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Introduction

▶ Contemporary data is becoming heterogeneous and pervasive

⇒ Large amounts of data are propelling data-driven methods

Traffic data Home automation data River flow data

▶ GNNs are the tool of choice to learn from network data

⇒ Data is interpreted as signals defined on a graph

⇒ Harness the graph topology to deal with irregular structure

▶ GNNs and graph-based methods focus on undirected graphs
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The impact of directionality

▶ DAGs are highly structured graphs prevalent across domains

Causal inference Bayesian nets. Syntax tree Neural networks

▶ Directionality plays an important role when processing information

⇒ Directed graphs present well-known challenges

▶ These challenges are exacerbated when dealing with DAGs

⇒ Standard architectures fail when learning from DAGs

⇒ Lack of cycles results in nilpotent adjacency matrix

⇒ Deprives us from a spectral interpretation

Samuel Rey Convolutional Learning on Directed Acyclic Graphs 3 / 16



Context and goal

▶ Developing GNNs to learn from DAGs is drawing attention

⇒ D-VAE: autoencoder to obtain embeddings for DAGs [Zhang19]

⇒ DAGNN: combines sequential message passing with GRU [Thost21]

⇒ DAG+Transformer: adapt transformer layer for DAGs [Luo23]

▶ Limitation: complex architectures based on sequential operations

⇒ Large computational burden and difficult to interpret/analyze

▶ Our goal: design a GNN to learn from data defined on DAGs

⇒ Simple architecture based on convolution

⇒ Use the partial ordering to obtain a stronger inductive bias
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Fundamentals of DAGs and GSP

▶ DAG D = (V, E) the set of N nodes

▶ V is a partially ordered set

⇒ Node j is a predecessor of i if j < i

⇒ Nodes are not comparable if i ̸≤ j and j ̸≤ i

▶ The adjacency A ∈ RN×N is strictly lower-triangular

⇒ Aij ̸= 0 if and only if there is an edge from i to j

▶ Define a graph signal x ∈ RN on top of the graph

⇒ xi = Signal value at node i

▶ A graph filter is defined as a polynomial H =
∑R−1

0 hrA
r

⇒ H allow modeling diffusion processes and graph convolution
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Fundamental of GNNs

▶ A convolutional GNN is a parametric function fΘ(·|A)

▶ With X(0) being the input, the output at the ℓ layer is given by

X(ℓ+1) = σ

(
R−1∑
r=0

ArX(ℓ)Θ(ℓ)
r

)

⇒ Θ(ℓ)
r ∈ RF

(ℓ)
i ×F (ℓ)

o collects learnable filter coefficients

⇒ Aggregation function driven by graph topology

▶ Architecture formed by staking several convolutional layers
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Problem formulation

Problem description

▶ Given training set T = {Xm,ym}Mm=1 with input-output observations

⇒ Learn the non-linear mapping relating Xm and ym

⇒ Assuming it is well-represented by convolutional GNN fΘ(·|D)

▶ We estimate Θ by minimizing some loss function of interest L over T

min
Θ

1

M

M∑
m=1

L(ym, fΘ(Xm|D))

Aim and challenges

▶ Design a GNN with convolution tailored for DAGS

⇒ The architecture must account for the partially ordered V
⇒ The architecture must admit a spectral representation
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Causal graph signal model

▶ We compute convolutions over DAGs following the work in [Seifert23]

⇒ Principled framework based on causal relations

▶ Signal x can be described by causes c ∈ RN at predecessor nodes as

x = Wc

⇒ W ∈ RN×N is the transitive closure of D with Wij ̸= 0 if i < j

DAG from A DAG from W
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Causal GSOs and convolution for DAGs

▶ Shifting the signal x with respect to node k is given by

[Tkx]i =
∑

j≤i and j≤k

Wijcj Tkx = WDkc = WDkW
−1x

⇒ Every node k ∈ V induces a causal GSO

⇒ Diagonal matrix Dk ∈ {0, 1}N×N with [Dk]ii = 1 if i ≤ k

⇒ DAG Fourier Transform W−1 with spectral coefficients c

▶ Most general shift-invariant DAG filter H is given by H =
∑

k∈V hkTk

W T1 T4 T5
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DAG Convolutional Network

