

Convolutional Learning on Directed Acyclic Graphs

S. Rey*, H. Ajorlou[†], G. Mateos[†]

*King Juan Carlos University - [†]University of Rochester

Asilomar Conference on Signals, Systems, and Computers - Pacific Grove, USA - Oct 27-Oct 30, 2024

Introduction

Contemporary data is becoming heterogeneous and pervasive
 ⇒ Large amounts of data are propelling data-driven methods

Home automation data

River flow data

GNNs are the tool of choice to learn from network data

- \Rightarrow Data is interpreted as signals defined on a graph
- \Rightarrow Harness the graph topology to deal with irregular structure
- GNNs and graph-based methods focus on undirected graphs

The impact of directionality

DAGs are highly structured graphs prevalent across domains

Neural networks

- Directionality plays an important role when processing information
 - \Rightarrow Directed graphs present well-known challenges
- These challenges are exacerbated when dealing with DAGs
 - \Rightarrow Standard architectures fail when learning from DAGs
 - \Rightarrow Lack of cycles results in nilpotent adjacency matrix
 - \Rightarrow Deprives us from a spectral interpretation

Developing GNNs to learn from DAGs is drawing attention

- \Rightarrow D-VAE: autoencoder to obtain embeddings for DAGs [Zhang19]
- \Rightarrow DAGNN: combines sequential message passing with GRU [Thost21]
- \Rightarrow DAG+Transformer: adapt transformer layer for DAGs [Luo23]
- Limitation: complex architectures based on sequential operations
 ⇒ Large computational burden and difficult to interpret/analyze
- Our goal: design a GNN to learn from data defined on DAGs
 - \Rightarrow Simple architecture based on convolution
 - \Rightarrow Use the partial ordering to obtain a stronger inductive bias

Fundamentals of DAGs and GSP

- ▶ DAG $\mathcal{D} = (\mathcal{V}, \mathcal{E})$ the set of N nodes
- \blacktriangleright \mathcal{V} is a partially ordered set
 - \Rightarrow Node j is a *predecessor* of i if j < i
 - \Rightarrow Nodes are not comparable if $i \not\leq j$ and $j \not\leq i$

- ► The adjacency $\mathbf{A} \in \mathbb{R}^{N \times N}$ is strictly lower-triangular $\Rightarrow A_{ij} \neq 0$ if and only if there is an edge from *i* to *j*
- ► Define a graph signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph $\Rightarrow x_i = \text{Signal value at node } i$
- A graph filter is defined as a polynomial H = ∑₀^{R-1} h_r A^r
 ⇒ H allow modeling diffusion processes and graph convolution

- A convolutional GNN is a parametric function $f_{\Theta}(\cdot|\mathbf{A})$
- \blacktriangleright With $\mathbf{X}^{(0)}$ being the input, the output at the ℓ layer is given by

$$\mathbf{X}^{(\ell+1)} = \sigma \left(\sum_{r=0}^{R-1} \mathbf{A}^r \mathbf{X}^{(\ell)} \mathbf{\Theta}_r^{(\ell)} \right)$$

 $\Rightarrow \Theta_r^{(\ell)} \in \mathbb{R}^{F_i^{(\ell)} \times F_o^{(\ell)}} \text{ collects learnable filter coefficients}$ $\Rightarrow \text{Aggregation function driven by graph topology}$

Architecture formed by staking several convolutional layers

$$\mathbf{X}^{(0)} \xrightarrow{\sum_{r=0}^{R-1} \mathbf{A}^r(\cdot) \mathbf{\Theta}_r^{(1)}} \mathbf{X}^{(1)} \xrightarrow{\mathbf{X}^{(L-1)}} \xrightarrow{\sum_{r=0}^{R-1} \mathbf{A}^r(\cdot) \mathbf{\Theta}_r^{(L)}} \mathbf{X}^{(L)}$$

Problem formulation

Problem description

- Given training set $\mathcal{T} = {\{\mathbf{X}_m, \mathbf{y}_m\}_{m=1}^M}$ with input-output observations
 - \Rightarrow Learn the non-linear mapping relating \mathbf{X}_m and \mathbf{y}_m
 - \Rightarrow Assuming it is well-represented by convolutional GNN $f_{\Theta}(\cdot | \mathcal{D})$
- We estimate Θ by minimizing some loss function of interest \mathcal{L} over \mathcal{T}

$$\min_{\Theta} \frac{1}{M} \sum_{m=1}^{M} \mathcal{L}(\mathbf{y}_m, f_{\Theta}(\mathbf{X}_m | \mathcal{D}))$$

Aim and challenges

- Design a GNN with convolution tailored for DAGS
 - \Rightarrow The architecture must account for the partially ordered $\mathcal V$
 - \Rightarrow The architecture must admit a spectral representation

Causal graph signal model

- We compute convolutions over DAGs following the work in [Seifert23]
 ⇒ Principled framework based on causal relations
- ▶ Signal x can be described by causes $\mathbf{c} \in \mathbb{R}^N$ at predecessor nodes as

 $\mathbf{x} = \mathbf{W}\mathbf{c}$

 \Rightarrow **W** $\in \mathbb{R}^{N \times N}$ is the transitive closure of \mathcal{D} with $W_{ij} \neq 0$ if i < j

