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A B S T R A C T

We study a blind deconvolution problem on graphs, which arises in the context of localizing a few sources that
diffuse over networks. While the observations are bilinear functions of the unknown graph filter coefficients
and sparse input signals, a requirement on invertibility of the diffusion filter enables an efficient convex
relaxation leading to a linear programming formulation that can be tackled with off-the-shelf solvers. Under
the Bernoulli–Gaussian model for the inputs, we derive sufficient exact recovery conditions in the noise-free
setting. A stable recovery result is then established, ensuring the estimation error remains manageable even
when the observations are corrupted by a small amount of noise. Numerical tests with synthetic and real-world
network data illustrate the merits of the proposed algorithm, its robustness to noise as well as the benefits
of leveraging multiple signals to aid the (blind) localization of sources of diffusion. At a fundamental level,
the results presented here broaden the scope of classical blind deconvolution of (spatio-) temporal signals to
irregular graph domains.
1. Introduction

Network processes such as neural activities at different cortical
brain regions [1–3], vehicle flows over transportation networks [4,5],
COVID-19 infections across demographic areas connected via a com-
mute flow mobility graph [6], or spatial temperature profiles monitored
by distributed sensors [7,8], can be represented as signals supported
on the nodes of a graph. In this context, the graph signal processing
(GSP) paradigm hinges on recognizing that signal properties are shaped
by the underlying graph topology (e.g., in a network diffusion or
percolation process), to develop models, signal representations, and
information processing algorithms that exploit this relational structure.
Accordingly, generalizations of key signal processing tasks have been
widely explored in recent work; see [9,10] for recent tutorial accounts.
Notably graph filters were conceived as information-processing oper-
ators acting on graph-valued signals [11,12], and they are central to
graph convolutional neural network models; see e.g. [13]. Mathemati-
cally, graph filters are linear transformations that can be expressed as
polynomials of the so-termed graph-shift operator (GSO; see Section 2).
The GSO offers an algebraic representation of network structure and
can be viewed as a local diffusion operator. Its spectral decomposition
can be used to represent signals and filters in the graph frequency
domain [14]. For the cycle digraph representing e.g., periodic temporal
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signals, the GSO boils down to the time-shift operator [9,11,15]. Given
a GSO, the polynomial coefficients fully determine the graph filter and
are referred to as filter coefficients.
Problem description. In this paper, we revisit the blind deconvolution
task for graph signals introduced in [16], with an emphasis on modeling
diffusion processes and localization network diffusion sources. Specif-
ically, given 𝑃 observations of graph signals {𝐲𝑖}𝑃𝑖=1 that we model as
outputs of a diffusion filter (i.e., a polynomial in a known GSO), we seek
to jointly identify the filter coefficients 𝐡 and the input signals {𝐱𝑖}𝑃𝑖=1
that generated the network observations. Since the resulting bilinear
inverse problem is ill-posed, we assume that the inputs are sparse – a
well-motivated setting when few seeding nodes (the sources) inject a
signal that is diffused throughout a network [17]. Localizing sources of
network diffusion is a challenging problem with applications in several
fields, including sensor-based environmental monitoring, social net-
works, neural signal processing, or, epidemiology, to name a few. This
inverse problem broadens the scope of classical blind deconvolution of
temporal or spatial signals to graphs [18–20].
Related work and contributions. A noteworthy approach was put
forth in [17], which casts the (bilinear) blind graph-filter identifica-
tion task as a linear inverse problem in the ‘‘lifted’’ rank-one, row-
sparse matrix 𝐱 𝐡⊤. While the rank and sparsity minimization algorithms
https://doi.org/10.1016/j.sigpro.2024.109864
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in [17,21] can successfully recover sparse inputs along with low-order
graph filters, reliance on matrix lifting can hinder applicability to
large graphs. Beyond this computational consideration, the overarching
assumption of [17] is that the inputs {𝐱𝑖}𝑃𝑖=1 share a common support.

ere instead we show how a requirement on invertibility of the graph
ilter facilitates an efficient convex relaxation for the multi-signal case

with arbitrary supports (Section 3); see also [20] for a time-domain
precursor as well as generalizations of [22] in a supervised learning
etting [23] and a study of robustness to graph perturbations [24]. In

Section 4, we establish sufficient conditions under which the proposed
convex estimator can exactly recover sparse input signals, assumed
to adhere to a Bernoulli-Gaussian model. We also derive a stability
result for the pragmatic setting where the graph signal observations
are corrupted by additive noise. The analysis is challenging, since
the favorable (circulant) structure of time-domain filters in [20] is no
onger present in the network-centric setting dealt with here. Numerical
ests with synthetic and real data corroborate the effectiveness of the
roposed approach in recovering the sparse input signals (Section 5).

Concluding remarks are given in Section 6. We defer proofs and math-
matical details as well as non-essential experimental details to the
ppendices.

Different from most existing model-based works dealing with source
localization on graphs, e.g., [25–27], like [28] we advocate a GSP
pproach based on an admittedly simple forward (graph filtering)

model. In our case, this simplification facilitates a thorough theo-
retical analysis of recovery performance, offering valuable insights.
Often the models of diffusion are probabilistic in nature, and resulting
maximum-likelihood source estimators can only be optimal for par-
icular (e.g., tree) graphs [26], or rendered scalable under restrictive

dependency assumptions [29]. Relative to [2,28], the proposed frame-
work can accommodate signals defined on general undirected graphs
nd relies on a convex estimator of the sparse sources of diffusion. Fur-
hermore, the setup where multiple output signals are observed (each

one corresponding to a different sparse input), has not been thoroughly
explored in convex-relaxation approaches to blind deconvolution of
(non-graph) signals, e.g., [18,30]; see [20] for a recent and inspiring
lternative that we leverage here.

Relative to the conference precursor [22] that discussed inherent
scaling and (non-cyclic) permutation ambiguities arising with some
articular graphs as well as identifiability issues [31], the exact and
table recovery guarantees in Section 4 are significant contributions of

this journal paper. Here we offer a comprehensive presentation along
with full-blown technical details, we study robustness to noise, and
provide a markedly expanded experimental evaluation anchored in our
theoretical analyses.
Notation: Entries of a matrix 𝐗 and a (column) vector 𝐱 are de-
noted as 𝑋𝑖𝑗 and 𝑥𝑖. Calligraphic uppercase letters are used for sets,
.g., . Operators (⋅)⊤, E [⋅], vec[⋅], 𝜎max[⋅], ◦, ⊗ and ⊙ stand for

matrix transpose, expectation, matrix vectorization, largest singular
value, Hadamard (entry-wise), Kronecker, and Khatri–Rao (column-
wise Kronecker) products, respectively. The diagonal matrix diag(𝐱) has
𝑖, 𝑖)th entry 𝑥𝑖. The 𝑛 × 𝑛 identity matrix is represented by 𝐈𝑛, while
𝑛 stands for the 𝑛 × 1 vector of all zeros, and 𝟎𝑛×𝑝 = 𝟎𝑛𝟎⊤𝑝 . A similar
onvention is adopted for vectors and matrices of all ones. For matrix
∈ R𝑁×𝑘, we use span{𝐌} ∶= {𝐳 ∈ R𝑁

|𝐳 = 𝐌𝐱,∀𝐱 ∈ R𝑘} to represent
he linear subspace spanned by its columns. Moreover, [𝐌] has entries
𝑀𝑖𝑗 if (𝑖, 𝑗) ∈  and 0 otherwise, where  ⊆ {1,… , 𝑁} × {1,… , 𝑘}.
The notation ‖𝐗‖𝑝,𝑞 =

(

∑

𝑗 (
∑

𝑖 |𝑋𝑖𝑗 |
𝑝)𝑞∕𝑝

)1∕𝑞
stands for the elementwise

matrix norm, ‖𝐗‖𝐹 = ‖𝐗‖2,2 denotes Frobenius norm, and ‖𝐗‖𝑙→2, 𝑙 =
1, 2 are operator norms, i.e., the maximum 𝓁2 norm of a column of 𝐗
for 𝑙 = 1 and 𝜎max[𝐗] for 𝑙 = 2, respectively.

2. Preliminaries and problem statement

We briefly review the necessary GSP background to introduce the
observation model and formally state the problem.
2 
2.1. Graph signal processing background

Consider a weighted and undirected graph denoted as  = ( ,𝐀),
where  ∶= {1,… , 𝑁} comprises the vertex set. The symmetric graph
adjacency matrix 𝐀 ∈ R𝑁×𝑁

+ has entries 𝐴𝑖𝑗 = 𝐴𝑗 𝑖 ≥ 0, that represent
the weight of the edge (𝑖, 𝑗) between nodes 𝑖 and 𝑗. Naturally, if such
edge (𝑖, 𝑗) is not present in  then 𝐴𝑖𝑗 = 0. We do not allow for self-
loops, hence 𝐴𝑖𝑖 = 0 for all 𝑖 ∈  . Directed graphs are important [32],
but beyond the scope of this work; see also Remark 2.

As a general algebraic descriptor of graph connectivity, we hence-
orth rely on a symmetric GSO 𝐒 ∈ R𝑁×𝑁 , inheriting and encoding
he sparsity pattern of  [11,33]. That is, the only requirement for an

admissible GSO 𝐒 is that 𝑆𝑖𝑗 = 0 when there is no edge connecting 𝑖
and 𝑗. Typical choices are 𝐀 itself, the combinatorial graph Laplacian
𝐋 = 𝐀 − diag(𝐀 ⋅ 𝟏𝑁 ), or, their various degree-normalized forms [9,34]
that we will adopt for our experiments in Section 5. Given that 𝐒 is real
and symmetric, it is always diagonalizable and we can decompose it as
𝐒 = 𝐕𝜦𝐕⊤, where 𝜦 = diag(𝜆1,… , 𝜆𝑁 ) collects the eigenvalues and 𝐕’s
columns comprise an orthonormal basis of GSO eigenvectors.

Lastly, we define a graph signal 𝐱 ∶  ↦ R𝑁 as an 𝑁-dimensional
ector, where 𝑥𝑖 denotes the signal value at node 𝑖 ∈  . This value
ould for instance represent the rating user 𝑖 assigns to a particular item
e.g., an article as in the experiments in Section 5.3), the measurement
ollected by sensor 𝑖, or, the neural activity recorded in the 𝑖th cortical
egion-of-interest as defined by some brain parcellation. In GSP, the
revalent view is that graph signal 𝐱 should not be viewed in isolation,
ut rather as a tuple along with the GSO 𝐒 – the later provides useful
ontextual (or prior) information about pairwise relationships among
ndividual signal elements in 𝐱. Next, we elaborate on the operator
iewpoint of 𝐒 as a map between graph signals.

2.2. Graph-filter models of network diffusion

Let 𝐲 represent a graph signal supported on , which is assumed to
e generated from an initial state 𝐱 through linear network dynamics
f the form

𝐲 = 𝑎0
∏∞

𝑙=1(𝐈𝑁 − 𝑎𝑙𝐒)𝐱 =
∑∞

𝑙=0 𝑏𝑙𝐒
𝑙𝐱. (1)

The linear transformation 𝐒 represents one-hop network aggregation
(or averaging), so repeated (𝑙 = 1, 2,…) applications of the GSO in (1)
diffuse 𝐱 across . Accordingly, {𝑎𝑙}∞𝑙=0 and {𝑏𝑙}∞𝑙=0 can be viewed as
iffusion coefficients for the multiplicative and additive signal model
arametrizations in (1), respectively. This generative model for 𝐲 is

admittedly simple, but it nonetheless encompasses a broad class of
linear network processes such as heat diffusion, average consensus,
PageRank, and the DeGroot model of opinion dynamics [35,36].

The Cayley–Hamilton theorem [37, p. 109] ensures that the infi-
nite series in the right-hand-side of (1) can always be equivalently
eparametrized using bounded-degree polynomials of 𝐒. Introducing the
oefficient vector 𝐡 ∶= [ℎ0,… , ℎ𝐿−1]⊤ and the shift-invariant graph

filter [9]

𝐇 ∶= ℎ0𝐈𝑁 + ℎ1𝐒 + ℎ2𝐒2 +⋯ + ℎ𝐿−1𝐒𝐿−1 =
𝐿−1
∑

𝑙=0
ℎ𝑙𝐒𝑙 , (2)

the signal model (1) becomes

𝐲 =

(𝐿−1
∑

𝑙=0
ℎ𝑙𝐒𝑙

)

𝐱 = 𝐇𝐱, (3)

for some 𝐡 and 𝐿 ≤ 𝑁 . While graph filters are leveraged here as simple
enerative mechanisms to describe diffusion processes on networks,
hese convolutional operators play a central role in GSP and machine
earning on graphs; see e.g., [12] for a recent tutorial treatment.
Frequency representation. Graph filters and signals admit represen-
tations in the frequency (i.e., graph spectral) domain [9,14]. To this
end, recall the GSO eigenvalues 𝜆 ,… , 𝜆 and introduce the 𝑁 × 𝐿
1 𝑁
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Vandermonde matrix 𝜳𝐿, where 𝛹𝑖𝑗 ∶= 𝜆𝑗−1𝑖 and 𝐿 is the order of the
graph filter (2). The graph Fourier transform (GFT) of a signal 𝐱 and the
frequency response of filter 𝐡 are 𝐱̃ ∶= 𝐕⊤𝐱 and 𝐡̃ ∶= 𝜳𝐿𝐡, respectively.
This follows by evaluating the GFT of the filter’s output 𝐲 = 𝐇𝐱 and
using the spectral decomposition 𝐒 = 𝐕𝜦𝐕⊤, to yield

̃ = diag
(

𝜳𝐿𝐡
)

𝐕⊤𝐱 = diag
(

𝐡̃
)

𝐱̃ = 𝐡̃◦𝐱̃. (4)

Apparently, the graph filter 𝐇 is diagonalized by the graph’s spectral
basis 𝐕. As a result 𝐲̃ is given by the element-wise product (◦) of 𝐱̃ and
he filter’s frequency response 𝐡̃ ∶= 𝜳𝐿𝐡, analogous to the convolution
heorem for temporal signals.

