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Abstract—We develop a novel continuous optimization algo-
rithm to recover latent directed acyclic graphs (DAGs) from
observational (and possibly heteroscedastic) data adhering to
a linear structural equation model (SEM). Our starting point
is the recently proposed Concomitant Linear DAG Estimation
(CoLiDE) framework, which advocates minimizing a sparsity-
regularized convex score function augmented with a smooth,
nonconvex acyclicity penalty. While prior work focused on score
function design to jointly estimate DAG structure along with
exogenous noise levels, optimization aspects were left unexplored.
To bridge this gap, here we show that CoLiDE has a favorable
structure amenable to optimization via a block successive convex
approximation (BSCA) algorithm. We derive efficient, closed-
form updates to refine the DAG adjacency matrix and noise
variance estimates in a cyclic fashion. Although the acyclicity
regularizer is devoid of a Lipschitz gradient and hence our
approximation function is not a global upper bound of the
original cost, a descent direction can be obtained via line search to
yield a provably convergent sequence. Numerical tests showcase
the superiority of the proposed BSCA iterations relative to the
original (Adam-based) inexact block coordinate descent solver.

Index Terms—Concomitant scale estimation, directed acyclic
graph, successive convex approximation, topology inference.

I. INTRODUCTION

Directed acyclic graphs (DAGs) are used to represent causal
relationships among variables, where connections between
causes and their immediate effects are encoded through di-
rected edges. DAGs and associated Bayesian networks find
applications in e.g., biology [1], [2], genetics [3], finance [4],
and economics [5]. Since the causal structure underlying a
collection of variables is typically unknown, inferring DAGs
from nodal observations becomes a crucial task [6, Ch. 7].
However, learning a DAG solely from observational data
(cf. interventional data) presents substantial computational
challenges, primarily due to the well-documented difficulty
of enforcing the combinatorial acyclicity constraint [7], [8].
Additionally, in general multiple DAGs can generate the same
observational data distribution, making the identification of
the true DAG nontrivial. This identifiability challenge may be
pronounced when data are limited, or, when candidate graphs
exhibit Markov equivalence; see e.g., [6].

DAG learning from observational data is an NP-complete
problem [7], [8], and a recent flurry of successful approaches
have advocated continuous relaxations leading to constrained
optimization formulations [9]–[12]; see Section II for a prob-

lem statement. The selection of an appropriate score function
plays a crucial role in effectively guiding continuous opti-
mization techniques to recover the latent DAG. Regression-
based score functions, such as sparsity-regularized ordinary
least squares (LS) [9], [11], have been shown effective in
high-dimensional settings characterized by data scarcity and
model uncertainty; see also [13] for consistency results. How-
ever, lasso-type criteria to score DAGs in linear structural
equation models (SEMs) typically rely on the assumption of
homoscedasticity, i.e., exogenous noises have equal variances
across variables. Additionally, they necessitate careful fine-
tuning of the penalty parameter governing the trade-off be-
tween sparsity and data fidelity [14], [15]. To address these
challenges, we recently proposed the Concomitant Linear
DAG Estimation (CoLiDE) framework [12]. Leveraging ideas
from concomitant scale estimation in sparse regression [16],
[17], we put forth a novel convex score function for inference
of DAGs in (possibly heteroscedastic) linear SEMs. CoLiDE
exhibits significant improvements relative to existing state-of-
the-art DAG learning methods; see [12] for further details.

