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Introduction e

» Contemporary data is becoming heterogeneous and pervasive

= Large amounts of data are propelling data-driven methods

Traffic data Home automation data River flow data

» GNNs are the tool of choice to learn from network data
= Data is interpreted as signals defined on a graph
= Harness the graph topology to deal with irregular structure

» GNNs and graph-based methods focus on undirected graphs
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The impact of directionality S

» DAGs are highly structured graphs prevalent across domains
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» Directionality plays an important role when processing information

= Directed graphs present well-known challenges

» These challenges are exacerbated when dealing with DAGs
= Standard architectures fail when learning from DAGs
= Lack of cycles results in nilpotent adjacency matrix

= Deprives us from a spectral interpretation
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Context and goal s

» Developing GNNs to learn from DAGs is drawing attention
= D-VAE: autoencoder to obtain embeddings for DAGs
= DAGNN: combines sequential message passing with GRU
= DAG+Transformer: adapt transformer layer for DAGs

» Limitation: complex architectures based on sequential operations

= Large computational burden and difficult to interpret/analyze

» Our goal: design a GNN to learn from data defined on DAGs
= Simple architecture based on convolution

= Use the partial ordering to obtain a stronger inductive bias
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Fundamentals of DAGs and GSP

» DAG D = (V, &) the set of N nodes
> Vis a partially ordered set
= Node j is a predecessor of i if j <1
= Nodes are not comparable if i £ j and j £

» The adjacency A € RV*N s strictly lower-triangular
= A;j # 0 if and only if there is an edge from i to j

» Define a graph signal x € R on top of the graph

= x; = Signal value at node i

> A graph filter is defined as a polynomial H = S>57" 7, A"
= H allow modeling diffusion processes and graph convolution
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Fundamental of GNNs nvrsand

> A convolutional GNN is a parametric function fg(:|A)

> With X(©) being the input, the output at the ¢ layer is given by

R—1
X+ _ <Z Aer)@g))

r=0

[©) (0) . . .
= O e RFT " *F" collects learnable filter coefficients

= Aggregation function driven by graph topology

» Architecture formed by staking several convolutional layers
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Problem formulation o s

Problem description
> Given training set 7 = {X,,,ym }»_, with input-output observations
= Learn the non-linear mapping relating X,,, and y,,,
= Assuming it is well-represented by convolutional GNN fg(:|D)

» We estimate ® by minimizing some loss function of interest £ over T

| M
Hgﬂﬁ E L(Ym, fo(Xm|D))
m=1

Aim and challenges
» Design a GNN with convolution tailored for DAGS
= The architecture must account for the partially ordered V

= The architecture must admit a spectral representation
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Causal graph signal model Ry e

» We compute convolutions over DAGs following the work in

= Principled framework based on causal relations

» Signal x can be described by causes ¢ € RY at predecessor nodes as
x = Wc

= W e RV*N is the transitive closure of D with IW,; # 0 if i < j

V1 V3 U
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Causal GSOs and convolution for DAGs

> Shifting the signal x with respect to node k is given by

Texli= > Wi T)x = WD c = WD, W™ !x

j<i and j<k

= Every node k € V induces a causal GSO
= Diagonal matrix D;, € {0, 1}V*N with [Dy]; =1ifi <k
= DAG Fourier Transform W~ with spectral coefficients c

» Most general shift-invariant DAG filter H is given by H =37, | /1, T}
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DAG Convolutional Network ReyJan s

> DCN leverages the definition of the causal filters tailored for DAGs

» The output at the ¢-th layer is given by

x(HD = 5 (Z héf)Tkx(l)>

key

= Filter coefficients h,Ef) are the learnable parameters
= Causal GSO account for the DAG topology and partial ordering

V3 'UG U1 V3 Vg
v V3 g V1 . .7,4.. . . N .
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DAG from A DAG from Ty DAG from T4 DAG from T3
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Filtel’ Bank D N : Rey Juan Carlos

» Learning a single filter helps in developing intuition but lacks expressivity

= Instead we can learn a filter bank at each layer

XD =5 (Y Tx06)"
key

= Learnable coefficients of the filter bank collected in @,So

= The causal GSO still drive the convolution

DCN Layer

Ty()0}"
Ts()0}

X0 X1 X(L-1) XL
DCN Layer DCN Layer Xt
cee
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Discussion e

Interpretation
» Spectral: recall that Tyx(*) = WD, c(®

= Convolution selects and diffuses causes from predecessors across D

> Message passing: filter coefficients determine how to mix messages

= T forms a message from predecessors common to nodes k and @

Main advantages
» Is a permutation equivariant architecture
» Has a spectral representation thanks to GSOs T,
» T} has binary eigenvalues avoiding numerical issues

Limitations
» The number of learnable parameters grows with the size of the graph
= Potential computational and memory limitations
= Workaround: approximate convolution as >, -, hx Ty with &/ €V
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Numerical evaluation (1) SR

» We test the performance of DCN over synthetic data in two different tasks:
= Network diffusion: predict output of a diffusion process given input
= Source identification: identify source nodes given the output

Network Diffusion Source Identification

MNSE Time (s) Accuracy Time (s)
DCN 0.016 +0.014 3.6 0.052 +0.014 75
DCN-30 0.029 +0.017 35 0.052 +0.016 7.4
DCN-10 0.058 + 0.021 35 0.055 + 0.015 7.2
DCN-T 0.098 + 0.024 4.1 0.991 +0.018 8.2

DCN-30-T 0.199 £ 0.030 3.7 0.983 + 0.032 7.64
DCN-10-T 0.229 4 0.030 35 0.865 + 0.141 7.38

LS 0.050 £ 0.022 0.4 0.05 £ 0.016 0.36
FB-GCNN 0.091 £0.028 3.4 0.739 £0.172 7.4
GCN 0.167 £ 0.037 33 0.155 £0.216 7.1
GAT 0.649 £ 0.089 13.8 0.044 £ 0.081 28.4
GraphSAGE | 0.359 +0.039 59 0.676 +0.163 125
GIN 0.402 £ 0.079 6.0 0.19 £0.163 125
MLP 0.353 & 0.039 2.2 0.050 & 0.016 4.7

» Classical architectures struggle to learn from data defined on DAGs

» DCN outperforms the alternatives even with approximate convolution
= Clear impact of the directionality on each task
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Numerical evaluation (1)

> Analyze the sensitivity to noise (left) and DAG sparsity (right)

= In network diffusion and and source identification tasks
DCN +FBGNN-5%GraphSAGE
DC

-

© DCN A LS +FBGNN-4
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(b) Edge Probability.

(a) Normalized noise power.

» DCN consistently outperforms the alternatives
= More resilient to the presence of noise and denser graphs
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Conclusions and future works i

Conclusions
» We introduced DCN, a DAG-aware convolutional GNN
= Based on learning a bank of causal filters

» Simple architecture based on convolution for DAGs
= Stronger inductive bias from DAG partial ordering
= The architecture is permutation equivariant
= Admits a sprectral interpretation

» Promising performance over synthetic data

Future research directions
> Strengthen the numerical evaluation of DCN
» Use the spectral representation to characterize the architecture
» Select GSOs in a intelligent way
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Questions? e
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Questions at: samuel.rey.escudero@urjc.es
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