2.3. Problem formulation

Suppose we observe 𝑃 graph signals that we collect in a matrix
= [𝐲1,… , 𝐲𝑃 ] ∈ R𝑁×𝑃 . For given shift operator 𝐒 and filter order
≤ 𝑁 , observations adhere to the (graph convolutional) diffusion

odel 𝐘 = 𝐇𝐗 in (3), where 𝐗 = [𝐱1,… , 𝐱𝑃 ] ∈ R𝑁×𝑃 is sparse
having at most 𝑆 ≪ 𝑁 non-zero entries per column. We do not
require that the columns of 𝐗 share a common support. The pragmatic
setting whereby observations are corrupted by additive noise will be
considered in Section 4.2.

The goal is to perform blind deconvolution on the graph , which
amounts to estimating sparse 𝐗 and the filter coefficients 𝐡 up to scaling
and (possibly) permutation ambiguities [22, Sec. IV-A]. All we are
iven is 𝐘, a forward model in terms of the parameterized filter family
n (2), and a structural assumption on 𝐗. Sparsity is well motivated

when the signals in 𝐘 represent diffused versions of a few localized
sources in , here indexed by  ∶= supp(𝐗) = {(𝑖, 𝑗) ∣ 𝑋𝑖𝑗 ≠ 0}. From
this vantage point, the blind deconvolution task can be viewed as a
source localization one, where recovering 𝐗 is of primary interest and 𝐡
becomes a nuisance parameter. In any case, the non-sparse formulation
is ill-posed, since the number of unknowns 𝑁 𝑃 + 𝐿 in {𝐗,𝐡} exceeds
the 𝑁 𝑃 observations in 𝐘.

All in all, using (4) the diffused source localization task can be stated
as a non-convex feasibility problem of the form

find {𝐗,𝐡} s. to 𝐘 = 𝐕diag
(

𝜳𝐿𝐡
)

𝐕⊤𝐗, ‖𝐗‖0 ≤ 𝑃 𝑆 , (5)

where the 𝓁0-(pseudo) norm ‖𝐗‖0 ∶= |supp(𝐗)| counts the non-zero
entries in 𝐗. In other words, the goal is to find the solution to a
system of bilinear equations subject to a sparsity constraint in 𝐗; a hard
problem due to the cardinality function as well as the bilinear equality
constraints. To deal with the latter, building on [20] we will henceforth
assume that the filter 𝐇 is invertible.

3. Convex relaxation for invertible graph filters

In this section we propose a convex relaxation of (5), which is
feasible under the additional assumption of diffusion filter invertibility.
We wrap up with a brief discussion about algorithms to solve the
resulting linear program.

3.1. A linear programming problem reformulation

From the filter’s input–output relationship in (4), it follows that 𝐇
ill be invertible if 𝐡̃ does not vanish at any of the graph frequencies
𝜆𝑖}𝑁𝑖=1. That is, no frequency component of the input should be com-
letely annihilated by the filter. We make the following assumption on
he signal model.

Assumption 1 (Invertible Graph Filter). Recall the observation model
𝐘 = 𝐇𝐗 in Section 2.2, where 𝐇 =

∑𝐿−1
𝑙=0 ℎ𝑙𝐒𝑙 is a graph filter. We

assume 𝐇 is invertible, meaning ℎ̃𝑖 =
∑𝐿−1

𝑙=0 ℎ𝑙𝜆𝑙𝑖 ≠ 0 holds for all
𝑖 = 1,… , 𝑁 .
 m

3 
The inverse operator 𝐆 ∶= 𝐇−1 is also a graph filter on , which
an be uniquely represented as a polynomial in the shift 𝐒 of degree
t most 𝑁 − 1 [11, Theorem 4]. Specifically, let 𝐠 ∈ R𝑁 be the
ector of inverse-filter coefficients, i.e., 𝐆 =

∑𝑁−1
𝑙=0 𝑔𝑙𝐒𝑙. Then one can

equivalently rewrite the observation model 𝐘 = 𝐇𝐗 as

𝐗 = 𝐆𝐘 = 𝐕diag(𝐠̃)𝐕⊤𝐘, (6)

where 𝐠̃ ∶= 𝜳𝑁𝐠 ∈ R𝑁 is the inverse filter’s frequency response and
𝑁 ∈ R𝑁×𝑁 is a square Vandermonde matrix. Naturally, 𝐆 = 𝐇−1

mplies the condition 𝐠̃◦𝐡̃ = 𝟏𝑁 on the frequency responses, where 𝟏𝑁
enotes the 𝑁 × 1 vector of all ones.

The fundamental implication of Assumption 1 is that, leveraging (6),
ne can recast (5) as a linear inverse problem

min
{𝐗,𝐠}

‖𝐗‖0, s. to 𝐗 = 𝐕diag(𝜳𝑁𝐠)𝐕⊤𝐘, 𝐗 ≠ 𝟎𝑁×𝑃 . (7)

This approach to handle the bilinear Eqs. (5) is markedly different from
the matrix lifting technique in [17]. Relative to [17], the additional
nvertibility requirement we impose offers major algorithmic simpli-

fications and stronger theoretical guarantees; see also the numerical
evaluation in Section 5.2. We were inspired by the blind deconvolution
method in [20], but in the GSP setting dealt with here the convo-
ution kernel 𝐇 is not circulant, and so 𝐕 is no longer the discrete
ourier transform (DFT) matrix. This has major technical implications
hen it comes to establishing exact and stable recovery guarantees;

ee Section 4.
The 𝓁0 pseudo-norm in (7) renders the problem NP-hard to opti-

mize. Convex-relaxation approaches to tackle sparse recovery problems
have enjoyed remarkable success, since they often entail no loss of
optimality. An important contribution of this work is to establish this
holds for (7) as well; see Section 4. Accordingly, we instead: (i) seek
to minimize the 𝓁1-norm convex surrogate of the cardinality function,
that is ‖𝐗‖1,1 =

∑

𝑖,𝑗 |𝑋𝑖𝑗 |; and (ii) express the filter in the graph spectral
omain as in (6). This way, we arrive at the convex cost function

‖𝐗‖1,1 = ‖𝐆𝐘‖1,1 = ‖𝐕diag(𝐠̃)𝐕⊤𝐘‖1,1 = ‖(𝐘⊤𝐕⊙ 𝐕)𝐠̃‖1,

where the last equality is obtained after vectorizing the norm’s matrix
argument, and ⊙ denotes the Khatri–Rao (i.e., columnwise Kronecker)
product. Our idea is to solve the convex 𝓁1-synthesis problem (in this
case a linear program), e.g., [38], namely

̂̃ = argmin
𝐠̃∈R𝑁

‖(𝐘⊤𝐕⊙ 𝐕)𝐠̃‖1, s. to 𝟏⊤𝑁 𝐠̃ = 𝑁 . (8)

While the linear constraint in (8) avoids ̂̃𝐠 = 𝟎𝑁 , it also serves to fix the
cale of the solution since the bilinear problem (5) is only identifiable

up to scaling. Without loss of generality we henceforth let 𝟏⊤𝑁 ̂̃𝐠 = 𝑁 .
n insightful discussion on the role of the constraint will emerge as
n upshot of the exact recovery guarantees derived in Section 4.1. A

reason for choosing the (arbitrary) value 𝑁 in the constraint is that it
simplifies said recovery conditions; see also (12).

Remark 1 (Badly-Conditioned Graph Filters). For badly conditioned
filters 𝐇 that are close to being singular, some entries of the frequency
response ℎ̃𝑖 ≈ 0 and the corresponding 𝑔̃𝑖 can be quite large. Our
theoretical analysis in Section 4 will reveal that, as expected, in such
cases exact recovery via the convex relaxation (8) can be challenging.
Adoption of regularization techniques can help mitigate these adverse
effects, say by augmenting the cost function in (8) with a (weighted)
ridge or Tikhonov penalty ‖𝐠̃‖22 to encourage shrinkage. We leave these
extensions to our model as part of our future work.

3.2. Algorithms

From an algorithmic point of view, under the assumption that the
iffusion filter is invertible (cf. Assumption 1), one can readily use
.g., an off-the-shelf interior-point method or a specialized sparsity-
inimization algorithm to solve the linear programming formulation
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Algorithm 1 Iteratively-reweighted 𝓁1 minimization for (8).

1: Input: Matrix 𝐘⊤𝐕⊙ 𝐕, 𝜇 > 0 and 𝜖 > 0.
2: Initialize 𝑡 = 0, 𝐰(0) = 𝟏𝑁 𝑃 , 𝐗(0) = 𝟎𝑁×𝑝.
3: repeat
4: Solve

𝐠̃(𝑡+1) = argmin
𝐠̃

‖

‖

‖

𝐰(𝑡)◦[(𝐘⊤𝐕⊙ 𝐕)𝐠̃]‖‖
‖1

, s. to 𝟏⊤𝑁 𝐠̃ = 𝑁 .

5: Form vec(𝐗(𝑡+1)) = (𝐘⊤𝐕⊙ 𝐕)𝐠̃(𝑡+1).
6: Update 𝑤(𝑡+1)

𝑖 = 1
[vec(𝐗(𝑡+1))]𝑖+𝜇

, 𝑖 = 1, 2,… , 𝑁 𝑃 .
7: 𝑡 ← 𝑡 + 1.
8: until ‖𝐗(𝑡) − 𝐗(𝑡−1)

‖2 ≤ 𝜖.
9: return ̂̃𝐠 ∶= 𝐠̃(𝑡) and 𝐗̂ ∶= 𝐗(𝑡).

(8) efficiently. Different from the solvers in [17,39], the aforemen-
ioned algorithmic alternatives are free of expensive singular-value

decompositions per iteration. Regardless of the particular algorithm
chosen, we have found that the overall performance can be improved
ia the iteratively-reweighted 𝓁1-norm minimization procedure tab-

ulated under Algorithm 1; see also [40] for a justification of such
refinement that effectively zeros out small residual entries in interme-
iate estimates of 𝐗. In practice, a couple refinement iterations suffice
o the additional overhead is minimal.

Once the frequency response ̂̃𝐠 of the inverse filter is recovered, one
can readily reconstruct the sparse sources via

̂ = unvec
(

(𝐘⊤𝐕⊙ 𝐕) ̂̃𝐠
)

, (9)

where here the unvec(⋅) operator reshapes its vector argument to an
𝑁 × 𝑃 matrix. If so desired, one can likewise form the diffusion filter
estimate 𝐇̂ = 𝐕diag(𝟏𝑁∕ ̂̃𝐠)𝐕⊤, where the division is to be conducted
entrywise.

In the next section, we will discuss the exact recovery condition for
(8) and its robustness to noise-corrupted observations. Before moving
n, a remark is in order.

Remark 2 (Extensions to Directed Graphs). In this work we consider
ndirected graphs  with symmetric GSO 𝐒. Yet most of the methods
eveloped here are still applicable in the directed case, provided that
he asymmetric GSO is diagonalizable as 𝐒 = 𝐕𝜦𝐕−1. Eigenvectors and
igenvalues can be complex valued, so the decision variable 𝐠̃ ∈ C𝑁

ill also be complex, challenging optimization using Algorithm 1.
A simple workaround is to go to the vertex domain and search for
the inverse filter coefficients 𝐠 ∈ R𝑁 , after substituting 𝐠̃ = 𝜳𝑁𝐠
n (8). Beyond algorithms, our recovery guarantees in the ensuing

section will likely carry over after minor modifications resulting from
the aforementioned change of variable 𝐠̃ = 𝜳𝑁𝐠. We defer these and
other intriguing extensions (see Section 6) to our future work.

4. Recovery guarantees

Here we conduct a theoretical analysis of the proposed convex
stimator in (8), which is a relaxation of the blind deconvolution

problem on the graph . We first derive exact recovery guarantees,
which hold with high probability under a Bernoulli-Gaussian model for
he sparse inputs. A stable recovery result is then established, ensuring
he estimation error on the inverse filter’s frequency response can be
ept in check when the observations are corrupted by a small amount
f additive noise.

Because of its analytical tractability, the Bernoulli-Gaussian model is
widely adopted to describe and generate random sparse matrices such
as the unknown sources 𝐗 ∈ R𝑁×𝑃 in Section 2.3. We henceforth adopt
the following model specification that is consistent with the definition
n [31].
 t

4 
Definition 1 (Bernoulli–Gaussian Model). We say a random matrix 𝐗 ∈
R𝑁×𝑃 adheres to a Bernoulli-Gaussian model with parameter 𝜃 ∈ (0, 1),
f its entries are 𝑋𝑖𝑝 = 𝛺𝑖𝑝𝛾𝑖𝑝∕

√

𝜃, where 𝛺𝑖𝑝 ∼ Bernoulli(𝜃) and 𝛾𝑖𝑝 ∼
Normal(0, 1) are i.i.d. for all 𝑖, 𝑝.

In the context of Definition 1 we say that the matrix entries 𝑋𝑖𝑝 are
Bernoulli-Gaussian random variables, with E

[

𝑋𝑖𝑝
]

= 0 and var
[

𝑋𝑖𝑝
]

=
1. Apparently, the model parameter 𝜃 offers a handle on the sparsity
evel of 𝐗, while entries in  = supp(𝐗) ≡ supp(𝜴) are drawn from a
tandard Normal distribution.

4.1. Exact recovery conditions

Suppose that (7) is identifiable (see e.g., [22, Remark 1] for suffi-
cient conditions under the Bernoulli-Gaussian model), and let {𝐗0, 𝐠̃0}
be the solution. For the ensuing discussion and to state our exact
recovery result, some preliminary notation is in order. We compactly
denote polynomials of the given graph-shift operator 𝐒 = 𝐕𝜦𝐕⊤ as
(𝐡̃) ∶= 𝐕diag(𝐡̃)𝐕⊤, where 𝐡̃ is the corresponding filter’s frequency
response. So given observations 𝐘 = (𝐡̃0)𝐗0 ∈ R𝑁×𝑃 (implying
𝐗0 = (𝐠̃0)𝐘 under Assumption 1, for 𝐠̃0◦𝐡̃0 = 𝟏𝑁 ), we will study the
ollowing problem [cf. (8)]

̂̃𝐠 = argmin
𝐠̃

‖(𝐠̃)𝐘‖1,1, s. to 𝐫⊤𝐠̃ = 𝑐 , (10)

where 𝐫 ∈ R𝑁 is a generic constraint vector, and 𝑐 = 𝐫⊤𝐠̃0 ≠ 0 is a
onstant to control the (inherently ambiguous) scale of the solution
̂̃ . In general we do not have any prior knowledge about the ground-
truth filter, so we can just select 𝐫 = 𝟏N as in (8). Our main result will
offer some insights on how the recovery performance is affected by the
choice of 𝐫.

