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Abstract—Machine learning over graphs (MLoG) has attracted
growing attention due to its effectiveness in processing relational
data from complex systems such as social networks, financial
markets, and the brain. However, MLoG algorithms that use the
graph topology for information aggregation have been shown
to amplify the already existing bias towards certain under-
represented groups, often leading to discriminatory results in
downstream tasks. In this context, here we consider the prob-
lem of topology-induced algorithmic bias mitigation by cross-
pollinating tools from MLoG and graph signal processing. Specifi-
cally, we argue that application of a tunable debiasing graph filter
can be reinterpreted as a graph rewiring process, thus offering
an explicit handle to manipulate the utility versus topological
bias tradeoff. Building on this insight, we formulate a fairness-
aware network topology inference problem to obtain a rewired
graph minimizing a correlation-based, unsupervised bias metric.
Node classification experiments on several real-world datasets
demonstrate that the proposed approach typically outperforms
state-of-the-art baselines in terms of fairness metrics, and without
a degradation in classification accuracy.

Index Terms—Fairness, graph neural network, node classifica-
tion, bias mitigation, graph rewiring.

I. INTRODUCTION

Graph theory offers a natural framework to study complex
systems and the pairwise relations between their constituent
components, such as protein interactions in biological net-
works or monetary transactions in financial markets [1]. Ac-
cordingly, effective and scalable learning from increasingly
ubiquitous graph data can impact a gamut of applications in
engineering, commerce, and the biobehavioral sciences [2].
The recent successes of machine learning over graphs (MLoG)
have been well documented [3], [4], but it remains an active
area of research with unique challenges due to e.g., data high-
dimensionality, statistical dependencies, and the intertwining
between graph structure and nodal attributes or features.

Graphs are mathematical constructs consisting of vertices
(or nodes) as well as the edges that connect them. This way
graph edges encode relational patterns, while the graph signal
processing (GSP) perspective is to view nodal attributes as sig-
nals defined on the vertices. Going back to our financial market
example, the cash reserves of each trading institution can be
represented as a graph signal. GSP broadens the conventional
signal processing toolbox [5], [6], introducing e.g., frequency
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analysis, filtering, and sampling of signals on graphs [7]–
[13]. Recent works have shown that workhorse MLoG models
such as graph neural networks (GNNs) can be understood and
improved by leveraging GSP-based insights [14]–[16]. Here,
we fruitfully exploit GSP advances to mitigate bias in MLoG.

Algorithmic bias and fairness in ML. Trustworthy deploy-
ment of ML pipelines in real-world decision systems crucially
requires the consideration of fairness [17, Ch.10]. This work
focuses on group fairness, which measures the performance
gap between sensitive groups (e.g., genders, ethnicities) [18].
For instance, the performance of a fair financial fraud de-
tection algorithm should not depend on the gender, race, or
socio-economic status of the account holders. In this context,
algorithmic bias measures the (generally unwanted) stereotyp-
ical correlations encoded and propagated by ML algorithms
with respect to these sensitive attributes. ML models are
known to propagate the pre-existing bias within the training
data, leading to discriminatory performance in downstream
tasks [19]. This challenge is compounded in MLoG, since
information aggregation over the biased (due to homophily)
graph topology has been demonstrated to amplify biases in
the data [20]. Motivated by this finding, several strategies have
been proposed to mitigate algorithmic bias in MLoG, such as
adversarial regularization [20], [21], fairness constraints [22],
[23], and fairness-aware graph data augmentation [24]–[26].

Proposed approach and contributions. We first introduce an
unsupervised bias metric that captures the stereotypical corre-
lations within the graph topology (Section III-A). Adopting
a fundamentally different perspective on our prior work [27],
[28], in Section III-B we show that interleaving a tunable de-
biasing graph filter between GNN layers can be reintepreted as
a graph rewiring mechanism. This suggests a novel approach
to bias mitigation, where filter design becomes a search over
effective graph topologies driven by fairness-aware optimality
criteria (Section III-C). Under the hood, our rewiring problem
implicitly retains the eigenvectors of the original graph (hence,
the signal representation basis) and optimizes the eigenvalues
to minimize the bias measure. Unlike the fairness-aware filter
designs in [27], [28], the convex formulation here is devoid
of spectral graph decompositions and it allows for explicit
consideration of utility (i.e., accuracy for node classification);
thus offering an explicit handle to flexibly manipulate the
fairness versus utility trade-off. Overall, our contributions are:



