they should not expect their stipends to continue while they are away. Such leaves must be approved, far in advance, by the student’s research advisor and should be considered a special privilege that is not generally available.

This policy is not intended to change the academic environment that we have into a workplace. Students and faculty alike should spend as much time as they can on their academic pursuits because it is enjoyable, not because they are compelled to do so. In keeping with the academic environment, necessary flexibility in this policy may be exercised, consistent with meeting the deadlines of assignments and research results. Each faculty member may choose to enforce this policy in his research group in a way that works best for him and his students. Any variations are at the option of the faculty advisor, and students should not expect that all variations will be generally available.

Vacation Approval Form

The research advisor and the department chair make final decisions regarding when and how long students may take time off from their research. Many factors affect such decisions. The research calendar has many deadlines that must be met: proposal submissions, abstracts for presentations at technical meetings, final reports to funding agencies, etc. All these activities are the joint responsibility of the research advisor and the students in the research lab. In addition, the academic calendar imposes special constraints. For example, graduate students in their first year of residency (and in some cases beyond the first year) have an obligation to support the teaching function of the department through service as a teaching assistant. Thus, every graduate student in this situation must schedule time off when it will not conflict with these TA responsibilities.
UNIVERSITY OF ROCHESTER
Department of Chemical Engineering

APPLICATION FOR EXTENDED VACATION

Full-time graduate students are expected to discuss any vacation plans with their research supervisor. In addition, vacation days cannot be taken when they will conflict with a student’s responsibilities as a teaching and research assistant.

Full-time graduate students who plan to be away from the department for five or more consecutive days must fill out this form and obtain approvals in advance, in accordance with the schedule presented below.

For vacation periods of five to nine days (excluding weekends but including holidays), this application form must be completed at least one month in advance of departure.

For vacation periods of ten or more days, this application must be completed at least two months in advance of departure.

Failure to comply with these deadlines may result in the loss of vacation privileges as well as the loss of stipend for the period of absence.

Student Name: __

Vacation period: __

Date of return to assume full time responsibility: ________________________________

Thesis Advisor: ___________________________ Date: ___________________________

Department Chair: ______________________________ Date: ________________________
Occupational Safety Unit
Safety Training for Research Laboratory Personnel

OSHA Required Training

To assure compliance with federal and state regulations, those working in labs or supervising lab personnel must complete EH&S laboratory safety training annually. Is your lab safety training current? You can now check your individual training history through the HRMS PeopleSoft site - [HRMS Sign-in](https://hrms.rochester.edu/). Once you log in using your netid and password, select the "Self Service" option from the main menu, then select "Learning and Development" and "Training Summary". You'll see a list of the various training courses you have completed at the University.

EH&S Lab Safety Training sessions include topics to comply with the following regulations:

- OSHA (Occupational Safety and Health Administration) compliance training for the standards:
 - Bloodborne Pathogens
 - Fire Safety
 - Formaldehyde Standard
 - Gas Cylinder Safety
 - Laboratory Standard
 - Personal Protective Equipment
- EPA (Environmental Protection Agency) issues for minimizing waste and disposal of regulated medical waste and hazardous waste
- General biosafety information including CDC (Centers for Disease Control and Prevention), New York State Department or Health, and Department of Environmental Conservation issues

Departments can schedule a live 3-hour session for their department provided a minimum of 20 people are scheduled for attendance. This can be scheduled by calling EH&S at x5-3241.

Computer-based Laboratory Safety Training, through the Blackboard system, is available for staff who are unable to attend a "live" session. Non-UR employees, non-UR students and volunteers may complete their lab safety training using the same Blackboard system, but must register for a "basic account" first. (Go to https://www.urmc.rochester.edu/libraries/miner/teaching_and_learning/blackboard/forms/create_user.cfm.)

Instructions on how to self-enroll in the course are available - [Self-enroll in Lab Safety Training](https://www.urmc.rochester.edu/libraries/miner/teaching_and_learning/blackboard/forms/create_user.cfm). The safety training has been customized for the various University lab staff:

- **Clinical Lab Personnel** - training program designed only for those who process human specimens.
• **Phlebotomists and Clinical Study Coordinators** - training program designed only for those who draw blood or coordinate clinical studies

• **Research Lab Personnel** - Laboratory Safety Training is now available through Blackboard.