We let 𝐏⟂
1 ∶= 𝐈𝑁 −

𝟏𝑁 𝟏⊤𝑁
𝑁 denote the projection operator onto the

rthogonal complement of the subspace span(𝟏𝑁 ). Finally, consider the
atrix 𝐔̃ ∶= (𝐕◦𝐕)𝐏⟂

1 ∈ R𝑁×𝑁 , which one can show has a maximum
ingular value 𝜎max(𝐔̃) ≤ 1. With these definitions in place, we have
ll the elements to state the main theorem in this section. The result
rovides sufficient conditions to guarantee exact recovery of the inverse
ilter 𝐠̃0, and hence the sparse sources 𝐗0 via (9), with high probability.

Theorem 1 (Exact Recovery). Consider graph signal observations 𝐘 =
(𝐡̃0)𝐗0 ∈ R𝑁×𝑃 , where 𝐗0 adheres to the Bernoulli-Gaussian model with
𝜃 ∈ (0, 0.324]. Recall that under Assumption 1, we can write 𝐗0 = (𝐠̃0)𝐘.
Let 𝑃 ≥ 𝐶 ′𝜎−2𝑚 log 4

𝛿 , where 𝜎𝑚 = min(𝜎1, 𝜎2, 𝜎3, 𝜎4) and 𝜎1 ∈
(

0,
√

𝜋 𝜃3∕2
2

]

,

𝜎2 ∈
(

0,
√

𝜋 𝜃
2

]

, 𝜎3 > 0, 𝜎4 ∈ (0, 1), 𝛿 ∈ (0, 1) are parameters, while 𝐶 ′ is

a constant that does not depend on 𝑃 , 𝜎𝑚, or 𝛿. Then ̂̃𝐠 = 𝐠̃0 is the unique
solution to (10) with probability at least 1 − 𝛿, if
‖

‖

‖

𝐏⟂
1 diag(𝐫)𝐠̃0

‖

‖

‖2
≤ (𝑐∕𝑁)𝑑0, (11)

where 𝑑0 ∶=
√

1−𝜎2max(𝐔̃)[(1−𝜎1)−2𝜃(1+𝜎2)](1−𝜎4)
(1+𝜎3)

√

𝜃
.

Proof. See Appendix A. □

Notice that when 𝐫 = 𝟏N, we have 𝑐 = 𝟏⊤𝑁 𝐠̃0 = 𝑁 as per our arbitrary
hoice of scale in (8). Thus, the sufficient recovery condition (11)

simplifies to
‖

‖

‖

𝐏⟂
1 𝐠̃0

‖

‖

‖2
≤ 𝑑0. (12)

Condition (12) essentially states that when the frequency response of
the inverse filter 𝐠̃0 is closer to the all-ones vector 𝟏𝑁 , meaning that
⟂
1 𝐠̃0 is smaller in magnitude, the inverse filter is easier to recover,
s the right-hand-side of the bound (12) does not directly depend
n 𝐠̃0 (except through the ratio of its arbitrarily fixed scale and di-
ensionality, and here 𝑐 = 𝑁). In any case, it is pleasing to see

he conditions (11) and (12) only depend on the scale-normalized
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filter frequency responses, e.g., 𝐠̃0∕𝑐 in (11). Going back to Remark 1,
Eq. (12) and the prior discussion corroborate that a badly-conditioned
ilter 𝐇 will have an inverse 𝐆 that is more challenging to recover.

Indeed, in such case some of the entries of 𝐠̃0 will be quite large —
ence markedly deviating from 𝟏𝑁 . All in all, one can interpret ‖‖

‖

𝐏⟂
1 𝐠̃0

‖

‖

‖2
s a measure of the problem’s ill conditioning.

Furthermore, the influence of prior knowledge of the true filter 𝐡̃0
n the recovery performance can be illustrated through a specific and
traightforward case where 𝐫 = 𝐡̃0 in (11). In this idealized scenario,

since ‖𝐏⟂
1 diag(𝐡̃0)𝐠̃0‖2 = ‖𝐏⟂

1 𝟏𝑁‖2 = 0, the left-hand-side of (11) will
ertainly be less than (𝑐∕𝑁)𝑑0. Although this is a trivial case, it suggests
hat when 𝐫 is closer to 𝐡̃0 (meaning that diag(𝐫)𝐠̃0 = 𝐫◦𝐠̃0 is closer to
𝑁 ), the recovery performance of the proposed convex relaxation (10)
ill improve.

Additionally, increasing 𝜃 within the feasible range 𝜃 ∈ (0, 0.324]
ill decrease 𝑑0, making the recovery of the inverse filter more chal-

enging. Conversely, when ‖𝐏⟂
1 𝐠̃0‖2 is smaller, a lower 𝑑0 can be tol-

rated, allowing for a denser input signal (higher 𝜃). Moreover, in
this last case the feasible parameters {𝜎1, 𝜎2, 𝜎3, 𝜎4} (and hence 𝜎𝑚)
an be larger, resulting in a lower required number of observations 𝑃 .
aturally, increasing the recovery probability 1 − 𝛿 (provided that the

sufficient condition is satisfied) necessitates a larger sample size; see
the log(4∕𝛿) scaling.

4.2. Stable recovery from noisy data

Suppose we are now given 𝑃 noise-corrupted graph signal observa-
ions 𝐘 = (𝐡̃0)𝐗0 + 𝐍, where 𝐍 ∈ R𝑁×𝑃 is an additive noise matrix.
ince the filter is invertible, we can write (𝐠̃0)𝐘 = 𝐗0 + (𝐠̃0)𝐍.
t will be convenient to split the effective noise (𝐠̃0)𝐍 into matrix
omponents respectively corrupting entries in  ∶= supp(𝐗0) and its
omplement 𝐶 . The latter will be denoted by 𝐍(𝐶) ∶= [(𝐠̃0)𝐍]𝐶 =
(𝐠̃0)𝐍− [(𝐠̃0)𝐍] , where matrix [𝐌] has entries 𝑀𝑖𝑗 if (𝑖, 𝑗) ∈  and
otherwise.

We can establish the following error bound for the solution of (10),
which holds under the same conditions of Theorem 1 and asserts that
the inverse filter recovery error will be stable.

Theorem 2 (Stable Recovery). Consider graph signal observations 𝐘 =
(𝐡̃0)𝐗0 + 𝐍, where 𝐍 ∈ R𝑁×𝑃 is an additive noise matrix. Assume the
conditions in Theorem 1 are satisfied. Then the estimation error associated
to the solution ̂̃𝐠 of problem (10) is bounded by

‖

‖

‖

̂̃𝐠 − 𝐠̃0
‖

‖

‖𝑙
≤

2
‖

‖

‖

‖

diag(𝐠̃0)
(

𝐈𝑁 − 𝟏𝑁
(𝐫◦𝐠̃0)⊤

𝑐

)

‖

‖

‖

‖𝑙→2
‖𝐍(𝐶)

‖1,1

√

2
𝜋 𝑃 𝑄 − 𝑑0‖𝐍(𝐶)

‖1,1 − ‖[𝐍(𝐶)]⊤𝐕⊙ 𝐕‖1→2

, (13)

where

𝑄 ∶=
(1 + 𝜎3)

√

𝜃 𝑁
𝑐

⎡

⎢

⎢

⎣

√

(

𝑐 𝑑0
𝑁

)2

− (1 − 𝜎5)2‖𝐏⟂
1 diag(𝐫)𝐠̃0‖22 − 𝜎5‖𝐏⟂

1 diag(𝐫)𝐠̃0‖2
⎤

⎥

⎥

⎦

,

for some 𝜎5 ∈ [0, 1], and ‖⋅‖𝑙 stands for the 𝓁1 and 𝓁2 norms when 𝑙 = 1, 2,
espectively.

Proof. See Appendix B. □

Notice first that 𝑄 ≥ 0 when (11) holds. Importantly, the de-
nominator in the right-hand-side of (13) should be non-negative to
btain feasible upper bound. This effectively imposes a constraint on
he magnitude of the noise component 𝐍(𝐶) in 𝐶 , which should satisfy

‖𝐍(𝐶)
‖𝐹 ≤

√

2
𝜋 𝑃 𝑄

𝑑0‖𝐍̄(𝐶)
‖1,1 + ‖[𝐍̄(𝐶)]⊤𝐕⊙ 𝐕‖1→2

, (14)

where 𝐍̄(𝐶) ∶= 𝐍(𝐶)∕‖𝐍(𝐶)
‖𝐹 . The right-hand-side of (14) provides an

pper bound to the strength of the noise that is tolerable. For further
ntuition, suppose 𝐫 = 𝟏 as in (8). Once more, in favorable settings
N

5 
where ‖𝐏⟂
1 𝐠̃0‖2 is small, e.g., if 𝐠̃0 is closer to the all-ones vector 𝟏𝑁 ,

we will have a larger upper bound in (14) because 𝑄 will be larger.
imilarly 𝑄 will increase when 𝑑0 is large, for instance in sparse settings
here 𝜃 is small. Either way, we have 𝑄 ≈ (1 + 𝜎3)

√

𝜃 𝑑0 and the noise
condition simplifies to ‖𝐍(𝐶)

‖1,1 ≤
√

2𝜃
𝜋 (1 + 𝜎3)𝑃 .

5. Numerical results

We carry out numerical experiments to assess the performance of
the proposed convex relaxation in a variety of settings. To this end, we
run Algorithm 1 and solve the per-iteration sparse recovery problems
using CVX [41]. We first rely on synthetic data to simulate various
controlled settings, which allow us to verify some of the conclusions
drawn from our theoretical analysis in Section 4. We then compare
against the matrix lifting approach in [17] with a focus on the sparsity
levels and filter orders that lead to successful recovery. Finally, we con-
duct a network source localization experiment using real social network
data, and include the non-convex 𝓁1 recovery algorithm in [28] as an
additional baseline.

5.1. Key parameters affecting recovery performance

Here we consider Erdös-Renyi random graphs with 𝑁 = 20 and
edge connection probability 𝑝 = 0.4. For the GSO we adopt the
degree-normalized adjacency matrix 𝐒 = 𝐃− 1

2 𝐀𝐃− 1
2 , where 𝐃 ∶=

diag(𝐀 ⋅ 𝟏𝑁 ). Notice that the eigenvalues of 𝐒 are bounded, i.e., 𝜆𝑖 ∈
−1, 1]. We generate graph filters 𝐇 such that their inverse filters
ave frequency responses 𝐠̃ = 𝟏𝑁 + 𝛼𝐏⟂

1 𝐠̃⟂, with perturbation 𝐠̃⟂ ∈
𝑁 drawn from Normal(𝟎𝑁 , 𝐈𝑁 ) (multivariate standard Gaussian) and

ubsequently scaled such that ‖𝐏⟂
1 𝐠̃⟂‖2 = 1. Hence, the left-hand-side

f (12) becomes ‖𝐏⟂
1 𝐠̃0‖2 = 𝛼‖𝐏⟂

1 𝐠̃⟂‖2 = 𝛼 and (12) will be satisfied
whenever 𝛼 ≤ 𝑑0. The matrix 𝐗 of sparse sources is drawn according to
the Bernoulli-Gaussian model in Definition 1, and we will control the
parsity parameter 𝜃. Besides, in order to verify the stability properties
onveyed by the error bound (13), we also consider noise corrupted

observations 𝐘 = 𝐇𝐗+𝜂𝐍, where 𝐍 has i.i.d. standard Gaussian entries.
Given this simulation setup, we conducted four experiments to

further examine the exact and stable recovery properties of (8). The
esults are shown in Fig. 1, which depicts different figures of merit as a
unction of: (i) 𝛼 vs 𝑃 , (ii) 𝛼 vs 𝜃, (iii) 𝜃 vs 𝑃 , (iv) 𝜂 vs 𝛼. As figures of
erit we consider the root mean square error (RMSE) of the estimated

ources 𝐗̂ as well as the support recovery accuracy, i.e.,

RE𝑥 ∶=
‖𝐗̂ − 𝐗0‖𝐹
‖𝐗0‖𝐹

, ACC𝑥 ∶=
|supp𝜅 (𝐗̂) ∩ supp𝜅 (𝐗0)|

|supp𝜅 (𝐗0)|
,

where supp𝜅 (⋅) is the support function with threshold 𝜅. For these tests,
e use 𝜅 = 0.1.

In Fig. 1, the first and third columns depict 1 − RE𝑥 and the second
nd fourth columns show ACC𝑥. In all cases, lighter-colored pixels
ndicate better performance. In the top row, we examine the relation
f 𝛼 = ‖𝐏⟂

1 𝐠̃0‖2 v.s. 𝑃 in (a)–(b) and 𝛼 v.s. 𝜃 in (c)–(d). Our previous
iscussion for Theorem 1 and the recovery condition (12) is corrobo-

rated by these results which show a smaller 𝛼 would both reduce the
equired sample size 𝑃 and tolerate denser sources, i.e., a larger 𝜃. From

Figs. 1(e)–(f), it can be seen that while 𝛼 = 2 is fixed, which implies
he lower bound of 𝑑0 is unchanged, source signals generated with a

larger 𝜃 require a larger sample size 𝑃 for successful recovery. And
this observation is also consistent with Theorem 1. Notice that while
our sufficient conditions hold for 𝜃 ∈ (0, 0.324], in practice successful
recovery is possible for larger 𝜃 provided that e.g., 𝑃 is large enough
or 𝛼 is sufficiently small.