While [12] focused on score function design to jointly
estimate DAG structure along with exogenous noise levels
(Section III), optimization aspects were left unexplored. In-
deed, CoLiDE optimization therein relies on block coordinate
descent (BCD) iterations, whereby the DAG subproblem is
solved inexactly by running one iteration of the Adam opti-
mizer [18]. While shown to be effective, this heuristic does
not come with theoretical convergence guarantees. To bridge
this gap, in Section IV we show that CoLiDE has a favorable
structure amenable to optimization via a block successive
convex approximation (BSCA) algorithm [19], [20]. We derive
efficient, closed-form updates to refine the DAG adjacency ma-
trix and noise variance estimates in a cyclic fashion. Although
CoLiDE’s log-determinant acyclicity regularizer [11] is devoid
of a Lipschitz gradient and hence our approximation function
is not a global upper bound of the original cost, a descent
direction can be obtained via line search to yield a provably
convergent sequence. All in all, our algorithmic contribution
is envisioned to impact DAG learning and causal discovery.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a directed graph (digraph) G (V, E ,W), where
V = {1, . . . , d} represents the set of vertices, and E ⊆ V × V



is the set of edges. The relationship between nodes is encoded
in the adjacency matrix W = [w1, . . . ,wd] ∈ Rd×d where a
non-zero edge weight Wij implies a direct link from node i
to node j. Let us assume the digraph G captures conditional
independencies among the variables in the random vector
x = [x1, . . . , xd]

⊤ ∈ Rd and that it belongs to the space
D of DAGs. If the joint distribution P(x) satisfies a Markov
property over G ∈ D, it implies that each random variable xi is
solely dependent on its parents PAi = {j ∈ V : Wji ̸= 0} [6].
This work focuses on linear SEMs to generate such a probabil-
ity distribution, where the relationship between each random
variable and its parents is expressed as xi = w⊤

i x+zi, ∀i ∈ V ,
where z = [z1, . . . , zd]

⊤ is a vector of mutually independent,
exogenous noises, without any specific assumption on their
distribution; see e.g., [6]. For a dataset X ∈ Rd×n consisting
of n i.i.d. samples drawn from P(x), the linear SEM equations
can be expressed in matrix form as X = W⊤X+ Z.
Problem statement. Given the data matrix X generated by a
linear SEM, the goal is to recover the underlying DAG G ∈ D.
To estimate the adjacency matrix W, one can solve

min
W

S(W) subject to G(W) ∈ D, (1)

where S(W) is a data-dependent score function to measure
the quality of the candidate DAG. Regardless of the specific
criterion employed, (1) is a hard non-convex problem due to
the combinatorial acyclicity constraint G(W) ∈ D.

Typically, an effective score function incorporates a data
fidelity term aligned with the SEM and regularization terms
to encourage desired structural properties on the sought DAG.
Since sparsity is a cardinal property of most real-world
graphs, it is prudent to augment the widely-adopted ordinary
LS loss with an ℓ1-norm regularizer to yield S(W) =
1
2n∥X − W⊤X∥2F + λ∥W∥1, where λ ≥ 0 is a tuning
parameter that controls edge sparsity. This score function
S(W) shares similarities with the multi-task variant of lasso
regression [21], particularly when the response and design
matrices coincide. The optimal rates for lasso are contingent
on selecting λ ≍ σ

√
log d/n [22], [23], but the exogenous

noise variance σ2 is rarely known in practice. This challenge is
compounded in heteroscedastic settings, where one must adopt
a weighted LS score [13] to mitigate bias incurred in most
DAG learning methods that use ordinary LS. Acknowledging
these limitations, we proposed a novel LS-based score function
to facilitate joint estimation of the DAG and noise levels [12].
Next, we briefly review the CoLiDE framework and then
present our algorithmic innovations in Section IV.

III. CONCOMITANT LINEAR DAG ESTIMATION

A recent trend to handle the combinatorial constraint
G(W) ∈ D, is to leverage non-convex, smooth functions
H : Rd×d 7→ R of the adjacency matrix. These functions
are chosen such that their zero level set is D. Consequently,
the DAG learning problem (1) can be relaxed by enforcing
H(W) = 0 instead of G(W) ∈ D, paving the way for standard
continuous optimization algorithms [9], [11], [24], [25].