 All individuals within a particular lab must complete the same training program. Select the program based on the activities in the lab - **You need to complete only one of the four options below. If you are not sure which one to take, the Biologicals/Chemicals/Animals covers the most information.**

 o **Biologicals/Chemicals/Animals** - training program designed for those staff working with chemicals, recombinant DNA, human specimens, or infectious agents

 o **Biologicals/Chemicals** - training program designed for those staff working with chemicals and recombinant DNA, human specimens or infectious agents but no animals

 o **Chemicals/Animals** - training program designed for those staff working with chemicals and animals

 o **Chemicals** - training program designed for those staff working with chemicals only and miscellaneous physical hazards are present

QUESTIONS or COMMENTS?
Contact EH&S at (585) 275-3241 or e-mail EH&S Questions.

Academic Honesty Policy:
http://www.rochester.edu/College/honesty/graduates.html

Information for New Graduate Students

Graduate studies at the University of Rochester are decentralized and focused within individual Departments and Programs. These units are the most important sources of advice and information about programs and policies, and you should contact them directly about any specific issues.

In addition, you should read the current official Graduate Bulletin, paying particular attention to those sections governing your specific degree program and the section “Regulations and University Policies Regarding Graduate Study.” Several items of general importance are discussed below.

CREDENTIALS
Each entering student must eventually provide all documents requested in the application form (even when an offer is made prior to receipt of all such documents). These include supplementary or final transcript, including certification of the completion of any degrees (by date TBA, or a hold will be put on your ability to register for classes) & Health History Form. Graduate admission is, in addition, contingent upon completion of the requirements for a Bachelor’s degree, or equivalent, unless an exception is explicitly noted in the letter of appointment.

New York State Public Health Law #2165 requires that all full-time and part-time students enrolled for at least six credit hours per semester (or 4 quarter hours per quarter), born on or after January 1, 1957, attending a college or university in New York State, must provide evidence of immunity to Measles, Mumps, and Rubella. The law also mandates that full time students indicate receipt of information about Meningococcal disease and the availability of a vaccination for students. Students from countries where tuberculosis is endemic must be screened for TB using a PPD test. The University of Rochester also requires a tetanus vaccination, preferably containing Pertussis. Students not in compliance with the immunization requirements will be withdrawn from school and required to leave campus. All of this information is included in the Health History Form packet that you will receive after accepting admission to the University. Further information about the immunization requirements is on the University Health Service website in the Student Services section. http://www.rochester.edu/ubs/primary-care/mandatory-health-fee/entering-student-health-requirements/

The Immigration Reform and Control Act of 1986 requires all students receiving assistantships from the University to submit proof of their employment eligibility. Failure to complete an Employment Eligibility Verification (Form I-9) will result in termination of an assistantship.

Documents that establish both identity and employment eligibility are (a) a US passport, (b) a certificate of US citizenship, (c) a certificate of naturalization, (d) an unexpired foreign passport with attached employment authorization or (e) an alien registration card with photograph. –OR-

You can prove your identity by providing a US Military Card, a state-issued driver’s license, or a state-issued ID card with a photograph that includes your name, sex, date of birth, height, weight, and color of eyes. You can establish employment eligibility by producing either an original Social Security number card (other than a card stating it is not valid for employment), a birth certificate issued by a state, country, or municipal authority bearing a seal or other certification, or by an unexpired USCIS Employment Authorization.

The Employment Verification forms (Form I-9) will be available in your Department/Program office. A departmental representative will be happy to certify it for you.

REGISTRATION

All students must register for at least twelve credit hours in order to be considered full-time. Students who will be a teaching assistant for that semester may register for nine credits. Classes begin Wednesday, August 29, 2018. Registration must be completed within two weeks from the first day of classes (September 12, 2018) or a late registration fee will be charged ($160.00). Registration is online. https://webreg.its.rochester.edu/prod/web/RchRegDefault.jsp Hit “I Agree” at bottom of page to register.

DROPPED COURSES
A regular semester course may be dropped at any time through the sixth week of classes, provided the student obtains the approval of his or her faculty advisor and the instructor(s), notifies the graduate registrar on the proper drop/add form, and the change does not alter the student’s time status. No record of such actions appears on the official transcript.

Following the start of the seventh week of classes, a drop notification (or a change from credit to audit) sent to the graduate registrar must bear the signatures of the faculty advisor, course instructor(s), and associate dean of graduate studies. Such late drops will be recorded on the official transcript and identified by the grade W. At the option of the course instructor, a grade of E may also be attached.

In exceptional circumstances, the associate dean of graduate studies will review the circumstances as initiated by an appropriate written petition.

Dropping credit hours after the seventh week of a semester or retroactive after the conclusion of the semester is not permitted if the change affects the student’s time status (full-time status changes to part-time status) for that particular semester. No academic credit is granted for courses in progress at the time a student withdraws from the University, except by explicit approval of the associate dean acting upon a written petition.