Moving on to the noisy setting, from Figs. 1(g)–(h) it can be seen
that a smaller 𝛼 would result in higher robustness to noise. This finding
is also consistent with Theorem 2, because ‖𝐏⟂

1 𝐠̃0‖2 = 𝛼 when we use
the all-ones vector in the constraint, i.e., 𝐫 = 𝟏𝑁 . All in all, as expected
the numerical results in Fig. 1 are in line with the theoretical guarantees
in Theorems 1 and 2.
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Fig. 1. Recovery performance of Algorithm 1 for problems involving Erdös-Renyi random graphs with 𝑁 = 20, 𝑝 = 0.4. The first and third columns show 1 − RE𝑥 for different
settings (the whiter the better, meaning lower error), the second and fourth columns show the accuracy of support estimate for different settings (the whiter the better, meaning
higher fraction of true sources recovered). For (a) and (b) the recovery performance of 𝛼 v.s. 𝑃 , with 𝜃 = 0.15, is shown. For (c) and (d) 𝛼 v.s. 𝜃 with 𝑃 = 𝑁 = 20. For (e) and
(f) 𝜃 v.s. 𝑃 , with 𝛼 = 0.1𝑁 = 2. For (g) and (h) we consider the noisy case, i.e. 𝜂 v.s. 𝛼, with 𝜃 = 0.1, 𝑃 = 𝑁 = 20. All of the results represent averages over 100 independent
realizations. Apparently, the proposed approach exhibits satisfactory performance over a wide range of settings.
Fig. 2. Recovery performance comparing Algorithm 1 with the matrix-lifting approach in [17], for an ER graph with 𝑁 = 𝑃 = 20, 𝑝 = 0.4 and a filter perturbation magnitude of
𝛼′ = 0.5. Plots (a) and (b) show 1 −RE𝑥 and accuracy of support estimate for the proposed estimator, while (c) and (d) show 1 −RE𝑥 and accuracy of support estimate for the lifting
approach. The same is shown in plots (e)–(h), but for the 66-node structural brain network studied in [42], with 𝑃 = 30. All the results represent averages over 20 independent
realizations. Algorithm 1 uniformly outperforms the matrix-lifting baseline, and is less sensitive to the filter order 𝐿.
5.2. Comparing with the matrix lifting approach in [17]

Here we start by examining the sensitivity of the estimator (8) to
the graph filter order 𝐿, which may impact ‖𝐏⟂

1 𝐠̃0‖2 and hence the
satisfiability of (11). To this end, let 𝐒 = 𝐃− 1

2 𝐀𝐃− 1
2 and consider

graph filter coefficients of the form 𝐡 = [1, ℎ1,… , ℎ𝐿−1]⊤. The frequency
response 𝐡̃ = 𝜳𝐿𝐡 = 𝟏𝑁 + (∑𝐿−1

𝑙=1 ℎ𝑙)𝐞1 + [𝜳𝐿]−1𝐡−1, where [⋅]−1 zeros
out the first row of its matrix argument, i.e., [𝜳𝐿]−1 = diag(𝟏𝑁 − 𝐞1)𝜳𝐿
and likewise 𝐡−1 = diag(𝟏𝑁 − 𝐞1)𝐡, where 𝐞1 = [1, 0,… , 0]⊤ ∈ R𝑁 . As
for the normalized adjacency matrix used as GSO, all its eigenvalues
are within (−1, 1) except for the first (biggest) eigenvalue 𝜆1 = 1, so
the term [𝜳𝐿]−1𝐡−1 can be viewed as a small perturbation relative to
𝟏𝑁 . This suggests that a higher 𝐿 together with filter coefficients 𝐡−1
of larger magnitude would lead to greater deviations of 𝐡̃ from 𝟏𝑁 .
This in turn implies a bigger ‖𝐏⟂

1 𝐠̃0‖2 that would make filter recov-
ery harder. The preceding discussion suggests evaluating the recovery
performance of Algorithm 1 for graph filters with coefficients of the
form 𝐡 = 𝐞1 + 𝛼′𝐡−1, with 𝐡−1 = [0,𝐡⊤𝐿−1]⊤ and 𝐡𝐿−1 ∈ R𝐿−1 is drawn
from Normal(𝟎 , 𝐈 ). Parameter 𝛼′ controls the filter perturbation,
𝐿−1 𝐿−1

6 
similar to 𝛼 in Section 5.1. However, working with (and perturbing) 𝐡
instead of the inverse filter 𝐠̃ as in Section 5.1, directly allows us to
examine the effect of 𝐿.

In this context, we compare the recovery performance of the pro-
posed approach (8) against the matrix-lifting baseline in [17] – the
latter is known to be more sensitive to 𝐿, especially for higher-order
filters [22]. We evaluate and report the same figures of merit RE𝑥 and
ACC𝑥 used in the previous experiment, but now as a function of sparsity
(𝜃) and filter order (𝐿). We fix the filter perturbation level to 𝛼′ = 0.5.
The numerical results are shown in Figs. 2(a)–(d) for a 𝑁 = 20-node
Erdös-Renyi random graph with 𝑝 = 0.4, and in Figs. 2(e)–(h) for a
𝑁 = 66-node structural brain connectome from the study in [42]. The
first two columns in Fig. 2 depict 1 − RE𝑥 and ACC𝑥 for Algorithm 1,
respectively; while the last two columns show the counterparts for the
estimator in [17]. Again, lighter-colored pixels are indicative of better
performance. Results in Fig. 2 clearly show that Algorithm 1 uniformly
outperforms the matrix-lifting baseline, and is markedly less (adversely)
affected by large values of 𝐿 – especially when the input sources are
sufficiently sparse. The results are fairly consistent across the graphs



C. Ye and G. Mateos Signal Processing 230 (2025) 109864 
Fig. 3. Recovery performance on the Epinions dataset. (a) The adjacency matrix 𝐖 of the sampled directed social network and the (b) the degree distribution of the symmetrized
undirected graph with adjacency 𝐀 = (𝐖 +𝐖⊤)∕2. (c) The centered rating data 𝐘obs. (d) Source localization performance is quantified in terms of the AUC as a function source
density level 𝜃sr = {0.1, 0.2, 0.3, 0.4}. We compare four different approaches: (i) the proposed estimator (8); (ii) the source localization on graphs (SLG) algorithm in [28], (iii) the
matrix lifting-based approach from [17], and (iv) the naive predictor whereby 𝐗̂ = 𝐘obs. We find that Algorithm 1 offers more robust predictions across a broader range of input
sparsity levels.
tested here (compare the top and bottom rows in Fig. 2), but we note
recovery appears to be more challenging when signals are diffused over
the real brain connectome (even with 50% more observations). In part,
this could be explained by the fact that 𝜎max(𝐔̃ER) = 0.5054 (averaged
over 20 realizations of ER graphs with 𝑁 = 20 and 𝑝 = 0.4), while
𝜎max(𝐔̃brain) = 0.8769. Hence, 𝑑0 in (12) will be smaller for the brain
network — everything else being equal.

5.3. Experiments on real social network data

In this section we test the proposed approach on the Epinions
dataset [43], a who-trusts-whom online social network that includes
132k users, 755k items (articles written by some of the users), 13M
user-to-item ratings (1–5 scale, with timestamp), and the signed
trust/distrust pairwise relations (717k for trust and 123k for distrust)
between users. Leveraging these data, we want to tackle the following
network source localization problem: given a connected social graph
and timestamped item ratings generated by users in this social network,
can we locate the subset of users who generate the earliest ratings,
assuming that other users’ rating might be impacted by those early
ratings?

More precisely, for a connected social network with 𝑁 user nodes
and a set of 𝑃 items, we want to identify the 𝜃sr earliest ratings
(𝜃sr is a prescribed proportion of earliest ratings assigned to these
items, say 𝜃sr = 10%, 20%, 30%, 40%) from the observed ratings matrix
𝐘obs ∈ R𝑁×𝑃 . Note that the rating density of the whole dataset is fairly
low, i.e., 0.0015% [43]. As a result, for a sparse observation matrix
𝐘obs the optimal solution of (8) would likely yield the trivial result
̂̃𝐠 = 𝟏𝑁 , since this solution both satisfies the recovery condition (11)
and is compatible with the sparsity requirement on the sources 𝐗̂ =
𝐕diag( ̂̃𝐠)𝐕⊤𝐘obs = 𝐘obs. To obtain an interesting problem instance that
is compatible with our setting, we generate a sub-dataset with higher
rating density. To this end, we sample and pre-process the original data
(details can be found in Appendix C), and obtain a reduced dataset of
𝑁 = 245 users and 𝑃 = 51 items with rating density 0.64. All of the
𝑁 users were connected via a directed trust network  with binary
adjacency matrix 𝐖, i.e., the link 𝑊𝑖𝑗 from user 𝑖 to user 𝑗 indicates
𝑖 was trusted by 𝑗, and hence user 𝑖’s opinion would impact that of
user 𝑗. The resulting adjacency matrix 𝐖 is shown in Fig. 3(a) and
the degree distribution of the symmetrized undirected graph with 𝐀 =
(𝐖+𝐖⊤)∕2 can be found in Fig. 3(b). Like in the previous experiments,
we adopt 𝐒 = 𝐃− 1

2 𝐀𝐃− 1
2 as GSO. Following a data pre-processing step,

the resulting centered ratings matrix 𝐘obs with values in [−2, 2] is shown
in Fig. 3(c). Given that the ground-truth sparsity of the source 𝜃sr is
unknown, we examine different sparsity level assumptions on the input,
namely, 𝜃sr ∈ {0.1, 0.2, 0.3, 0.4}. Specifically, to populate the source
signal 𝐗sr we retain different proportions 𝜃sr of the earliest ratings
per item 𝑝 = 1,… , 𝑃 . This way 𝜃sr is closely related to 𝑆 as defined
in Section 2.3.

To assess the source recovery performance, we take 𝐒 and 𝐘obs as
inputs and compare three approaches: two methods for graph-aware
blind deconvolution including the proposed estimator (8) and the
7 
lifting approach in [17], plus the non-convex 𝓁1 recovery algorithm for
source localization on graphs (SLG) [28]. Since the support of sources
𝐗sr is a strict subset of the support of 𝐘obs, we consider the area
under the curve (AUC) of the predicted sources in 𝐗̂ as figure of merit
in this numerical test case. In addition to the aforementioned three
methods, we also consider a naive baseline whereby 𝐗̂ = 𝐘obs. The
resulting AUCs for different source signal sparsity levels 𝜃𝑠𝑟 are shown
in Fig. 3(d). It can be seen that Algorithm 1 achieves the highest AUC
for the denser settings 𝜃𝑠𝑟 = 0.3, 0.4; for 𝜃𝑠𝑟 = 0.2, the proposed approach
and SLG attain a similar AUC (which is higher than the naive baseline);
for 𝜃𝑠𝑟 = 0.1, the proposed method performs marginally worse than
all of the other three predictors. The matrix lifting algorithm is only
competitive when the sources are the sparsest.

Overall, we find that the proposed estimator (8) offers more robust
predictions across a broader range of input sparsity levels, a promising
finding to support the prospect of solving real world network decon-
volution problems. In all fairness though, the performance of none of
the methods is stellar. But we note these real data are complex and
we lack a ground truth for validation, since the chronological order
alone does not imply causality. Secondly, even through there are a
few earliest ratings that impact other ratings and hence should be
reasonably viewed as sources, the observations could still be highly
noisy.

6. Concluding summary and future work

We studied the problem of blind graph filter identification from
multiple sparse inputs, which extends blind deconvolution of time
(or spatial) domain signals to graphs. By introducing an assumption
on invertibility of the graph filter, we obtained a computationally
simpler convex relaxation for (diffused) source localization in the multi-
signal case. In terms of theoretical analyses, we first derived sufficient
conditions for exact recovery, which hold with high probability under a
Bernoulli-Gaussian model for the sparse inputs. A stable recovery result
is then established, ensuring the estimation error on the inverse filter’s
frequency response is manageable when the observations are corrupted
by a small amount of noise.

Ongoing work includes additional analyses on the robustness of the
proposed approach to imperfections in the observed graph, as well
as when measurements are collected only in a fraction of nodes. On
the algorithmic side, developing an online network source localization
method capable of processing streaming graph signal observations is
also of interest.
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Appendix A. Proof of Theorem 1

Recall the notation introduced in Section 4.1. The proof of Theorem 1
begins by considering an equivalent problem to (10), obtained via an
invertible change of variable 𝐰 = 𝐠̃◦𝐡̃0, namely

̂ = argmin
𝐰

‖(𝐰)𝐗‖1,1, s. to 𝐫̄⊤𝐰 = 𝑐 , (A.1)

where 𝐫̄⊤ = 𝐫⊤diag(𝐠̃0). Note that the solution candidate 𝐰̂ = 𝟏𝑁 implies
̂̃𝐠 = 𝐠̃0 in (10), so we let 𝑐 = 𝐫̄⊤𝟏𝑁 . Then we have the following
proposition, which simply restates Theorem 1 in terms of the equivalent
problem (A.1).

Proposition 1 (Exact Recovery for the Equivalent Problem). Consider
graph signal observations 𝐘 = (𝐡̃0)𝐗0 ∈ R𝑁×𝑃 , where 𝐗0 adheres
to the Bernoulli-Gaussian model with 𝜃 ∈ (0, 0.324]. Recall that un-
der Assumption 1, we can write 𝐗0 = (𝐠̃0)𝐘. Let 𝑃 ≥ 𝐶 ′𝜎−2𝑚 log 4

𝛿 , where

𝑚 = min(𝜎1, 𝜎2, 𝜎3, 𝜎4) and 𝜎1 ∈
(

0,
√

𝜋 𝜃3∕2
2

]

, 𝜎2 ∈
(

0,
√

𝜋 𝜃
2

]

, 𝜎3 > 0,

4 ∈ (0, 1), 𝛿 ∈ (0, 1) are parameters, while 𝐶 ′ is a constant that does not
epend on 𝑃 , 𝜎𝑚, or 𝛿. Then 𝐰̂ = 𝟏𝑁 is the unique solution to (A.1) with

probability at least 1 − 𝛿, if
‖

‖

‖

𝐏⟂
1 𝐫̄

‖

‖

‖2
≤ (𝑐∕𝑁)𝑑0, (A.2)

where 𝑑0 ∶=
√

1−𝜎2max(𝐔̃)[(1−𝜎1)−2𝜃(1+𝜎2)](1−𝜎4)
(1+𝜎3)

√

𝜃
.