In this context, CoLiDE introduces a novel convex score
function for linear DAG estimation, incorporating concomitant
estimation of scale parameters [12]; see [15], [17], [26],
[27] for linear regression counterparts that inspired our work.
CoLiDE exhibits robust DAG estimation performance in het-
eroscedastic settings and effectively decouples the sparsity
parameter λ from the exogenous noise level σ.
CoLiDE-EV. Suppose all exogenous noise variables z1, . . . , zd
in the linear SEM have equal variance (EV) σ2. To simulta-
neously estimate the DAG adjacency matrix W and the noise
scale σ, our idea is to solve (see [12] for further details):

min
W,σ≥σ0

1

2nσ
∥X−W⊤X∥2F +

dσ

2
+ λ∥W∥1︸ ︷︷ ︸

:=S(W,σ)

(2)

subject to H(W) = 0.

The weighted, regularized LS score function S(W, σ) is
jointly convex in W and σ, drawing inspiration from the robust
linear regression work of [16]. Indeed, Huber pointed out
that the inclusion of the linear term dσ/2 yields an estimator
σ̂ that is consistent under Gaussianity. Due to the rescaled
residuals, the tuning parameter λ in (2) becomes independent
of σ for minimax optimality, namely λ ≍

√
log d/n [23]. With

regards to the acyclicity function, we chose Hldet(W, s) =
d log(s) − log(det(sI − W ◦ W)) [11], where s ∈ R
and ◦ denotes Hadamard product. Hldet has been shown to
possess favorable gradient properties, along with several other
desirable properties outlined in [11, Section 3.2].

To solve (2), we minimize a series of unconstrained prob-
lems wherein Hldet is dualized and treated as a regularizer. For
a sequence µk → 0, at step k COLIDE-EV solves

min
W,σ≥σ0

µk

[
1

2nσ
∥X−W⊤X∥2F +

dσ

2
+ λ∥W∥1

]
+Hldet(W, sk), (3)

where µk, sk > 0 are hyperparameters and σ0 = ∥X∥F√
dn

×10−2.
Decreasing µk amplifies the influence of the acyclicity func-
tion, and the limit µk → 0 is guaranteed to yield a DAG. This
methodology resembles the central path of a barrier method,
and in practice it proves to be more effective than alternatives
such as the augmented Lagrangian method [11]. We typically
select µk ∈ {1, 0.1, 0.01, 0.001} and sk ∈ {1, 0.9, 0.8, 0.7}.

For each µk in the sequence, CoLiDE-EV employs (inexact)
BCD iterations to jointly solve for the noise level σ and W.
This cyclic strategy entails keeping σ fixed at its most recent
value and minimizing (3) inexactly w.r.t. W, followed by a
closed-form update of σ given the latest W, namely

σ̂ = max

(√
Tr ((I−W)⊤ cov(X)(I−W)) /d, σ0

)
, (4)

where cov(X) := 1
nXX⊤ is the sample covariance matrix.

There are various alternatives to inexactly solve the W sub-
problem using first-order methods. Computational consider-
ations motivated running a single Adam step to refine W,



which led to good empirical performance but without offering
theoretical convergence guarantees [12].
CoLiDE-NV. Consider now the challenging problem of learn-
ing DAGs in heteroscedastic scenarios, where noise variances
σ2
1 , . . . , σ

2
d are non-equal (NV). Building on the generalized

concomitant multi-task lasso [14] and emulating the opti-
mization approach for the EV setting discussed earlier, the
CoLiDE-NV estimator is formulated as follows

min
W,Σ≥Σ0

µk

[
1

2n
Tr

(
(X−W⊤X)⊤Σ−1(X−W⊤X)

)
+

1

2
Tr(Σ) + λ∥W∥1

]
+Hldet(W, sk). (5)

Note that Σ = diag(σ1, . . . , σd) is a diagonal matrix of
exogenous noise standard deviations (hence not a covariance
matrix). Once more, we set Σ0 =

√
diag (cov(X)) × 10−2,

where
√
(·) is meant to be taken element-wise. A closed form

solution for Σ given W is also readily obtained,

Σ̂ = max

(√
diag ((I−W)⊤ cov(X)(I−W)),Σ0

)
. (6)

Both CoLiDE variants incur a per iteration cost of O(d3),
similar to other state-of-the-art DAG learning methods [9]–
[11]. Accordingly, CoLiDE facilitates joint estimation of the
adjacency matrix W and Σ, in more general settings and
with only marginal added complexity compared to the task
of determining the DAG structure alone.