i) We formulate a fair network topology inference problem,
which modifies a given graph to minimize a correlation-based
bias measure. This rewiring approach is intrinsically equivalent
to a debiasing graph filter design in the vertex domain. Overall,
our new idea is to explore and exploit the interplay between
signal and edge filtering for topology-induced bias mitigation;
ii) Our method is algorithm- and task-agnostic. It can be used
for different learning models and tasks, which makes it more
versatile than most existing fairness-aware MLoG strategies;
iii) For a given graph, the rewiring algorithm needs to be run
once, independent of GNN training for different tasks; and
iii) Node-classification experiments with several real-world
network datasets showcase the effectiveness of the proposed
method in mitigating bias, while maintaining similar utility
relative to state-of-the-art algorithms; see Section IV.

II. PRELIMINARIES AND PROBLEM STATEMENT

This study develops a graph rewiring approach to mitigate
topological bias in MLoG algorithms. Next, we describe the
setup, provide needed GSP background, and state the problem.

We are given an undirected graph G := (V, E), where V :=
{v1, . . . , vN} stands for the set of nodes and E ⊆ V × V
denotes the set of edges. The topology of G is encoded in the
adjacency matrix A ∈ {0, 1}N×N , where Aij = 1 if and only
if (vi, vj) ∈ E . Extensions to weighted graphs are straight-
forward. Defining D ∈ RN×N as the diagonal degree matrix
where Dii is the degree of vi, then L = IN − D− 1

2AD− 1
2

denotes the normalized graph Laplacian matrix. Nodal features
are given by X ∈ RN×F , whose columns can be viewed as
graph signals. Sensitive attributes are nodal features which
should not affect the output of a fair learning algorithm. We
henceforth consider a single binary sensitive attribute, which
we collect in s ∈ {−1, 1}N . Accordingly, the feature vector
and the sensitive attribute of node vi are denoted by xi ∈ RF

and si ∈ {−1, 1}, respectively. In (semi-supervised) node
classification tasks, vertices may have (e.g., binary) labels yi.
Fourier analysis on graphs. Let the eigendecomposition of
the Laplacian be L = VΛV⊤, where Λ = diag(λ1, . . . , λN )
are the non-negative eigenvalues and the columns of V are the
corresponding Laplacian eigenvectors. Then, the graph Fourier
transform (GFT) of a graph signal z ∈ RN is given by z̃ =
V⊤z, i.e., the projection of z onto the space spanned by the
orthogonal eigenvectors of L [7], [29], [30]. In this transform,
the eigenvalues of the positive semi-definite (PSD) Laplacian
correspond to graph frequencies and they quantify the variation
of the eigenvectors with respect to G; see e.g., [5] for details.
Graph filters. Just like their classical signal processing coun-
terparts, graph filters are used to manipulate graph signals for
e.g., smoothing, denoising [31], [32], and classification [33],
[34]. Given an input signal zin ∈ RN and a graph filter with
frequency response h̃ := [h̃1, . . . , h̃N ]⊤, the filtering operation
is given by (see e.g., [5], [7], [14] and the tutorial [12]):

zout = Vdiag(h̃1, . . . , h̃N )V⊤zin ⇔ z̃out = h̃ ◦ z̃in. (1)

In analogy to the convolution theorem, frequency-domain
filtering boils down to point-wise multiplication (◦) of z̃in =
V⊤zin with the frequency response h̃ of the graph filter.
Network topology inference. Estimating latent graph struc-
ture from nodal observations has a long history [35], [36].
Noteworthy renditions include Gaussian graphical model se-
lection [37], structural equation models [38], signal smooth-
ness minimization [39], [40], or network deconvolution from
spectral templates [41], [42]. However, none of these prior
works take algorithmic bias into consideration.

A. Problem statement
Given G and s, the goal is to minimize a structural bias

metric (see Section III-A) by shaping the spectrum of G.
As elaborated next, our graph rewiring idea is inspired by
a debiasing graph filter design we revisit and reinterpret.