To establish Proposition 1 (and thus Theorem 1), we will argue
that for all feasible perturbations 𝜹 ∈ R𝑁 such that 𝐫̄⊤𝜹 = 0, then
‖(𝟏𝑁 + 𝜹)𝐗‖1,1 ≥ ‖𝐗‖1,1 holds for any Bernoulli-Gaussian 𝐗 ∈ R𝑁×𝑃

with high probability. Our approach in the proof of Proposition 1 at
he end of this appendix is to compute and bound the sub-gradient
f ‖(𝟏𝑁 + 𝜹)𝐗‖1,1 at 𝜹 = 𝟎𝑁 . To leverage the independence of
ome random variables, it will be convenient to decompose the sub-
radient expression using a hollow matrix (𝜹) as (𝜹) with 0 diagonal
lements (i.e., (𝜹)𝑖𝑗 = (𝜹)𝑖𝑗 ,∀𝑖 ≠ 𝑗; (𝜹)𝑖𝑖 = 0, ∀𝑖). The key to
ur bounding strategy in the proof of Proposition 1 is to derive a
oncentration property for hollow matrices [cf. (A.10)], that follows

from Proposition 2.

Proposition 2. Consider vectors 𝐦𝑖 ∈ R𝑁 , 𝑖 ∈ {1,… , 𝑁}, such that
𝐦𝑖]𝑖 = 0. Suppose 𝐗 ∈ R𝑁×𝑃 is drawn form the Bernoulli-Gaussian

model in Definition 1, with 𝜃 ∈
(

0, 𝑒−1]. Given parameters 𝛿 ∈ (0, 1),
𝜎1 ∈

(

0,
√

𝜋 𝜃3∕2
2

]

, and 𝜎2 ∈
(

0,
√

𝜋 𝜃
2

]

, let 𝑃 ≥ 𝐶
min(𝜎21 ,𝜎

2
2 )
log 4

𝛿 for some
onstant 𝐶.

Then, for each 𝑖 ∈ {1,… , 𝑁} we have

[𝑎] Pr
[

|

|

|

1
𝛽𝑖𝑃

‖𝐦⊤
𝑖 𝐗‖1 − ‖𝐦𝑖‖2

|

|

|

≤ 𝜎1‖𝐦𝑖‖2

]

≥ 1 − 𝛿

𝐛) Pr
[

|

|

|

1
𝛽𝑖𝜃 𝑃

‖(𝝎⊤
𝑖 )◦(𝐦

⊤
𝑖 𝐗)‖1 − ‖𝐦𝑖‖2

|

|

|

≤ 𝜎2‖𝐦𝑖‖2

]

≥ 1 − 𝛿 ,
(A.3)

where 𝛽𝑖 ∶= E
[

|𝐦⊤
𝑖 𝐱𝑝|

]

∕‖𝐦𝑖‖2, with 𝐱𝑝 = [𝑥1𝑝,… , 𝑥𝑁 𝑝]⊤ ∈ R𝑁 denoting
the 𝑝th column of 𝐗 and 𝝎𝑖 = [𝛺𝑖1,… , 𝛺𝑖𝑃 ]⊤ ∈ R𝑃 is the 𝑖th row of 𝜴.

The idea behind (a) in (A.3) comes from [44, Theorem 5.1], namely
hat the absolute value of linear combinations of i.i.d. Bernoulli-
aussian {𝑋𝑖𝑗} will concentrate to its expectation. For (b), note that
𝑖𝑝 and |𝐦⊤

𝑖 𝐱𝑝| are independent ∀𝑖, 𝑝, when 𝐦𝑖 is a hollow vector. This
mplies

E
[

‖(𝝎⊤
𝑖 )◦(𝐦

⊤
𝑖 𝐗)‖1

]

= E

[ 𝑃
∑

𝑝=1
𝛺𝑖𝑝|𝐦⊤

𝑖 𝐱𝑝|
]

= E𝐗

[ 𝑃
∑

𝑝=1
E
[

𝛺𝑖𝑝
]

|𝐦⊤
𝑖 𝐱𝑝|

]

= 𝜃E𝐗

[ 𝑃
∑

|𝐦⊤
𝑖 𝐱𝑝|

]

= 𝜃 𝑃 𝛽𝑖‖𝐦𝑖‖2.

𝑝=1

8 
To prove Proposition 2, we first establish preliminary Lemmata 1
and 2 that are similar to [44, Lemma 5.3], and then prove Lemmata 3
and 4 that follow ideas from [44, Proposition 5.2]. Specifically, for
a hollow matrix 𝐌 and Bernoulli-Gaussian distributed 𝐗 where  ∶=
upp(𝐗) = supp(𝜴), let 𝐗̄ ∶= 𝐌̄𝐗 and 𝐗̄() ∶= 1

𝜃𝜴◦(𝐌̄𝐗), with
𝐌̄ ∶= [𝐦1∕‖𝐦1‖2,… ,𝐦𝑁∕‖𝐦𝑁‖2]⊤ ∈ R𝑁×𝑁 . In the first step we show
that the absolute value of the entries of both of 𝐗̄ and 𝐗̄() have
bounded expectation and variance (cf. Lemmata 1 and 2). Then in
the second step, Lemma 3 shows that |𝑋̄𝑖𝑝| (and |𝑋̄()

𝑖𝑝 |) have uniform
xponential tails, meaning that for some constant 𝑏′ > 0 and all 𝑡 ≥ 0
e have Pr

[

|𝑋̄𝑖𝑝| ≥ 𝑡
]

≤ 𝑒−𝑏′𝑡. Finally and using Lemmata 1–3, Lemma 4
establishes sub-Gaussian tail bounds for the centered and scaled 𝓁1
norms of the rows of 𝐗̄ and 𝐗̄(). Lemma 4 is then instrumental to show
that the 𝓁1 norms of the rows of 𝐗̄ and 𝐗̄() concentrate around their
means, as asserted in Proposition 2.

Lemma 1. Consider vectors 𝐦̄𝑖 ∈ R𝑁 𝑖 ∈ {1,… , 𝑁}, such that [𝐦̄𝑖]𝑖 = 0,
‖𝐦̄𝑖‖∞ = 𝛼̄𝑖, and ‖𝐦̄𝑖‖2 = 1. Let 𝐗̄() = 1

𝜃𝜴◦(𝐌̄𝐗) ∈ R𝑁×𝑃 , where
∈ R𝑁×𝑃 is drawn form the Bernoulli-Gaussian model in Definition 1, with

𝜃 ∈
(

0, 𝑒−1], and 𝐌̄ = [𝐦̄1,… , 𝐦̄𝑁 ]⊤ ∈ R𝑁×𝑁 . Then E
[

|𝑋̄()
𝑖𝑝 |

2]
= 1

𝜃 , and

𝛽0(1 − 𝜎′𝑖 ) ≤ E
[

|𝑋̄()
𝑖𝑝 |

]

≤ 𝛽0,∀(𝑖, 𝑝), where 𝛽0 ∶= E
[

|𝛾𝑖𝑝|
]

=
√

2∕𝜋 is the
xpectation of a folded standard Normal distributed random variable |𝛾𝑖𝑝|
nd

𝜎′𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼̄2𝑖
𝜃
, 𝛼̄𝑖 ∈ (0,

√

𝜃] ∩ [𝑁−1∕2, 1],

1 −
√

𝜃 ̄𝛼𝑖
[

1 + (1 − 𝛼̄2𝑖 )𝜃
2

2𝛼̄2𝑖 (1 − 𝜃)

]

, 𝛼̄𝑖 ∈ (
√

𝜃 , 1] ∩ [𝑁−1∕2, 1].
(A.4)

Proof of Lemma 1. Notice that for any (𝑖, 𝑝), 𝑀̄𝑖𝑖 = 0, so 𝑋̄()
𝑖𝑝 =

1
𝜃𝛺𝑖𝑝

∑𝑁
𝑗=1 𝑀̄𝑖𝑗𝑋𝑗 𝑝 = 1

𝜃𝛺𝑖𝑝
∑

𝑗≠𝑖 𝑀̄𝑖𝑗𝛺𝑗 𝑝𝛾𝑗 𝑝𝜃−1∕2. By conditioning on
𝑖𝑝 =

∑

𝑗≠𝑖 𝛺𝑗 𝑝𝑀̄2
𝑖𝑗 = 𝑧, then 𝑋̄𝑖𝑝 = 𝜃−1∕2

∑

𝑗≠𝑖 𝑀̄𝑖𝑗𝛺𝑗 𝑝𝛾𝑗 𝑝 is distributed
s Normal(0, 𝑧𝜃 ). Also notice that 𝜃𝑋̄()

𝑖𝑝 = 𝛺𝑖𝑝𝑋̄𝑖𝑝, where 𝛺𝑖𝑝 and
𝑋̄𝑖𝑝 are independent. Then E

[

|𝜃𝑋̄()
𝑖𝑝 |

|

|

|

𝑍𝑖𝑝 = 𝑧
]

= 𝜃 𝛽0
√

𝑧
𝜃 , and thus

E
[

|𝑋̄()
𝑖𝑝 |

]

= 𝜃−1∕2𝛽0E
[√

𝑍𝑖𝑝
]

. Following ideas in the proof of [44,
Lemma 5.3], we can derive upper and lower bounds for E

[√

𝑍𝑖𝑝
]

.
For the upper bound, we have E

[√

𝑍𝑖𝑝
]

≤
√

E
[

𝑍𝑖𝑝
]

≤
√

𝜃. For the
ower bound, we consider two cases, 𝛼̄𝑖 <

√

𝜃 and 𝛼̄𝑖 ≥
√

𝜃. When
𝛼̄𝑖 <

√

𝜃, we use the strategy in [44, Lemma 5.3]. Let 𝑡 = 𝑍𝑖𝑝
𝜃 − 1 ≥ −1,

and recall that
√

1 + 𝑡 ≥ 1 + 𝑡
2 − 𝑡2, hence

E
[√

𝑍𝑖𝑝

]

=
√

𝜃E
[
√

1 + 𝑡
]

≥
√

𝜃

(

1 + E
[𝑍𝑖𝑝

𝜃
− 1

]

− E

[

(𝑍𝑖𝑝

𝜃
− 1

)2])

=
√

𝜃
(

1 − 𝜃−2var
[

𝑍𝑖𝑝
])

.

Now var
[

𝑍𝑖𝑝
]

=
∑

𝑗≠𝑖 𝑀̄
4
𝑖𝑗var

[

𝛺𝑗 𝑝
]

≤
∑

𝑗≠𝑖 𝑀̄
4
𝑖𝑗𝜃 ≤ 𝜃 ̄𝛼2𝑖

∑

𝑗≠𝑖 𝑀̄
2
𝑖𝑗 = 𝜃 ̄𝛼2𝑖

(as 𝐦̄𝑖 has unit 𝓁2 norm). Hence, E
[√

𝑍𝑖𝑝
]

≥
√

𝜃(1 − 𝛼̄2𝑖
𝜃 ) ≥

√

𝜃(1 − 𝜎′𝑖 ),

where 𝜎′𝑖 =
𝛼̄2𝑖
𝜃 . As a result, 𝛽0(1 − 𝜎′𝑖 ) ≤ E

[

|𝑋̄()
𝑖𝑝 |

]

≤ 𝛽0,∀(𝑖, 𝑝), with
′
𝑖 = 𝛼̄2𝑖 ∕𝜃 < 1.

When 𝛼̄𝑖 ≥
√

𝜃, we let 𝑘 bet the index associated with the maximum
entry of 𝐦̄𝑖 (i.e., 𝛼̄𝑖 = ‖𝐦̄𝑖‖∞ = |𝑀̄𝑖𝑘|). Then, we have

E
[√

𝑍𝑖𝑝

]

= E
⎡

⎢

⎢

⎣

√

𝛺𝑘𝑝𝑀̄2
𝑖𝑘 +

∑

𝑗≠𝑖,𝑘
𝛺𝑗 𝑝𝑀̄2

𝑖𝑗

⎤

⎥

⎥

⎦

≥ E
⎡

⎢

⎢

⎣

√

𝛺𝑘𝑝𝑀̄2
𝑖𝑘 +

∑

𝑗≠𝑖,𝑘
𝛺𝑗 𝑝𝑀̄2

𝑖𝑗
|

|

|

𝛺𝑘𝑝 = 1
⎤

⎥

⎥

⎦

Pr
[

𝛺𝑘𝑝 = 1]
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(𝑎)
= 𝜃 ̄𝛼𝑖E

[
√

1 + 1 − 𝜃
𝜃

𝑡

]

≥ 𝜃 ̄𝛼𝑖E
[
√

𝑒𝑡
]

≥ 𝜃 ̄𝛼𝑖E
[

1 + 𝑡
2

]

= 𝜃 ̄𝛼𝑖E
[

1 + 𝜃
2(1 − 𝜃)

∑

𝑗≠𝑖,𝑘

𝛺𝑗 𝑝𝑀̄2
𝑖𝑗

𝛼̄2𝑖

]

(𝑏)
=

√

𝜃(1 − 𝜎̄𝑖)

In (a) we let 𝑡 = 𝜃
1−𝜃

∑

𝑗≠𝑖,𝑘
𝛺𝑗 𝑝𝑀̄2

𝑖𝑗

𝛼̄2𝑖
≤ 1, as 𝛼̄2𝑖 ≥ 𝜃. And in (b), we let

𝜎̄𝑖 = 1 −
√

𝜃 ̄𝛼𝑖
[

1 + (1−𝛼̄2𝑖 )𝜃
2

2𝛼̄2𝑖 (1−𝜃)

]

. It can be checked that 𝑓 (𝛼̄𝑖, 𝜃) ∶= 1 − 𝜎̄𝑖 =

𝜃 ̄𝛼𝑖
[

1 + (1−𝛼̄2𝑖 )𝜃
2

2𝛼̄2𝑖 (1−𝜃)

]

∈ [𝜃 + 𝜃2

2 ,
√

𝜃], for 𝛼̄𝑖 ≥
√

𝜃 and 𝜃 ≤ 𝑒−1. As a result,

or any 𝛼̄𝑖 ∈ [
√

𝜃 , 1], we get 𝜎̄𝑖 = 1 − 𝑓 (𝛼̄𝑖, 𝜃) ∈ [1 −
√

𝜃 , 1 − 𝜃 − 𝜃2

2 ]. So
𝜎̄𝑖 ∈ (0, 1) is a feasible lower bound for 𝛼̄𝑖 ≥

√

𝜃 with 𝜃 ≤ 𝑒−1.
Note that the feasible range of 𝛼̄𝑖 is [𝑁−1∕2, 1], and we do not know

hether
√

𝜃 ≤ 𝑒−1∕2 ≈ 0.6 would be within it. So we apply the following
trategy to select the lower bound 𝜎′𝑖 , i.e.,

𝜎′𝑖 =

⎧

⎪

⎨

⎪

⎩

𝛼̄2𝑖
𝜃
, 𝛼̄𝑖 ∈ (0,

√

𝜃] ∩ [𝑁−1∕2, 1]

1 − 𝑓 (𝛼̄𝑖, 𝜃), 𝛼̄𝑖 ∈ (
√

𝜃 , 1] ∩ [𝑁−1∕2, 1].
(A.5)

Besides, we have E
[

|𝜃𝑋̄()
𝑖𝑝 |

2]
= E

[

|𝛺𝑖𝑝𝑋̄𝑖𝑝|
2
]

= E
[

𝛺𝑖𝑝
]

E
[

|𝑋̄𝑖𝑝|
2
]

=

, so E
[

|𝑋̄()
𝑖𝑝 |

2]
= 1

𝜃 as desired.