IV. BLOCK SUCCESSIVE CONVEX APPROXIMATION

As discussed in the previous section, CoLiDE optimization
entails solving a sequence of problems (3) [or (5) in the NV
case] for few decreasing values of µk. Here we derive an
efficient and provably convergent BSCA algorithm to solve
(3) for each k, by bringing to bear the advances in [19].

Just like the original BCD algorithm in [12], we will update
W and σ in a cyclic fashion. With t = 0, 1, 2, . . . denoting
iterations, for fixed Wt the best-response update for σ is given
by (4), just as before. The focus then shifts to the update of W,
when σ is fixed to its most up-to-date value σt. The resulting
composite subproblem is

min
W

[ µk

2nσt
∥X−W⊤X∥2F +Hldet(W, sk)︸ ︷︷ ︸

:=f(W)

+λµk∥W∥1︸ ︷︷ ︸
:=g(W)

]
,

(7)
where g(W) is convex but not smooth, while f(W) is smooth
but nonconvex because of Hldet. Since minimizing (7) is non
trivial, the BSCA approach instead advocates optimizing a
sequence of successively refined approximation subproblems
that are much easier to solve. To this end, at iteration t we let

f̃(W,Wt−1) := ⟨W−Wt−1,∇f(Wt−1)⟩+
L

2
∥W−Wt−1∥2F ,

be the quadratic approximation of f(W) around the previous
iterate Wt−1, which is strictly convex for any positive scalar
L (we henceforth let L = 1 for notational simplicity) and sat-
isfies the technical conditions (A1)-(A4) in [19]. Now, instead

Algorithm 1: BSCA Algorithm for CoLiDE (step k)
Input prior W∗

k−1, cov(X), parameters µk, sk, α, β, λ
Initialize W0 = W∗

k−1

for t = 1, 2, . . . , do
Compute W̄t via (9) for EV or (12) for NV
Compute stepsize γt via the Armijo rule
Update Wt = Wt−1 + γt(W̄t −Wt−1)
Update σt via (4) for EV or Σt via (6) for NV

end
Output DAG W∗

k := Wt and noise scale σt or Σt

of solving the original subproblem (7), we can minimize the
approximation

W̄t = argmin
W

[
f̃(W,Wt−1) + λµk∥W∥1

]
. (8)

Unlike (7), the solution of (8) is given in closed form and it
boils down to evaluating the proximal operator of g(W), i.e.,

W̄t = Tµkλ

(
Wt−1 +

µk

σt
cov(X)(I−Wt−1)

− 2(skI−Wt−1 ◦Wt−1)
−⊤ ◦Wt−1

)
, (9)

where Tα(x) = max(|x| − α, 0) sign(x) is the soft-
thresholding operator that we apply element-wise.

An unique aspect of our DAG learning problem is that
∇f̃(W,Wt−1) is not Lipschitz continuous because of the
log-determinant acyclicity function Hldet. Hence, the quadratic
approximation function f̃(W,Wt−1) is not guaranteed to be
a global upper bound of f(W). For this reason, as suggested
in [19] our idea is to update the DAG adjacency matrix as

Wt = Wt−1 + γt(W̄t −Wt−1), (10)

where γt ∈ (0, 1] is a stepsize chosen via line search. In our
implementation, we select γt via the low-complexity Armijo
rule with its usual scalar parameters α, β ∈ (0, 1) [28];
see [19] for a detailed implementation in the BSCA context.