III. TOPOLOGICAL BIAS MITIGATION

A. Topological bias
While algorithmic bias leads to discriminatory ML-based

predictions, it can be even more problematic for models that
exploit graph structure [20]. This topological bias predicament
is rooted in the homophily principle of network formation.
Specifically, edges are more likely to link vertices that have
similar characterics, which leads to denser connectivity within
the group of nodes with the same sensitive attribute [43]. For
example, a social network user is more likely to connect with
others of shared ethnicity. Thus, by aggregating information
from neighbors (mostly with the same sensitive attribute as
the anchor node), the use of graph structure in MLoG leads
to node representations that are highly correlated with the
sensitive attributes. Initial traces of bias in homphilous graphs
are prone to amplification as a result of repeated aggregation
steps used for represention learning in e.g., GNNs – even when
the sensitive attributes are not directly used in training [44].
Bias measure. We adopt ρ := ∥s⊤Â∥1 =

∑
j |s⊤Â:,j | =∑

j |
∑

i siÂij | as a topological bias measure, where Â =

D− 1
2AD− 1

2 is the normalized adjacency matrix of G. This
bias measure captures the linear correlation between the sensi-
tive attributes s and Â, and it is inspired by the above observa-
tion that the connectivity patterns among nodes can be highly
correlated with s. Indeed, this correlation is proportional to
|s⊤Â:,j |, since the jth column of Â specifies the nodes over
which the information will be aggregated for node vj (together
with the corresponding weights). For further insights, consider
an homophilous setting where Âij typically takes on larger
values when node j has the same sensitive attribute as node
i, e.g., sj = si = 1, and smaller otherwise. This leads to
highly-correlated s and Â:,j reflected by a larger |

∑
i siÂij |,

and hence a larger ρ relative to the disassortative case where
weights Aij bear no relation with si and sj .

All in all, to alleviate algorithmic bias in MLoG a graph
shift [45] (or aggregation) operator that is less correlated with
s would be desirable. This conclusion notwithstanding, Â
carries useful information to aid learning so there is a fairness
versus utility trade-off here that we will explore as well.



B. Debiasing graph filter and effective network operator

At the heart of most MLoG approaches are node represen-
tations obtained via local aggregation of information (often
composed with point-wise nonlinearities) [2]. Disregarding
learnable weights that are not essential to our subsequent
argument, in its simplest form the aggregation process over
G is given by R = ÂX, where R denotes the resulting node
representations, and X stands for the input features or node
embeddings from the previous layer; see e.g., [3], [4].

The adoption of a (non-trained) debiasing graph filter
with carefully designed frequency response h̃ was advocated
in [28]. The idea is to filter X prior to aggregation, namely

Rf = ÂXf

= V(IN −Λ)V⊤Xf

= V(IN −Λ)V⊤Vdiag(h̃)V⊤X

= V(IN −Λ)diag(h̃)V⊤X

= AfX,

(2)

where Af := V(IN −Λ)diag(h̃)V⊤ is an effective network
operator. Note that Af and Â share the same eigenbasis V,
and filtering X with h̃ offers N degrees of freedom to shape
the eigenvalue spectrum (hence the edge connectivity pattern)
of Af . This simple, but key observation is the crux to the
graph rewiring approach presented next.

C. Fairness-aware graph rewiring

Capitalizing on the previously revealed interplay between
signal and edge filtering, we formulate the following fair
topology inference problem. Our idea is to solve

Af := argmin
A∈A

{
∥s⊤A∥1 + βr(A, Â)

}
, s.to AÂ = ÂA,

(3)
where the commutation constraint AÂ = ÂA ensures that Â
and Af share the same set of eigenvectors [cf. (2)]. Given s
and Â, we think of the solution Af as a rewired version of the
original graph-shift operator that minimizes the bias measure
ρ(A) = ∥s⊤A∥1. The convex regularization term r(·, ·) is
included to control deviations from Â, and hence account for
utility. Here, we choose r(A, Â) := ∥A − Â∥1,1 and note
that β > 0 is a hyperparameter to adjust the trade-off between
fairness and utility. Finally, A is a convex set that specifies
other desired properties of Af . We consider

A :=
{
A | Aij ≥ 0,A = A⊤, ∥A∥1,1 = ∥Â∥1,1

}
, (4)

requiring the rewired graph operator to: (i) have non-negative
weights; (ii) be symmetric since G is undirected; and (iii)
preserve the total edge weight sum in the given Â.