Causal GSOs and convolution for DAGs

 \blacktriangleright Shifting the signal ${\bf x}$ with respect to node k is given by

$$[\mathbf{T}_k \mathbf{x}]_i = \sum_{j \le i \text{ and } j \le k} W_{ij} c_j \qquad \mathbf{T}_k \mathbf{x} = \mathbf{W} \mathbf{D}_k \mathbf{c} = \mathbf{W} \mathbf{D}_k \mathbf{W}^{-1} \mathbf{x}$$

- \Rightarrow Every node $k \in \mathcal{V}$ induces a causal GSO
- \Rightarrow Diagonal matrix $\mathbf{D}_k \in \{0,1\}^{N \times N}$ with $[\mathbf{D}_k]_{ii} = 1$ if $i \leq k$
- \Rightarrow DAG Fourier Transform \mathbf{W}^{-1} with spectral coefficients \mathbf{c}

• Most general shift-invariant DAG filter **H** is given by $\mathbf{H} = \sum_{k \in \mathcal{V}} h_k \mathbf{T}_k$

DAG Convolutional Network

- **DCN** leverages the definition of the causal filters tailored for DAGs
- The output at the ℓ -th layer is given by

$$\mathbf{x}^{(\ell+1)} = \sigma\left(\sum_{k \in \mathcal{V}} h_k^{(\ell)} \mathbf{T}_k \mathbf{x}^{(\ell)}\right)$$

 \Rightarrow Filter coefficients $h_k^{(\ell)}$ are the learnable parameters

 \Rightarrow Causal GSO account for the DAG topology and partial ordering

► Learning a single filter helps in developing intuition but lacks expressivity ⇒ Instead we can learn a filter bank at each layer

$$\mathbf{X}^{(\ell+1)} = \sigma\left(\sum_{k\in\mathcal{V}}\mathbf{T}_{k}\mathbf{X}^{(\ell)}\boldsymbol{\Theta}_{k}^{(\ell)}\right)$$

 \Rightarrow Learnable coefficients of the filter bank collected in $\Theta_k^{(\ell)}$

 \Rightarrow The causal GSO still drive the convolution

Discussion

Interpretation

- Spectral: recall that $\mathbf{T}_k \mathbf{x}^{(\ell)} = \mathbf{W} \mathbf{D}_k \mathbf{c}^{(\ell)}$
 - \Rightarrow Convolution selects and diffuses causes from predecessors across $\mathcal D$
- Message passing: filter coefficients determine how to mix messages
 - $\Rightarrow \mathbf{T}_k$ forms a message from predecessors common to nodes k and i

Main advantages

- Is a permutation equivariant architecture
- Has a spectral representation thanks to GSOs \mathbf{T}_k
- \mathbf{T}_k has binary eigenvalues avoiding numerical issues

Limitations

- ► The number of learnable parameters grows with the size of the graph
 - \Rightarrow Potential computational and memory limitations
 - \Rightarrow Workaround: approximate convolution as $\sum_{k \in \mathcal{U}} h_k \mathbf{T}_k$ with $\mathcal{U} \subset \mathcal{V}$

Numerical evaluation (I)

We test the performance of DCN over synthetic data in two different tasks:
 > Network diffusion: predict output of a diffusion process given input
 > Source identification: identify source nodes given the output

	Network Diffusion		Source Identification	
	MNSE	Time (s)	Accuracy	Time (s)
DCN	0.016 ± 0.014	3.6	0.052 ± 0.014	7.5
DCN-30	0.029 ± 0.017	3.5	0.052 ± 0.016	7.4
DCN-10	0.058 ± 0.021	3.5	0.055 ± 0.015	7.2
DCN-T	0.098 ± 0.024	4.1	0.991 ± 0.018	8.2
DCN-30-T	0.199 ± 0.030	3.7	0.983 ± 0.032	7.64
DCN-10-T	0.229 ± 0.030	3.5	0.865 ± 0.141	7.38
LS	0.050 ± 0.022	0.4	0.05 ± 0.016	0.36
FB-GCNN	0.091 ± 0.028	3.4	0.739 ± 0.172	7.4
GCN	0.167 ± 0.037	3.3	0.155 ± 0.216	7.1
GAT	0.649 ± 0.089	13.8	0.044 ± 0.081	28.4
GraphSAGE	0.359 ± 0.039	5.9	0.676 ± 0.163	12.5
GIN	0.402 ± 0.079	6.0	0.19 ± 0.163	12.5
MLP	0.353 ± 0.039	2.2	0.050 ± 0.016	4.7

- Classical architectures struggle to learn from data defined on DAGs
- DCN outperforms the alternatives even with approximate convolution
 - \Rightarrow Clear impact of the directionality on each task

Numerical evaluation (II)

Universidad Rey Juan Carlos

Analyze the sensitivity to noise (left) and DAG sparsity (right)

 \Rightarrow In network diffusion and and source identification tasks

- DCN consistently outperforms the alternatives
 - \Rightarrow More resilient to the presence of noise and denser graphs

Conclusions

- ▶ We introduced DCN, a DAG-aware convolutional GNN
 - \Rightarrow Based on learning a bank of causal filters
- Simple architecture based on convolution for DAGs
 - \Rightarrow Stronger inductive bias from DAG partial ordering
 - \Rightarrow The architecture is permutation equivariant
 - \Rightarrow Admits a sprectral interpretation
- Promising performance over synthetic data

Future research directions

- Strengthen the numerical evaluation of DCN
- ▶ Use the spectral representation to characterize the architecture
- Select GSOs in a intelligent way

Questions?

Questions at: samuel.rey.escudero@urjc.es