▶ DCN leverages the definition of the causal filters tailored for DAGs

▶ The output at the ℓ-th layer is given by

x(ℓ+1) = σ

(∑
k∈V

h
(ℓ)
k Tkx

(ℓ)

)

⇒ Filter coefficients h
(ℓ)
k are the learnable parameters

⇒ Causal GSO account for the DAG topology and partial ordering

DAG from A DAG from T1 DAG from T4 DAG from T5

Samuel Rey Convolutional Learning on Directed Acyclic Graphs 10 / 16



Filter Bank DCN

▶ Learning a single filter helps in developing intuition but lacks expressivity

⇒ Instead we can learn a filter bank at each layer

X(ℓ+1) = σ

(∑
k∈V

TkX
(ℓ)Θ

(ℓ)
k

)

⇒ Learnable coefficients of the filter bank collected in Θ
(ℓ)
k

⇒ The causal GSO still drive the convolution

DCN Layer DCN Layer

DCN Layer
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Discussion

Interpretation

▶ Spectral: recall that Tkx
(ℓ) = WDkc

(ℓ)

⇒ Convolution selects and diffuses causes from predecessors across D
▶ Message passing: filter coefficients determine how to mix messages

⇒ Tk forms a message from predecessors common to nodes k and i

Main advantages

▶ Is a permutation equivariant architecture

▶ Has a spectral representation thanks to GSOs Tk

▶ Tk has binary eigenvalues avoiding numerical issues

Limitations

▶ The number of learnable parameters grows with the size of the graph

⇒ Potential computational and memory limitations

⇒ Workaround: approximate convolution as
∑

k∈U hkTk with U ⊂ V
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Numerical evaluation (I)

▶ We test the performance of DCN over synthetic data in two different tasks:

⇒ Network diffusion: predict output of a diffusion process given input

⇒ Source identification: identify source nodes given the output

Network Diffusion Source Identification
MNSE Time (s) Accuracy Time (s)

DCN 0.016± 0.014 3.6 0.052± 0.014 7.5
DCN-30 0.029± 0.017 3.5 0.052± 0.016 7.4
DCN-10 0.058± 0.021 3.5 0.055± 0.015 7.2
DCN-T 0.098± 0.024 4.1 0.991± 0.018 8.2
DCN-30-T 0.199± 0.030 3.7 0.983± 0.032 7.64
DCN-10-T 0.229± 0.030 3.5 0.865± 0.141 7.38
LS 0.050± 0.022 0.4 0.05± 0.016 0.36
FB-GCNN 0.091± 0.028 3.4 0.739± 0.172 7.4
GCN 0.167± 0.037 3.3 0.155± 0.216 7.1
GAT 0.649± 0.089 13.8 0.044± 0.081 28.4
GraphSAGE 0.359± 0.039 5.9 0.676± 0.163 12.5
GIN 0.402± 0.079 6.0 0.19± 0.163 12.5
MLP 0.353± 0.039 2.2 0.050± 0.016 4.7

▶ Classical architectures struggle to learn from data defined on DAGs

▶ DCN outperforms the alternatives even with approximate convolution

⇒ Clear impact of the directionality on each task
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Numerical evaluation (II)

▶ Analyze the sensitivity to noise (left) and DAG sparsity (right)

⇒ In network diffusion and and source identification tasks

▶ DCN consistently outperforms the alternatives

⇒ More resilient to the presence of noise and denser graphs
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Conclusions and future works

Conclusions

▶ We introduced DCN, a DAG-aware convolutional GNN

⇒ Based on learning a bank of causal filters

▶ Simple architecture based on convolution for DAGs

⇒ Stronger inductive bias from DAG partial ordering

⇒ The architecture is permutation equivariant

⇒ Admits a sprectral interpretation

▶ Promising performance over synthetic data

Future research directions

▶ Strengthen the numerical evaluation of DCN

▶ Use the spectral representation to characterize the architecture

▶ Select GSOs in a intelligent way
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Questions?

Questions at: samuel.rey.escudero@urjc.es
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