For the aforementioned choices of r(·, ·) and A, (3) is a
convex optimization problem. In fact, it is a linear program
(LP) and hence it can be solved using off-the-shelf methods.
Once Af is obtained, it can be flexibly used as a surrogate
graph in MLoG frameworks such as GNNs; see Fig. 1.
Remark 1 (Eigendecomposition-free filter design). From
the discussion in Section III-B, it follows that the graph
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Fig. 1: The employment of the graph rewiring module within a
standard two-layer GNN-based learning pipeline as a topology
debiasing operator. Here, El ∈ RN×F

′

represents the hidden
node embeddings output by the lth GNN layer.

rewiring formulation in (3) is equivalent to a fairness-aware
graph filter design to reduce ρ. Unlike [28] that imposes filter
specifications in the graph spectral domain, the implicit design
of this paper does not require computing the GFT basis.
Remark 2 (Choice of A). The convex set A plays a critical
role in the proposed framework. Indeed, for over-constrained
specifications the feasible set might reduce to a singleton,
where Af = Â. A detailed study is omitted due to lack of
space [41], and will be reported in the journal version.

TABLE I: Dataset statistics.

Dataset |S−1| |S1| |Y−1| |Y1| |E|

NBA 228 82 152 158 7115
SPokec-n 49 319 101 267 970
SPokec-z 102 343 118 327 848

IV. EXPERIMENTAL RESULTS

Here we assess the effectiveness of the proposed graph
rewiring mechanism via experiments on various network
datasets. We carry out comparisons with several state-of-the-
art bias mitigation strategies for MLoG.

A. Datasets and experimental setup

Datasets. To evaluate Af , sampled versions of the Pokec
social networks are created and utilized together with the NBA
dataset [20]. The complexity of solving for Af in (3) using
CVX [46] limits rewiring feasibility to small/medium-scale
graphs. For this reason, Pokec networks [20] are clustered
into smaller communities by using greedy modularity max-
imization. The clusters providing the best balance in terms
of different sensitive group/class sizes are employed for the
experiments. For these graphs, the user’s region is utilized as
the sensitive attribute, and the labels for the node classification
task are the binarized working field of the users. The sampled
versions of Pokec-n and Pokec-z are denoted by “SPokec-n”
and “SPokec-z”, respectively. Furthermore, the NBA graph is
built based on the performance statistics and other attributes
(such as, nationality, age, and salary) of 400 NBA players.



TABLE II: Comparative performance evaluation results. Utility and fairness metrics for the NBA and sampled Pokec datasets.

NBA SPokec-n SPokec-z

Accuracy (%) ∆SP (%) ∆EO (%) Accuracy (%) ∆SP (%) ∆EO (%) Accuracy (%) ∆SP (%) ∆EO (%)

GNN 61.72 ± 6.2 9.24 ± 5.2 10.66 ± 11.1 76.57 ± 2.4 10.63 ± 6.2 6.64 ± 4.1 72.79 ± 3.8 3.91 ± 4.6 10.77 ± 5.6

Adversarial [20] 61.94 ± 4.0 4.93 ± 2.3 7.20 ± 7.7 76.57 ± 2.7 8.95 ± 5.8 5.11 ± 2.0 70.63 ± 2.8 9.56 ± 5.6 7.96 ± 7.9

EDITS [26] 65.38 ± 2.8 6.49 ± 4.6 10.31 ± 6.4 75.37 ± 3.0 3.70 ± 3.9 3.10 ± 1.9 71.53 ± 4.8 6.04 ± 4.2 7.63 ± 4.7

h̃fair+ GNN [28] 60.43 ± 6.8 5.89 ± 4.4 10.74 ± 10.5 75.67 ± 1.7 5.43 ± 2.6 4.91 ± 1.8 72.07 ± 3.4 4.14 ± 4.1 7.23 ± 7.8

Af+ GNN 68.39 ± 6.9 3.28 ± 1.6 6.61 ± 4.8 78.51 ± 3.0 6.27 ± 4.1 3.09 ± 2.6 72.97 ± 1.1 3.04 ± 4.5 2.49 ± 3.8