Lemma 2. Consider vectors 𝐦̄𝑖 ∈ R𝑁 𝑖 ∈ {1,… , 𝑁}, such that [𝐦̄𝑖]𝑖 = 0,
‖𝐦̄𝑖‖∞ = 𝛼̄𝑖, and ‖𝐦̄𝑖‖2 = 1. Let 𝐗̄ = 𝐌̄𝐗 ∈ R𝑁×𝑃 , where 𝐗 ∈
R𝑁×𝑃 is drawn form the Bernoulli-Gaussian model in Definition 1 with
𝜃 ∈ (0, 𝑒−1], and 𝐌̄ = [𝐦̄1,… , 𝐦̄𝑁 ]⊤ ∈ R𝑁×𝑁 . Then E

[

|𝑋̄𝑖𝑝|
2
]

= 1
and 𝛽0(1 − 𝜎′𝑖 ) ≤ E

[

|𝑋̄𝑖𝑝|
]

≤ 𝛽0,∀(𝑖, 𝑝), where 𝜎′𝑖 is given by (A.4) and
𝛽0 ∶= E

[

|𝛾𝑖𝑝|
]

=
√

2∕𝜋 is the expectation of a folded standard Normal
distributed random variable |𝛾𝑖𝑝|.

Proof of Lemma 2. Because 𝑀̄𝑖𝑖 = 0, 𝑋̄𝑖𝑝 =
∑𝑁

𝑗=1 𝑀̄𝑖𝑗𝑋𝑗 𝑝 =
∑

𝑗≠𝑖 𝑀̄𝑖𝑗
𝛺𝑗 𝑝𝛾𝑗 𝑝𝜃−1∕2, for all (𝑖, 𝑝). As 𝐦̄𝑖 has unit 𝓁2 norm, upon conditioning
on 𝑍𝑖𝑝 =

∑

𝑗≠𝑖 𝛺𝑗 𝑝𝑀̄2
𝑖𝑗 = 𝑧, 𝑋̄𝑖𝑝 is distributed as Normal(0, 𝑧𝜃 ). Then

[

|𝑋̄𝑖𝑝|
|

|

|

𝑍𝑖𝑝 = 𝑧
]

= 𝛽0
√

𝑧
𝜃 , and E

[

|𝑋̄𝑖𝑝|
]

= 𝜃−1∕2𝛽0E
[√

𝑍𝑖𝑝
]

. As 𝑍𝑖𝑝
ere is defined exactly as in the proof of Lemma 1, we also have

√

𝜃(1 − 𝜎′𝑖 ) ≤ E
[

𝑍𝑖𝑝
]

≤
√

𝜃, with 𝜎′𝑖 defined as in (A.5). Notice that
we have the same bounds for E

[

|𝑋̄𝑖𝑝|
]

and E
[

|𝑋̄()
𝑖𝑝 |

]

. However, for

E
[

|𝑋̄𝑖𝑝|
2
]

, the result will be different, as E
[

|𝑋̄𝑖𝑝|
2
]

= 1. ■

From Lemmata 1 and 2, we know for an arbitrary hollow-matrix
and Bernoulli-Gaussian distributed 𝐗 with 𝜃 ∈ (0, 𝑒−1], the product

̄ = 𝐌̄𝐗 and its masked version 𝐗̄() have entries whose absolute values
are bounded in expectation. Next, Lemma 3 establishes their entries
ave uniform exponential tails.

Lemma 3. The elements of both 𝐗̄ and 𝐗̄() have uniform exponential
tails. Specifically, Pr

[

|𝑋̄𝑖𝑝| > 𝑡] ≤ 𝑒−𝑢𝑡+𝑂(𝑢2), ∀𝑢 ∈ [0,
√

2𝜃∕𝛼̄𝑖], 𝑡 ≥ 0.
ikewise, Pr

[

|𝑋̄()
𝑖𝑝 | > 𝑡

]

≤ 𝑒−𝑢𝑡+𝑂(𝑢2), ∀𝑢 ∈ [0,
√

2𝜃3∕𝛼̄𝑖], 𝑡 ≥ 0.

Proof of Lemma 3. To show that 𝑋̄()
𝑖𝑝 has a uniform exponential tail

for all (𝑖, 𝑝), we consider 0 ≤ 𝑢 ≤ 𝑢𝑖 =
√

2𝜃3∕𝛼̄𝑖,

E
[

𝑒𝑢𝑋̄
()
𝑖𝑝

]

= E
[

𝑒
𝑢𝛺𝑖𝑝
𝜃

∑

𝑗≠𝑖 𝑀̄𝑖𝑗𝑋𝑗 𝑝
]

=
∏

𝑗≠𝑖
E
[

𝑒
𝑢𝛺𝑖𝑝𝛺𝑗 𝑝
𝜃3∕2

𝑀̄𝑖𝑗 𝛾𝑗 𝑝
]

=
∏

E𝛾𝑗 𝑝
[

𝜃[𝜃 𝑒
𝑢

𝜃3∕2
𝑀̄𝑖𝑗 𝛾𝑗 𝑝 + (1 − 𝜃)] + (1 − 𝜃)

]

𝑗≠𝑖

9 
(𝑎)
≤

∏

𝑗≠𝑖

[

𝜃
[

𝜃(1 + 𝑢2𝑀̄2
𝑖𝑗∕𝜃

3) + (1 − 𝜃)
]

+ (1 − 𝜃)
]

=
∏

𝑗≠𝑖
(1 + 𝜃−1𝑢2𝑀̄2

𝑖𝑗 ) ≤
∏

𝑗≠𝑖
𝑒
1
𝜃 𝑢

2𝑀̄2
𝑖𝑗 = 𝑒

𝑢2
𝜃 . (A.6)

Notice that in (a), we have applied: (i) E
[

𝑒𝑢𝑋
]

= 𝑒
𝑢2
2 ,∀𝑢 ≥ 0 when

𝑋 ∼ Normal(0, 1), so E
[

𝑒𝑢𝜃
−3∕2𝑀̄𝑖𝑗 𝛾𝑗 𝑝

]

= 𝑒𝑢𝜃
−3∕2𝑀̄2

𝑖𝑗∕2 = 𝑒
𝑢2

2𝜃3
𝑀̄2

𝑖𝑗 because

𝑗 𝑝 ∼ Normal(0, 1); and then (ii) 𝑒𝜏 ≤ 1 + 2𝜏 ,∀𝜏 ∈ [0, 1] as 𝜏 = 𝑢2

2𝜃3 𝑀̄
2
𝑖𝑗 ≤

𝑢2

2𝜃3 𝛼̄
2
𝑖 ≤ 1. All in all, ∀𝑢 ∈ (0, 𝑢𝑖] and ∀𝑡 ≥ 0 we have

Pr
[

𝑋̄()
𝑖𝑝 ≥ 𝑡

]

= Pr
[

𝑒𝑢𝑋̄
()
𝑖𝑝 ≥ 𝑒𝑢𝑡

]

≤ 𝑒−𝑢𝑡E
[

𝑒𝑢𝑋̄
()
𝑖𝑝

]

≤ 𝑒−𝑢𝑡+
𝑢2
𝜃 .

By symmetry, it follows Pr
[

𝑋̄()
𝑖𝑝 ≤ −𝑡

]

≤ 𝑒−𝑢𝑡+
𝑢2
𝜃 . So 𝑋̄()

𝑖𝑝 ,∀(𝑖, 𝑝) has

a uniform exponential tail, i.e., Pr
[

|𝑋̄()
𝑖𝑝 | > 𝑡

]

≤ 𝑒−𝑢𝑡+𝑂(𝑢2), ∀𝑢 ∈

[0,
√

2𝜃3∕𝛼̄𝑖], and all 𝑡 ≥ 0.
To show that 𝑋̄𝑖𝑝 also has a uniform exponential tail for all (𝑖, 𝑝), we

follow a similar approach and consider 0 ≤ 𝑢 ≤ 𝑢𝑖 =
√

2𝜃∕𝛼̄𝑖 to obtain

E
[

𝑒𝑢𝑋̄𝑖𝑝
]

= E
[

𝑒𝑢
∑

𝑗≠𝑖 𝑀̄𝑖𝑗𝑋𝑗 𝑝]

=
∏

𝑗≠𝑖
E
[

𝑒
𝑢𝛺𝑗 𝑝
𝜃1∕2

𝑀̄𝑖𝑗 𝛾𝑗 𝑝
]

=
∏

𝑗≠𝑖
E𝛾𝑗 𝑝

[

𝜃 𝑒
𝑢

𝜃1∕2
𝑀̄𝑖𝑗 𝛾𝑗 𝑝 + (1 − 𝜃)

]

(𝑏)
≤

∏

𝑗≠𝑖

[

𝜃(1 + 𝑢2𝑀̄2
𝑖𝑗∕𝜃) + (1 − 𝜃)

]

=
∏

𝑗≠𝑖
(1 + 𝑢2𝑀̄2

𝑖𝑗 ) ≤
∏

𝑗≠𝑖
𝑒𝑢

2𝑀̄2
𝑖𝑗 = 𝑒𝑢

2

Notice that in (b), we applied the same inequalities as (a) in (A.6). Then
∀𝑢 ∈ (0, 𝑢𝑖] and ∀𝑡 ≥ 0,

Pr
[

𝑋̄𝑖𝑝 ≥ 𝑡
]

= Pr
[

𝑒𝑢𝑋̄𝑖𝑝 ≥ 𝑒𝑢𝑡
]

≤ 𝑒−𝑢𝑡E
[

𝑒𝑢𝑋̄𝑖𝑝
]

≤ 𝑒−𝑢𝑡+𝑢
2

By symmetry, Pr
[

𝑋̄𝑖𝑝 ≤ −𝑡
]

≤ 𝑒−𝑢𝑡+𝑢2 as well. So 𝑋̄𝑖𝑝,∀(𝑖, 𝑝) has a uni-
form exponential tail, i.e., Pr

[

|𝑋̄𝑖𝑝| > 𝑡] ≤ 𝑒−𝑢𝑡+𝑂(𝑢2), ∀𝑢 ∈ [0,
√

2𝜃∕𝛼̄𝑖],
nd all 𝑡 ≥ 0. ■

The key ingredient needed to prove Proposition 2 is Lemma 4,
which derives sub-Gaussian tail bounds for the centered and scaled 𝓁1
norms of the 𝑖th rows of 𝐗̄ and 𝐗̄(). To this end, we will rely on the
established Lemmata 1–3.

Lemma 4. Let 𝑥̌()𝑖 ∶= 1
√

𝑃

(

∑𝑃
𝑝=1 |𝑋̄

()
𝑖𝑝 | − 𝑃 𝛽𝑖

)

and 𝑥̌𝑖 ∶= 1
√

𝑃
(

∑𝑃
𝑝=1 |𝑋̄𝑖𝑝| − 𝑃 𝛽𝑖

)

. Then both 𝑥̌()𝑖 and 𝑥̌𝑖 have sub-Gaussian tails (as

defined in [44, Definition 2.1]), up to 𝜃3∕2
√

2𝛼̄𝑖

√

𝑃 and 𝜃
√

2𝛼̄𝑖

√

𝑃 , respectively.

Proof of Lemma 4. Firstly, note that E
[

𝑋̄𝑖𝑝
]

= 0 and from Lemma 2
it follows that var

[

𝑋̄𝑖𝑝
]

= 1, E
[

|𝑋̄𝑖𝑝|
]

= 𝛽𝑖. Moreover, according
o Lemma 3, 𝑋̄𝑖𝑝 has an exponential tail, i.e., Pr

[

|𝑋̄𝑖𝑝| > 𝑡] ≤ 𝑒−𝑢𝑡+𝑂(𝑢2),
∀𝑢 ∈ [0,

√

2𝜃∕𝛼̄𝑖], and all 𝑡 ≥ 0. From [44, Proposition 5.2, Lemma
2.3], it can be shown that ∀𝑖, 𝑥̌𝑖 has a sub-Gaussian tail up to 𝜃

√

2𝛼̄𝑖

√

𝑃 ,

i.e., E
[

𝑒𝑢 ̌𝑥𝑖 ] < 𝑒𝑂(𝑢2) and E
[

𝑒−𝑢 ̌𝑥𝑖 ] < 𝑒𝑂(𝑢2),∀𝑢 ∈
(

0, 𝜃
√

2𝛼̄𝑖

√

𝑃
)

.

For 𝑥̌()𝑖 , we also have E
[

𝑋̄()
𝑖𝑝

]

= 0 and E
[

|𝑋̄()
𝑖𝑝 |

]

= 𝛽𝑖. From

Lemma 1 we know the only difference with 𝑋̄𝑖𝑝 is var
[

𝑋̄()
𝑖𝑝

]

= 1
𝜃 .

So we can still apply [44, Proposition 5.2, Lemma 2.3] and show ∀𝑖,
̌ ()𝑖 has a sub-Gaussian tail up to 𝜃

√

2𝛼̄3∕2𝑖

√

𝑃 , i.e., E
[

𝑒𝑢 ̌𝑥()𝑖
]

< 𝑒𝑂(𝑢2) and
[

𝑒−𝑢 ̌𝑥()𝑖
]

< 𝑒𝑂(𝑢2),∀𝑢 ∈
(

0, 𝜃3∕2
√

√

𝑃
)

. ■

2𝛼̄𝑖
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Now, using Lemma 4 we establish that the 𝓁1 norms of the rows of 𝐗̄
and 𝐗̄() concentrate around their means, as asserted in Proposition 2.