Moving on to CoLiDE-NV for completeness, a similar
successive approximation methodology can be employed to
tackle (5). Supposing Σ is fixed to Σt obtained via the best-
response update in (6), the W subproblem minimizes [cf. (5)]

f(W) :=
µk

2n
Tr

(
(X−W⊤X)⊤Σ−1

t (X−W⊤X)
)

+Hldet(W, sk). (11)

Once more, we form a quadractic approximation f̃(W,Wt−1)
around Wt−1, and minimize (8) instead of (11) resulting in
the so-termed proximal linear approximation

W̄t = Tµkλ

(
Wt−1 + µk cov(X) [I−W]Σ−1

t

− 2(skI−Wt−1 ◦Wt−1)
−⊤ ◦Wt−1

)
. (12)

Just like for CoLiDE-EV, the DAG adjacency matrix is finally
updated via (10). The BSCA algorithm iterations for both
versions of CoLiDE are tabulated under Algorithm 1.
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Fig. 1. Assessing the empirical convergence properties of the proposed BSCA algorithm in comparison to Adam-based inexact BCD in [12]. The top row
considers scenarios where the noise variance is equal across all nodes (EV), while the bottom row assumes different noise variances across nodes (NV). BSCA
exhibits superior performance across all experiments and metrics (number of iterations or wall-clock time to convergence).

Unlike the Adam-based inexact BCD heuristic in [12], by
virtue of [19, Th. 1] it follows that every limit point of the
BSCA sequence generated by Algorithm 1 is a stationary point
of (3) [or (5) in the NV case]. This comes with no order-wise
penalty in computational complexity.

V. EXPERIMENTAL RESULTS

We conduct numerical experiments to analyze the perfor-
mance of the proposed BSCA algorithm. CoLiDE’s merits
in terms of recovering high-quality DAGs have been well
documented [12]. For this reason, here we will exclusively
focus on algorithmic performance, with no examination of
solution quality. As a baseline we consider the Adam-based
inexact BCD heuristic in [12], and compare its empirical
convergence properties against Algorithm 1. To this end, we
generate a d = 50-node random Erdős-Rényi (ER) graph
with 50 edges. Subsequently, we generate n = 1000 i.i.d.
samples using a linear SEM, assuming the exogenous noises
are Gaussian distributed. Given our focus on assessing the
algorithm’s performance in solving the optimization problem,
we consider a single step of the sequence where µk = 1 and
sk = 1. Following the CoLiDE guidelines in [12], we set
λ = 0.05. As for α and β, we opt for typical values without
engaging in hyperparameter tuning, choosing 0.01 and 0.25,
respectively. To assess the empirical convergence performance,
the columns of Figure 1 depict the objective value versus
iterations, the objective value versus the running time, and the
difference between the estimated DAG Wt at iteration t and

the optimal solution W∗. The latter is obtained by running
the inexact BCD algorithm for 105 iterations. Note that W∗

is the optimal solution of (3) [or (5)] for the given µk, and it
may differ from the ground truth DAG.

For the EV case, we assume the noise variances are all
σ2 = 1, and the DAG edge weights are drawn uniformly at
random from [−2,−0.5] ∪ [0.5, 2]. As illustrated in the top
row of Figure 1, the proposed BSCA algorithm consistently
outperforms the Adam-based baseline in terms of convergence
rate and wall-clock time. We follow the same procedure
for CoLiDE-NV, where the noise variance of each node is
randomly drawn from [0.5, 10], and edge weights are chosen
from [−1,−0.25] ∪ [0.25, 1]. The bottom row of Figure 1
depicts the results for the heteroscedastic case, once again
showcasing the superiority of Algorithm 1.

VI. CONCLUSION

We propose algorithmic advances for the CoLiDE frame-
work to learn DAG topologies from linear SEM observations,
while simultaneously estimating the exogenous noise levels for
added robustness. Our contribution is to develop a novel BSCA
algorithm with efficient updates that are given in closed form.
Relative to the current Adam-based inexact BCD heuristic
for this problem, the novel iterations are provably convergent
and incur marginal added complexity stemming from the line
search required to determine a suitable stepsize. The BSCA
algorithm’s superior convergence properties are demonstrated
through preliminary experiments for both EV and NV settings.
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