Edges are created based on “follow” relationships among
these players on Twitter. For node classification, the binary
labels are generate based on the player’s salaries, where their
nationalities are utilized as the sensitive attributes. Dataset
statistics are compiled in Table I, where Si and Yi represent
the set of nodes with sensitive attribute and class label i,
respectively. Note that N = |S−1|+ |S1| = |Y−1|+ |Y1|.
Evaluation metrics. Utility is reported in terms of node
classification accuracy. Two widely adopted group-fairness
metrics are reported as well, namely statistical parity: ∆SP =
|P (ŷ = 1 | s = −1) − P (ŷ = 1 | s = 1)| and equal
opportunity: ∆EO = |P (ŷ = 1 | y = 1, s = −1) − P (ŷ =
1 | y = 1, s = 1)|, where y denotes the ground truth
label, and ŷ represents the predicted label. Here, statistical
parity quantifies the decoupling of positive rate from the
sensitive attribute, and equal opportunity measures the level
of the independence of true positive rate from the sensitive
attribute. Lower values of ∆SP and ∆EO are desirable for
better fairness performance [20].
Implementation details. Node classification is used to eval-
uate the effectiveness of the proposed graph rewiring mecha-
nism, where Af is input to GNN layers as the graph structure
in a two-layer graph convolutional network (GCN) [4], see
Fig. 1. The weights of the GNN model are initialized utilizing
Glorot [47], and trained for 400 epochs by employing Adam
optimizer [48] together with a learning rate of 0.0005 and ℓ2
weight decay factor of 10−5. Hidden dimension of the node
representations is selected as 128 on all datasets. The model is
trained over 40% of the vertices, while the remaining nodes are
evenly split onto validation and test sets. The hyperparameter
β is selected as 0.00, 0.01, and 0.00 for SPokec-z, SPokec-
n, and NBA graphs, respectively, via grid search among the
values {0.00, 0.01, 0.1, 1.0}. For all experiments, results are
obtained for five random data splits, and their average along
with the standard deviations are reported.
Baselines. We also report the results for several fairness-aware
baselines: adversarial regularization [20], EDITS [26], and
fair graph filter h̃fair [28]. Adversarial regularization is a
widely utilized bias mitigation technique, where an adversary
is trained to predict the sensitive attributes. For adversarial
regularization, the regularization parameter is tuned via a grid
search over {0.1, 1, 10, 100, 1000} (the weight of the classifi-
cation loss is 1). In addition, EDITS [26] is a model-agnostic
debiasing strategy that alleviates the bias in attributed networks
before they are input to any MLoG framework. Specifically,

it provides debiased versions of the nodal attributes and the
graph topology, which are then fed to the GCN network
used here for node classification. For EDITS, the threshold
proportion used to sparsify the debiased topology is tuned
among the values {0.015, 0.02, 0.06, 0.29}, where these values
are suggested for other datasets in [26]. Finally, the fair graph
filter h̃fair is designed offline, and then used to process the
inputs to each GNN layer as suggested in [28].

B. Results and discussion

GNN-based node classification results are tabulated in Table
II. The natural (fairness-agnostic) baseline is to employ the
exact same GNN model but with the original graph Â, which
is denoted as GNN. Furthermore, Adversarial, EDITS, and
h̃fair+ GNN in Table II correspond to the fairness-aware
baselines: adversarial regularization [20], EDITS [26], and
fair filter design in [28], respectively. Results in Table II
demonstrate that a GNN using Af typically achieves the best
fairness performance relative to state-of-the-art fairness-aware
baselines. While EDITS [26] leads to better/similar fairness
measures on SPokec-n, this fairness improvement is accom-
panied by a drop in utility. Furthermore, our results show that
graph rewiring always achieves the best classification accuracy,
although it is mainly designed for bias attenuation. This
utility gain can be attributed to the denser connectivity in Af

compared to Â, which leads to more powerful representations
but at the price of higher computational complexity for the
message passing operation. Overall, results corroborate the
effectiveness of our novel approach in mitigating topological
bias, while also providing better utility metrics relative to both
fairness-agnostic and fairness-aware baselines.