ENGLISH LANGUAGE TESTING

Strong English language skills are vital to your success in the program and to your future career. If you have any doubt about your English abilities, you are strongly encouraged to take additional training in English. All incoming graduate students whose first language is not English and who will be teaching assistants in the coming year are required to be tested for their English proficiency. Individual oral testing with a language specialist will be held in late August. Students will sign up for a 15 minute timeframe for the testing. Students must ensure that they are on campus and available for the testing. If you are delayed due to visa issues, you will be contacted regarding a reschedule.

Students whose language skills are judged to not be satisfactory will be required to take an English as a Second Language course designed specifically for International Graduate Students (at a cost of approximately $625). This course emphasizes the acquisition of English cultural and linguistic skills needed for clear communication in the university and career environments. Primary areas covered will be accent reduction, pragmatics (culture’s role in language), nonverbal communication, public speaking, and academic and business writing.

IMMIGRATION DOCUMENTS

International students who require immigration sponsorships as an F-1 or J-1 student should fill out and upload the New Student Request for an I-20/DS-2019 form to SLATE as soon as possible after the offer of admission has been accepted. Supporting documents may also be required, including a passport copy and proof of financial support, if needed. This form can be found on the International Services Office (ISO) website. The ISO is unable to issue necessary immigration documents without complete and accurate information. http://www.iso.rochester.edu/
APPOINTMENTS AND AWARDS

The University of Rochester, as a member of the Council of Graduate Schools in the United States, subscribes to the Resolution Regarding Graduate Scholars, Fellows, Trainees, and Assistants. In accordance with that Resolution, “when a student accepts an offer before April 15 and subsequently desires to withdraw, the student must submit in writing a resignation of the appointment at any time through April 15. However, an acceptance given or left in force after April 15 commits the student not to accept another offer without first obtaining a written release from the institution to which a commitment has been made.”

The continuity of all appointments and awards, and the eligibility for reappointment, require that the student make satisfactory academic progress. Any award can be terminated, at any time, if the academic work is regarded as unsatisfactory.

TAX INFORMATION:

http://rochester.edu/provost/policiesandreports/grad-student-pay-changes.html

EXTERNAL WORK POLICY

Full-time students holding fellowships, assistantships, or scholarships may not accept other full-time employment.

FINANCIAL AID

Please contact the Financial Aid Office at (800) 881-8234 or visit the website at http://enrollment.rochester.edu/financial/ for additional details on loans and contact information for staff members.

SUPERVISED TEACHING

All Chemical Engineering and Alternative Energy graduate students are required to perform teaching assistance as part of their education, UNLESS you are in a special program (i.e. Iberdrola Fellowship). Teaching experience deepens and enriches a student’s understanding of the discipline and provides invaluable professional training and is, therefore, considered to be a vital component of any program.

TA TRAINING

There will be TA training workshops in late August. ChE/ERG students are expected to take this training just before the semester in which they will TA, unless excused.

UNIVERSITY OF ROCHESTER STUDENT HEALTH PROGRAM
All students have MANDATORY HEALTH: Mandatory Health Fee - $612 for 2018-19

The mandatory health fee assures the availability of accessible, high quality health care services on campus for all full-time University of Rochester students. All full-time students pay the mandatory health fee. The charge for this fee appears on their tuition billing statement.

The mandatory health fee covers care and services provided by the University Health Service (UHS) and the University Counseling Center (UCC). at their offices on the River Campus, in the Medical Center, and at the Eastman School of Music. All full-time students receive care and services at the University Health Service, regardless of the health insurance option they choose. Please note: The fee does not cover health care visits to locations outside UHS and UCC.

The mandatory health fee covers the following services:

- Primary care visits with physicians, nurse practitioner, and registered nurses at the University Health Service (UHS). (See Services for Students for information about the services offered for full-time students.)
- A comprehensive initial assessment, an individualized treatment plan, and support to put such a plan into action provided by the University Counseling Center (UCC) on an individual, couples, or group basis.
- UHS physician and UCC mental health professional on call 24 hours/day, 7 days/week
- Health education and health promotion services
- Public health and disease prevention programs

Please note: The mandatory health fee does not cover the cost of laboratory tests, x-rays, medications, physical therapy, procedures, and visits with specialists. Your coverage will depend on your insurance plan. The cost for these services will be billed to your health insurance plan.

Students must also have individual coverage. For more information https://www.rochester.edu/uhs/

If you have questions about health insurance, contact the UHS Insurance Advisor, at insurance@uhs.rochester.edu. The UHS Student Insurance Office is located in Room 204, which is on the 2nd floor of the UHS Building on the River Campus.

BURSAR

Be sure to fill out your payment agreement and find other information on fees and bill paying.