Proof of Proposition 2. To show (b), from Lemma 4 we know
̌ ()𝑖 = 1

√

𝑃

(

∑𝑃
𝑝=1 |𝑋̄

()
𝑖𝑝 | − 𝛽𝑖𝑃

)

= 1
√

𝑃

(

1
𝜃 ‖(𝝎

⊤
𝑖 )◦(𝐦̄

⊤
𝑖 𝐗)‖1 − 𝑃 𝛽𝑖

)

has a
sub-Gaussian tail up to 𝜃3∕2

√

2𝛼̄𝑖

√

𝑃 . As a result, for some 𝜎2 ∈ (0, 1), we
have

Pr
[

1
𝜃 𝛽𝑖𝑃

‖(𝝎⊤
𝑖 )◦(𝐦̄

⊤
𝑖 𝐗)‖1 ≥ 1 + 𝜎2

]

= Pr
[

𝑥̌()𝑖 ≥ 𝛽𝑖
√

𝑃 𝜎2
]

≤ 𝑒−𝐶
′𝛽2𝑖 𝑃 𝜎22 ,

for some constant 𝐶 ′ > 0. We require 𝛽𝑖
√

𝑃 𝜎2 ≤ 𝜃3∕2
√

2𝛼̄𝑖

√

𝑃 ⇒ 𝜎2 ≤

in
{

𝜃3∕2
√

2𝛼̄𝑖𝛽𝑖
, 1
}

. Because 𝜃 ∈ (0, 𝑒−1] and 1
√

2𝛼̄𝑖𝛽𝑖
≥ 1

√

2𝛽0
=

√

𝜋
2 ,

we have
√

𝜋 𝜃3∕2
2 ≤ min

{

𝜃3∕2
√

2𝛼̄𝑖𝛽𝑖
, 1
}

. So it suffices to select 𝜎2 ∈
(

0,
√

𝜋 𝜃3∕2
2

]

. Now for 𝑒−𝐶
′𝛽2𝑖 𝑃 𝜎22 ≤ 𝛿

2 , we have 𝑃 ≥ 𝐶
𝜎22

log 2
𝛿 , where

≥ 1
𝐶′𝛽2𝑖

is some constant. Putting all pieces together we have

Pr
[

1
𝜃 𝛽𝑖𝑃 ‖(𝝎

⊤
𝑖 )◦(𝐦̄

⊤
𝑖 𝐗)‖1 ≤ 1 − 𝜎2

]

≤ 𝛿
2 and Proposition 2(b) follows.

To show (a), notice that from Lemma 4 we know 𝑥̌𝑖 =
1

√

𝑃
(
∑𝑃

𝑝=1 |𝑋̄𝑖𝑝|

− 𝛽𝑖𝑃 ) = 1
√

𝑃
(‖𝐦̄⊤

𝑖 𝐗‖1 − 𝑃 𝛽𝑖) has a sub-Gaussian tail up to 𝜃
√

2𝛼̄𝑖

√

𝑃 .
ollowing similar steps as above for (b), one can readily arrive at

Proposition 2(a). ■

Having established Proposition 2, we have almost all ingredients
eeded to prove Proposition 1 (and thus Theorem 1). Before doing so,
e introduce a final lemma to show that Bernoulli-Gaussian random

variables have bounded-energy.

Lemma 5 (Bounded Energy). Let {𝑋𝑖𝑝} be i.i.d. random variables drawn
from the Bernoulli-Gaussian model in Definition 1, with 𝜃 ∈

(

0, 𝑒−1]. For
any vector 𝝓 ∈ R𝑁 and some 𝜎3 > 0, if 𝑃 ≥ 𝐶̆

𝛽20𝜎
2
3
log 2

𝛿 where 𝐶̆ is some
constant, we have

|

|

|

∑

𝑖,𝑝
𝜙𝑖|𝑋𝑖𝑝|

|

|

|

≤ (1 + 𝜎3)
|

|

|

|

|

|

E

[

∑

𝑖,𝑝
𝜙𝑖|𝑋𝑖𝑝|

]

|

|

|

|

|

|

(A.7)

holds with probability at least 1 − 𝛿.

Proof of Lemma 5. Note that for 𝜃 ∈
(

0, 𝑒−1], we have E
[

|𝑋𝑖𝑝|
]

=
𝜃 𝛽0, E

[

|𝑋𝑖𝑝|
2] = 1, and var

[

|𝑋𝑖𝑝|
]

= 1 −𝜃 𝛽20 > 0, for 𝑖 ∈ {1,… , 𝑁}, 𝑝 ∈
{1,… , 𝑃 }. Besides, |𝑋𝑖𝑝| has an upper sub-Gaussian tail since it has the
folded Normal distribution and,

Pr
[

|𝑋𝑖𝑝| ≥ 𝑡
]

≤ 𝑒−
1
2 𝑡

2
,

Similar to [44, Lemma 2.4], one can show E
[

𝑒𝑢|𝑋𝑖𝑝|
]

≤ 𝑒
√

𝜃 𝛽0+𝐶 𝑢2 , for
some constant 𝐶 and all 𝑢 > 0. Now, let 𝑋̆𝑖 ∶=

1
√

𝑃

∑𝑃
𝑝=1(|𝑋𝑖𝑝| −

√

𝜃 𝛽0),
o E

[

𝑋̆𝑖
]

= 0, var
[

𝑋̆𝑖
]

= E
[

𝑋̆2
𝑖
]

= 1. Following similar ideas as in the
roof of Lemma 4, one has

E
[

𝑒𝑢𝑋̆𝑖
]

=
𝑃
∏

𝑝=1
E
[

𝑒𝑢∕
√

𝑃 (|𝑋𝑖𝑝|−
√

𝜃 𝛽0)
]

≤ (𝑒𝐶
𝑢2
𝑃 )𝑃 = 𝑒𝑂(𝑢2).

An analogous calculation also yields E
[

𝑒−𝑢𝑋̆𝑖
]

≤ 𝑒𝑂(𝑢2).
Let 𝜙̄𝑖 = 𝜙𝑖∕‖𝝓‖22, for 𝑖 ∈ {1,… , 𝑁}. From [44, Lemma 2.2],

both 𝑌̆1 ∶=
∑

𝑖 𝜙̄𝑖𝑋̆𝑖 and 𝑌̆2 ∶= −∑

𝑖 𝜙̄𝑖𝑋̆𝑖 have sub-Gaussian tails,
i.e., Pr

[

𝑌̆1 ≥ 𝑡
]

≤ 𝑒−𝐶̆1𝑡2 and Pr
[

𝑌̆2 ≥ 𝑡
]

≤ 𝑒−𝐶̆2𝑡2 , for some constants
𝐶̆1, 𝐶̆2. Hence with probability at least 1 − 𝑒−𝐶̆1𝑡2 , we have

𝑁
∑

𝑖=1

𝜙̄𝑖
√

𝑃

𝑃
∑

𝑝=1
(|𝑋𝑖𝑝| −

√

𝜃 𝛽0) < 𝑡

⇒
∑

𝜙𝑖(|𝑋𝑖𝑝| −
√

𝜃 𝛽0) < ‖𝝓‖22
√

𝑃 𝑡

𝑖,𝑝

10 
⇒
∑

𝑖,𝑝

(

𝜙𝑖|𝑋𝑖𝑝| − E
[

𝜙𝑖|𝑋𝑖𝑝|
])

< 𝜎3E
[

∑

𝑖,𝑝
𝜙𝑖|𝑋𝑖𝑝|

]

,

where 𝜎3 ∶=
√

𝑃 𝑡
E
[

∑

𝑖,𝑝 𝜙̄𝑖|𝑋𝑖𝑝|
] = 𝑡

√

𝜃 𝑃 𝛽0 . If we let Pr
[

𝑌̆1 ≥ 𝑡
]

≤ 𝑒−𝐶̆1𝑡2 ≤ 𝛿
2 ,

then we will have 𝑃 ≥ 𝐶̆1
𝜃 𝛽20𝜎23

log 2
𝛿 . One can also derive the other bound

from Pr
[

𝑌̆2 ≤ −𝑡
]

≤ 𝑒−𝐶̆2𝑡2 , i.e., −∑

𝑖,𝑝 𝜙𝑖|𝑋𝑖𝑝| < −(1 − 𝜎3)E
[

∑

𝑖,𝑝 𝜙𝑖|𝑋𝑖𝑝|
]

ith probability at least 1 − 𝑒−𝐶̆2𝑡2 . To finish the proof, set 𝐶̆ =
max(𝐶̆1, 𝐶̆2)∕𝜃. ■

Having established the key preliminary results in Proposition 2
and Lemma 5, we can now proceed to prove our main exact recovery
result.

Proof of Proposition 1. To prove 𝐰̂ = 𝟏𝑁 is the unique solution
o problem (A.1), it is equivalent to say for all feasible perturbations
𝜹 ∈ R𝑁 such that 𝐫̄⊤𝜹 = 0, then ‖(𝟏𝑁 + 𝜹)𝐗‖1,1 ≥ ‖𝐗‖1,1 holds for
any Bernoulli-Gaussian random 𝐗 ∈ R𝑁×𝑃 with high probability. Here
we define the hollow matrix (𝜹) as (𝜹) with 0 diagonal elements
(i.e., (𝜹)𝑖𝑗 = (𝜹)𝑖𝑗 ,∀𝑖 ≠ 𝑗; (𝜹)𝑖𝑖 = 0, ∀𝑖). We can compute the
sub-gradient of ‖(𝟏𝑁 + 𝜹)𝐗‖1,1 at 𝜹 = 𝟎𝑁 as,

‖(𝟏𝑁 + 𝜹)𝐗‖1,1 ≥ ‖𝐗‖1,1 + ‖[(𝜹)𝐗]𝑐‖1,1 +
𝑃
∑

𝑝=1
𝝐⊤𝑝 (𝜹)𝐱𝑝

≥ ‖𝐗‖1,1 + ‖(𝜹)𝐗‖1,1 − 2‖[(𝜹)𝐗]‖1,1 +
∑

𝑖,𝑝
|𝑋𝑖𝑝|⟨𝐯𝑖◦𝐯𝑖, 𝜹⟩.

(A.8)

Applying Lemma 5, we can bound the last term in (A.8) as
∑

𝑖,𝑝
|𝑋𝑖𝑝|⟨𝐯𝑖◦𝐯𝑖, 𝜹⟩ ≥ − (1 + 𝜎3)

|

|

|

E

[

∑

𝑖,𝑝

𝛺𝑖𝑝|𝛾𝑖𝑝|
√

𝜃
⟨𝐯𝑖◦𝐯𝑖, 𝜹⟩

]

|

|

|

= − (1 + 𝜎3)
√

𝜃 𝑃 𝛽0|𝟏⊤𝑁𝜹|, (A.9)

where we used 𝛽0 ∶= E
[

|𝛾𝑖𝑝|
]

=
√

2
𝜋 .

Next, we are going to bound ‖(𝜹)𝐗‖1,1 − 2‖[(𝜹)𝐗]‖1,1 by
applying Proposition 2. Let 𝐦⊤

𝑖 be the 𝑖th row of the hollow matrix
(𝜹), i.e., (𝜹) = [𝐦1,… ,𝐦𝑁 ]⊤ ∈ R𝑁×𝑁 . Likewise, let 𝝎⊤

𝑖 be the 𝑖th
ow of 𝜴. Then from Proposition 2 claims(a) and (b) in (A.3), we have
‖𝐦⊤

𝑖 𝐗‖1 ≥ (1 − 𝜎1)𝛽𝑖𝑃‖𝐦𝑖‖2 and −‖𝝎⊤
𝑖 ◦(𝐦

⊤
𝑖 𝐗)‖1 ≥ −(1 + 𝜎2)𝛽𝑖𝜃 𝑃‖𝐦𝑖‖2.

So we obtain

‖𝐦⊤
𝑖 𝐗‖1−2‖𝝎

⊤
𝑖 ◦(𝐦

⊤
𝑖 𝐗)‖1 ≥ [(1 − 𝜎1) − 2𝜃(1 + 𝜎2)]𝛽𝑖𝑃‖𝐦𝑖‖2

≥ [(1 − 𝜎1) − 2𝜃(1 + 𝜎2)](1 − 𝜎4)𝛽0𝑃‖𝐦𝑖‖2,

where the last inequality holds because Lemma 1 asserts that 𝛽𝑖 ∈
[(1 − 𝜎′𝑖 )𝛽0, 𝛽0], for some 𝜎′𝑖 ∈ (0, 1). Specifically, given a hollow-vector
𝐦𝑖 with 𝛼̄𝑖 = ‖𝐦𝑖‖∞∕‖𝐦𝑖‖2, the 𝜎′𝑖 can be computed via (A.4). Hence,
we can let 𝜎4 = max{𝜎′𝑖}

𝑁
𝑖=1 and by vertically stacking the row vectors

⊤
𝑖 , 𝑖 ∈ {1,… , 𝑁}, the bound

‖(𝜹)𝐗‖1,1 − 2‖[(𝜹)𝐗]‖1,1
≥ [(1 − 𝜎1) − 2𝜃(1 + 𝜎2)](1 − 𝜎4)𝛽0𝑃‖(𝜹)‖2,1 (A.10)

holds with probability at least 1 − 𝛿. Summing (A.9) and (A.10), we
have

‖(𝜹)𝐗‖1,1 − 2‖[(𝜹)𝐗]‖1,1 +
∑

𝑖𝑝
|𝑋𝑖𝑝|⟨𝐯𝑖◦𝐯𝑖, 𝜹⟩ (A.11)

≥ [(1 − 𝜎1) − 2𝜃(1 + 𝜎2)](1 − 𝜎4)
(

‖(𝜹)‖2,1 − 𝐶1|𝟏⊤𝑁𝜹|
)

,

where we defined 𝐶1 = (1+𝜎3)
√

𝜃
[(1−𝜎1)−2𝜃(1+𝜎2)](1−𝜎4)

. When 𝜃 ≤ 1−𝜎1
2(1+𝜎2)

, we
have 𝐶1 > 0 and the lower bound will be non-negative if ‖(𝜹)‖2,1 ≥
𝐶1|𝟏⊤𝑁𝜹|. To show such a 𝜃 is feasible, recall that in Proposition 2 we

require that 𝜃 ∈
(

0, 𝑒−1], 𝜎1 ∈
(

0,
√

𝜋 𝜃3∕2
2

]

, and 𝜎2 ∈
(

0,
√

𝜋 𝜃
2

]

. Hence
e need,

𝜃 ≤
1 − (√𝜋∕2)𝜃3∕2

√
⇒ 𝑓 (𝜃) ∶=

√

𝜋 𝜃2 + 2𝜃 +
√

𝜋
𝜃3∕2 − 1 ≤ 0.
2(1 + 𝜋 𝜃∕2) 2
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As 𝑓 (𝜃) is monotonically increasing in 𝜃 ∈
(

0, 𝑒−1] and 𝑓 (0) = −1 < 0,
(𝑒−1) > 0, there exists only one solution 𝜃𝑚 ∈ (0.324, 0.325) such that
(𝜃𝑚) = 0. So the feasible range is 𝜃 ∈ (0, 𝜃𝑚], or for convenience we let
∈ (0, 0.324].