V. CONCLUSION

We developed a fairness-aware edge rewiring strategy whose
graph output can be flexibly employed in several MLoG
pipelines. Our formulation is inspired by a debiasing signal fil-
tering approach, which we reinterpret as a topology inference
(or edge filtering) problem to minimize a well-grounded bias
criterion. Node classification experiments on real-world net-
works demonstrate our novel scheme results in better fairness
together with better utility relative to state-of-the-art baselines.
Exciting future directions in this space include custom-made
scalable algorithms and exploring nonlinear relations between
sensitive attributes and the graph topology as a bias measure.
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“Graph signal processing: Overview, challenges, and applications,” Proc.
IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[6] G. Leus, A. G. Marques, J. M. Moura, A. Ortega, and D. I. Shuman,
“Graph signal processing: History, development, impact, and outlook,”
IEEE Signal Process. Mag., vol. 40, no. 4, pp. 49–60, 2023.

[7] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, 2013.

[8] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs,”
IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656, 2013.

[9] R. Shafipour, A. Khodabakhsh, G. Mateos, and E. Nikolova, “Digraph
Fourier transform via spectral dispersion minimization,” in Proc. Int.
Conf. Acoustics, Speech, Signal Process., 2018, pp. 6284–6288.

[10] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph
processes and spectral estimation,” IEEE Trans. Signal Process., vol. 65,
no. 22, pp. 5911–5926, 2017.

[11] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive moving
average graph filtering,” IEEE Trans. Signal Process., vol. 65, no. 2, pp.
274–288, 2016.

[12] E. Isufi, F. Gama, D. I. Shuman, and S. Segarra, “Graph filters for
signal processing and machine learning on graphs,” arXiv preprint
arXiv:2211.08854, 2022.

[13] D. Romero, M. Ma, and G. B. Giannakis, “Kernel-based reconstruction
of graph signals,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 764–
778, 2016.

[14] F. Gama, E. Isufi, G. Leus, and A. Ribeiro, “Graphs, convolutions, and
neural networks: From graph filters to graph neural networks,” IEEE
Signal Process. Mag., vol. 37, no. 6, pp. 128–138, 2020.

[15] F. Gama, J. Bruna, and A. Ribeiro, “Stability properties of graph neural
networks,” IEEE Trans. Signal Process., vol. 68, pp. 5680–5695, 2020.

[16] X. Dong, D. Thanou, L. Toni, M. Bronstein, and P. Frossard, “Graph
signal processing for machine learning: A review and new perspectives,”
IEEE Signal Process. Mag., no. 6, pp. 117–127, 2020.

[17] K. R. Varshney, Trustworthy Machine Learning. Chappaqua, NY, USA:
Independently Published, 2022.

[18] D. Pedreshi, S. Ruggieri, and F. Turini, “Discrimination-aware data
mining,” in Proc. Int. Conf. Knowledge Discovery and Data Mining
(KDD), 2008, pp. 560–568.

[19] A. Beutel, J. Chen, Z. Zhao, and E. H. Chi, “Data decisions and
theoretical implications when adversarially learning fair representations,”
in Fairness, Accountability, and Transparency in Machine Learning
Workshop (FAT/ML), 2017, pp. 1–5.

[20] E. Dai and S. Wang, “Say no to the discrimination: Learning fair graph
neural networks with limited sensitive attribute information,” in Proc.
ACM Int. Conf. on Web Search and Data Mining (WSDM), March 2021,
pp. 680–688.

[21] A. Bose and W. Hamilton, “Compositional fairness constraints for graph
embeddings,” in Proc. Int. Conf. Mach. Learn. (ICML), 2019, pp. 715–
724.

[22] M. Buyl and T. D. Bie, “The KL-divergence between a graph model and
its fair I-projection as a fairness regularizer,” in Proc. Joint European
Conf. on Machine Learning and Knowledge Discovery in Databases.
Springer, 2021, pp. 351–366.

[23] O. D. Kose and Y. Shen, “Fast&Fair: Training acceleration and bias
mitigation for GNNs,” Trans. Mach. Learn. Res., pp. 1–25, 2023.

[24] ——, “Fair contrastive learning on graphs,” IEEE Trans. Signal Inf.
Process. Netw., vol. 8, pp. 475–488, 2022.

[25] I. Spinelli, S. Scardapane, A. Hussain, and A. Uncini, “Fairdrop: Biased
edge dropout for enhancing fairness in graph representation learning,”
IEEE Trans. Artificial Intell., vol. 3, no. 3, pp. 344–354, 2021.

[26] Y. Dong, N. Liu, B. Jalaian, and J. Li, “EDITS: Modeling and mitigating
data bias for graph neural networks,” in Proc. ACM Web Conference,
2022, pp. 1259–1269.

[27] O. D. Kose, Y. Shen, and G. Mateos, “Fairness-aware graph filter
design,” in Proc. Asilomar Conf. on Signals, Systems, Computers, 2023;
see also arXiv:2303.11459 [cs.LG], pp. 1–6.

[28] O. D. Kose, G. Mateos, and Y. Shen, “Fairness-aware optimal graph
filter design,” IEEE J. Sel. Topics Signal Process., pp. 1–13, 2024 (Early
Access).

[29] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on
graphs via spectral graph theory,” Appl. Comput. Harmon. Anal., vol. 30,
no. 2, pp. 129–150, 2011.

[30] F. R. Chung and F. C. Graham, Spectral Graph Theory. American
Mathematical Soc., 1997, vol. 92.

[31] F. Zhang and E. R. Hancock, “Graph spectral image smoothing using the
heat kernel,” Pattern Recognit., vol. 41, no. 11, pp. 3328–3342, 2008.

[32] D. I. Shuman, P. Vandergheynst, and P. Frossard, “Chebyshev poly-
nomial approximation for distributed signal processing,” in Int. Conf.
on Distributed Computing in Sensor Systems and Workshops (DCOSS),
2011, pp. 1–8.

[33] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning
using Gaussian fields and harmonic functions,” in Proc. Int. Conf. Mach.
Learn. (ICML), 2003, pp. 912–919.

[34] M. Belkin and P. Niyogi, “Semi-supervised learning on Riemannian
manifolds,” Mach. Learn., vol. 56, no. 1, pp. 209–239, 2004.

[35] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, “Connecting the
dots: Identifying network structure via graph signal processing,” IEEE
Signal Process. Mag., vol. 36, no. 3, pp. 16–43, 2019.

[36] G. B. Giannakis, Y. Shen, and G. V. Karanikolas, “Topology identi-
fication and learning over graphs: Accounting for nonlinearities and
dynamics,” Proc. IEEE, vol. 106, no. 5, pp. 787–807, 2018.

[37] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance
estimation with the graphical lasso,” Biostatistics, vol. 9, no. 3, pp. 432–
441, 2008.

[38] B. Baingana, G. Mateos, and G. B. Giannakis, “Proximal-gradient
algorithms for tracking cascades over social networks,” IEEE J. Sel.
Topics Signal Process., vol. 8, no. 4, pp. 563–575, 2014.

[39] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning
Laplacian matrix in smooth graph signal representations,” IEEE Trans.
Signal Process., vol. 64, no. 23, pp. 6160–6173, 2016.

[40] V. Kalofolias, “How to learn a graph from smooth signals,” in Proc. Int.
Conf. Artif. Intell. Statist. (AISTATS), 2016.

[41] S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, “Network
topology inference from spectral templates,” IEEE Trans. Signal Inf.
Process. Netw., vol. 3, no. 3, pp. 467–483, 2017.

[42] B. Pasdeloup, V. Gripon, G. Mercier, D. Pastor, and M. G. Rabbat,
“Characterization and inference of graph diffusion processes from ob-
servations of stationary signals,” IEEE Trans. Signal Inf. Process. Netw.,
vol. 4, no. 3, pp. 481–496, 2017.

[43] B. Hofstra, R. Corten, F. Van Tubergen, and N. B. Ellison, “Sources of
segregation in social networks: A novel approach using Facebook,” Am.
Sociol. Rev., vol. 82, no. 3, pp. 625–656, 2017.

[44] S. Hajian and J. Domingo-Ferrer, “A methodology for direct and indirect
discrimination prevention in data mining,” IEEE Trans. Knowl. Data
Eng., vol. 25, no. 7, pp. 1445–1459, July 2013.

[45] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs:
Frequency analysis,” IEEE Trans. Signal Process., vol. 62, no. 12, pp.
3042–3054, 2014.

[46] S. Diamond and S. Boyd, “Cvxpy: A python-embedded modeling
language for convex optimization,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 2909–2913, 2016.

[47] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. Int. Conf. Artif. Intell. Statist.
(AISTATS), May 2010, pp. 249–256.

[48] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations (ICLR), 2015.