Going back to establishing the lower bound in (A.11) is non-
negative, note that ‖(𝜹)‖22,1 ≥ ‖(𝜹)‖2𝐹 and so it will be sufficient
to show ‖(𝜹)‖2𝐹 ≥ 𝐶2

1 |𝟏
⊤
𝑁𝜹|2. For convenience, let us decompose

̄ = 𝑐
𝑁 𝟏𝑁 +𝐝 and 𝜹 = 𝛿0𝟏𝑁 +𝜹⟂, for some 𝐝 ∶= 𝐏⟂

1 𝐫̄ and 𝜹⟂ ∶= 𝐏⟂
1 𝜹 such

hat 𝟏⊤𝑁𝜹⟂ = 𝟏⊤𝑁𝐝 = 0. From the constraint 𝐫̄⊤𝐰 = 𝐫̄⊤(𝟏𝑁 + 𝜹) = 𝑐, we
now 𝐫̄⊤𝜹 = 0 and 𝛿0 = − 𝐝⊤𝜹⟂

𝑐 . So 𝜹 = − 𝐝⊤𝜹⟂
𝑐 𝟏𝑁+𝜹⟂ and 𝟏⊤𝑁𝜹 = −𝑁𝐝⊤𝜹⟂

𝑐 .
hen we have

‖(𝜹)‖2𝐹 − 𝐶2
1 |𝟏

⊤
𝑁𝜹|2 = ‖(𝜹⟂)‖2𝐹 − 𝐶2

1

|

|

|

|

|

𝑁𝐝⊤𝜹⟂
𝑐

|

|

|

|

|

2

= ‖𝜹⟂‖22

(

1 −
‖

‖

‖

‖

‖

[

𝐔̃
(𝑁 𝐶1∕𝑐)𝐝⊤

]

𝜹̄⟂
‖

‖

‖

‖

‖

2

2

)

(⋆) ≥ ‖𝜹⟂‖22

[

1 −
(

𝜎2max(𝐔̃) +
𝑁2𝐶2

1

𝑐2
‖𝐝‖22

)]

, (A.12)

where we let 𝐔̃ ∶= (𝐕◦𝐕)𝐏⟂
1 ∈ R𝑁×𝑁 and 𝜹̄⟂ ∶= 𝜹⟂∕‖𝜹⟂‖2. The

nequality in (⋆) considers the ‘worst-case’ 𝐝 should be colinear to the
ominant right singular vector of 𝐔̃, i.e., given the SVD 𝐔̃ = 𝐔̂𝜮𝐕̂⊤,
hen 𝐝∕‖𝐝‖2 = 𝐯̂1 is the first column of 𝐕̂.

To ensure 1 −
(

𝜎2max(𝐔̃) +
𝑁2𝐶2

1
𝑐2

‖𝐝‖22

)

≥ 0, we bound ‖𝐝‖2 as

‖𝐝‖22 ≤
𝑐2(1 − 𝜎2max(𝐔̃))

𝑁2𝐶2
1

=
𝑐2(1 − 𝜎2max(𝐔̃))[(1 − 𝜎1) − 2𝜃(1 + 𝜎2)]2(1 − 𝜎4)2

𝑁2(1 + 𝜎3)2𝜃
,

(A.13)

which is (A.2), completing the proof. ■

Appendix B. Proof of Theorem 2

When the observations are corrupted by noise 𝐍 ∈ R𝑁×𝑃 , i.e., 𝐘 =
(𝐡̃0)𝐗 + 𝐍 ∈ R𝑁×𝑃 , (10) can be rewritten as the following equivalent
problem

̂ = argmin
𝐰

‖(𝐰)𝐗 + (𝐠̃0◦𝐰)𝐍‖1,1, s. to 𝐫̄⊤𝐰 = 𝑐 (B.1)

with the change of variable 𝐰 = 𝐠̃◦𝐡̃0 we used in Appendix A. Again,
𝐫̄⊤ = 𝐫⊤diag(𝐠̃0) is consistent with (A.1). In this case, the solution to
B.1) 𝐰̂ is not expected to be 𝟏𝑁 , so we let 𝐰̂ = 𝟏𝑁 + 𝜹̂ = 𝟏𝑁 +
− 𝐝⊤ 𝜹̂⟂

𝑐 𝟏𝑁 + 𝜹̂⟂
)

=
(

1 − 𝐝⊤ 𝜹̂⟂
𝑐

)

𝟏𝑁 + 𝜹̂⟂ as before, where 𝐝 = 𝐫̄ − 𝑐
𝑁 𝟏𝑁 .

hen our goal will be to bound the error of problem (B.1), i.e., 𝐰̂− 𝟏𝑁 ,
hich is expected to vanish if the observations were not corrupted by
oise. Once this goal is achieved, the recovery error of (10), i.e., 𝐞𝑔 ∶=
̂̃𝐠 − 𝐠̃0 can also be bounded since 𝐞𝑔 = 𝐠̃0◦(𝐰̂ − 𝟏𝑁 ).

By jointly considering (A.8)(A.11)(A.12), and from (A.12) we can

conclude that, if (A.13) is satisfied, e.g. ‖𝐝‖2 ≤
𝑐
√

(1−𝜎2max(𝐔̃))
𝑁 𝐶1

= (𝑐∕𝑁)𝑑0,

he following holds for any feasible 𝜹 = − 𝐝⊤𝜹⟂
𝑐 𝟏𝑁 + 𝜹⟂

‖(𝜹)‖2,1 − 𝐶1|𝟏⊤𝑁𝜹| ≥
√

‖(𝜹)‖2𝐹 − 𝐶1|𝟏⊤𝑁𝜹|

≥

√

√

√

√𝐶2
1 |𝟏

⊤
𝑁𝜹|2 + ‖𝜹⟂‖22

(

1 − 𝜎2max(𝐔̃) −
𝑁2𝐶2

1

𝑐2
‖𝐝‖22

)

− 𝐶1|𝟏⊤𝑁𝜹|

= ‖𝜹⟂‖
⎡

⎢

⎢

⎣

√

1 − 𝜎2max(𝐔̃) −
𝑁2𝐶2

1

𝑐2
‖𝐝‖22(1 − 𝜎25 ) −

𝑁 𝐶1
𝑐

𝜎5‖𝐝‖2
⎤

⎥

⎥

⎦

,

(B.2)

where 𝜎 ∶= |𝐝⊤𝜹⟂| ∈ [0, 1].
5
‖𝜹⟂‖‖𝐝‖

{

11 
Let 𝑄 ∶= (1+𝜎3)
√

𝜃 𝑁
𝑐

[

√

(𝑐∕𝑁)2𝑑20 − (1 − 𝜎5)2‖𝐝‖22 − 𝜎5‖𝐝‖2
]

. Note
that 𝑄 ≥ 0 and then we have
‖(𝐰̂)𝐗 + (𝐠̃0◦𝐰̂)𝐍‖1,1 = ‖(𝐰̂)[𝐗 + (𝐠̃0)𝐍]‖1,1
≥ ‖(𝐰̂)(𝐗 + 𝐍(𝑆))‖1,1 − ‖(𝐰̂)𝐍(𝐶)

‖1,1

≥ ‖𝐗 + 𝐍(𝑆)
‖1,1 + 𝛽0𝑃 𝑄‖𝜹̂⟂‖2 − ‖(𝐰̂)𝐍(𝐶)

‖1,1

(B.3)

where 𝐍(𝑆) ∶= [(𝐠̃0)𝐍] denotes the sub-matrix of (𝐠̃0)𝐍 that has the
ame support  as 𝐗, and its complement as 𝐍(𝐶) ∶= [(𝐠̃0)𝐍]𝐶 =
(𝐠̃0)𝐍 − [(𝐠̃0)𝐍] . The last inequality holds as 𝐗 and 𝐗 + 𝐍(𝑆) have
the same support. Next, let us find the upper bound for ‖(𝐰̂)𝐍(𝐶)

‖1,1

‖(𝐰̂)𝐍(𝐶)
‖1,1 =

‖

‖

‖

‖

‖

‖

(

1 − 𝐝⊤𝜹̂⟂
𝑐

)

𝐍(𝐶) + 𝐕diag(𝜹̂⟂)𝐕⊤𝐍(𝐶)
‖

‖

‖

‖

‖

‖1,1

≤ ‖𝐍(𝐶)
‖1,1 + (𝑑0‖𝐍(𝐶)

‖1,1 + ‖[𝐍(𝐶)]⊤𝐕⊙ 𝐕‖1→2)‖𝜹̂⟂‖2.

(B.4)

Note that we expect 𝐰0 = 𝟏𝑁 as the ‘ideal’ noise-free solution of
(B.1), so 𝑐 = 𝐫̄⊤𝟏𝑁 . For optimality, we should have
‖(𝐰̂)𝐗 + (𝐠̃0◦𝐰̂)𝐍‖1,1 ≤ ‖(𝐰0)𝐗 + (𝐠̃0◦𝐰0)𝐍‖1,1

= ‖𝐗 + 𝐍(𝑆)
‖1 + ‖𝐍(𝐶)

‖1,1.
(B.5)

From (B.3), (B.4) and (B.5) we find
‖𝐗 + 𝐍(𝑆)

‖1,1 + ‖𝐍(𝐶)
‖1,1 ≥ ‖𝐗 + 𝐍(𝑆)

‖1,1 − ‖𝐍(𝐶)
‖1,1

+ (𝛽0𝑃 𝑄 − 𝑑0‖𝐍(𝐶)
‖1,1 − ‖[𝐍(𝐶)]⊤𝐕⊙ 𝐕‖1→2)‖𝜹̂⟂‖2

and while 𝛽0𝑃 𝑄 − 𝑑0‖𝐍(𝐶)
‖1,1 − ‖[𝐍(𝐶)]⊤𝐕⊙ 𝐕‖1→2 > 0, we have

‖𝜹̂⟂‖2 ≤
2‖𝐍(𝐶)

‖1,1

𝛽0𝑃 𝑄 − 𝑑0‖𝐍(𝐶)
‖1,1 − ‖[𝐍(𝐶)]⊤𝐕⊙ 𝐕‖1→2

.

Because ̂̃𝐠 = 𝐠̃0◦𝐰̂, the error vector between ̂̃𝐠 and the ‘ideal’ ground-
truth 𝐠̃0 is 𝐞𝑔 = ̂̃𝐠 − 𝐠̃0 = 𝐠̃0◦(𝐰̂ − 𝟏𝑁 ) = 𝐠̃0◦𝜹̂. Recalling that 𝜹̂ =

− 𝐫̄⊤ 𝜹̂⟂
𝑐 + 𝜹̂⟂ =

(

𝐈𝑁 − 𝟏𝑁
𝐫̄⊤
𝑐

)

𝜹̂⟂ and 𝛽0 =
√

2
𝜋 , we can bound the 𝓁1

or 𝓁2 norms of 𝐞𝑔 as

‖𝐞𝑔‖𝑙 = ‖𝐠̃0◦𝜹̂‖𝑙

=
‖

‖

‖

‖

‖

diag(𝐠̃0)
(

𝐈𝑁 − 𝟏𝑁
𝐫̄⊤
𝑐

)

𝜹̂⟂
‖

‖

‖

‖

‖𝑙

≤
‖

‖

‖

‖

‖

diag(𝐠̃0)
(

𝐈𝑁 − 𝟏𝑁
𝐫̄⊤
𝑐

)

‖

‖

‖

‖

‖𝑙→2
‖𝜹̂⟂‖2

≤
2
‖

‖

‖

‖

diag(𝐠̃0)
(

𝐈𝑁 − 𝟏𝑁
(𝐫◦𝐠̃0)⊤

𝑐

)

‖

‖

‖

‖𝑙→2
‖𝐍(𝐶)

‖1,1

√

2
𝜋 𝑃 𝑄 − 𝑑0‖𝐍(𝐶)

‖1,1 − ‖[𝐍(𝐶)]⊤𝐕⊙ 𝐕‖1→2

,

where ‖ ⋅ ‖𝑙 stands for the 𝓁1 and 𝓁2 norms when 𝑙 = 1, 2, respecti-
ely. ■

Appendix C. Epinions data sampling and pre-processing

C.1. Sampling

Here we describe the implemented sampling design applied to 𝐘obs.
The goals of data sampling are: (i) the resulting observation density
should be as high as possible; and (ii) all of the users in the sampled
ataset should be connected. To achieve those goals, for 𝑘 = 1, 2,… we
epeat the following three steps. Step 1: From the previous item set 𝑘
e pick all items that have been rated by at least 𝑁min = 150 users from
𝑘, and let the new item set be 𝑘+1. Step 2: From the previous user set
𝑘 we pick all users who have rated at least 𝑁min items in 𝑘+1 and let

he new user set be the user set candidate  ′
𝑘+1. Step 3. To maintain the

onnectivity of the user network, we randomly select a user from  ′
𝑘+1

nd collect all of the users (within  ′
𝑘+1) that are accessible from this

ser (including the selected user) to generate the new user set 𝑘+1.
he above three steps are repeated until there is no feasible update for

𝑘,𝑘}.
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C.2. Pre-processing

As hinted by the results in Theorem 1, the unbiasedness of the graph
ignals is crucial to satisfactory performance of the proposed approach.

Hence we centered the rating matrix by adjusting the range from [1, 5]
to [−2, 2].

Data availability

Data will be made available on request.
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