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o Context: Information from graph-structured data is of interest in applications
such as network neuroscience, traffic networks, power grid networks, among others

[1] Xiaolu Wang, Chaorui Yao, and Anthony Man-Cho So. “A Linearly Convergent Optimization Framework for Learning Graphs From Smooth Signals”. In: IEEE Trans. Signal
Inf. Process. Netw. 9 (2023), pp. 490-504.
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o Context: Information from graph-structured data is of interest in applications
such as network neuroscience, traffic networks, power grid networks, among others

o Idea: Formulate an ADMM-based method for online identification of dynamic
networks from streaming signals

e Motivation: Proximal ADMM (PADMM) exhibits local linear convergence (fast
graph learning) in batch settings(!], do benefits carry over online?

[1] Xiaolu Wang, Chaorui Yao, and Anthony Man-Cho So. “A Linearly Convergent Optimization Framework for Learning Graphs From Smooth Signals”. In: IEEE Trans. Signal
Inf. Process. Netw. 9 (2023), pp. 490-504.
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Graph learning from smooth signals

Problem statement

Estimate the undirected graph G (V, &, W) given the network measurements X =
{x(k)} (smooth on G), with a potentially time-varying weight matrix W.

[2] Vassilis Kalofolias. “How to Learn a Graph from Smooth Signals". In: Proc. Int. Conf. Artif. Intell. Statist. 2016, pp. 920-929.
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Graph learning from smooth signals

Problem statement

Estimate the undirected graph G (V, &, W) given the network measurements X =
{x(k)} (smooth on G), with a potentially time-varying weight matrix W.

o Distance matrix: Z;; = ||X;. — X;.[3, (i,j) € V
o Total variation of signal x: TV(x) := x' Lx (Laplacian: L = D — W)
@ Sparsity and smoothness are linked: ZtT:l TV (x(t)) =tr (XTLX) = 3 |[Wo Z|,

Graph learning problem!?

Jmin[ZOWI — al] log (W) + 5 w2

eRan

subject to diag (W) =0,,W; =W;; >0,/ #

[2] Vassilis Kalofolias. “How to Learn a Graph from Smooth Signals". In: Proc. Int. Conf. Artif. Intell. Statist. 2016, pp. 920-929.
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@ Variable-splitting constraint: Sw — v

WG&'&R,, f(w) +g(v) @ v: vector of nodal degrees
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Batch graph learning via PADMM

. -1
Reformulated problem o w=vecftriu(W)] €R", r = n(nz )
@ Variable-splitting constraint: Sw — v

WG&'&R,, f(w) +g(v) @ v: vector of nodal degrees

subject to Sw —v =10 o f(w)=2z"w+8 Hng + Lw>0
o g(v) =—alllog(v)

o Lo (w,v,2) =L, (w,v, ) +3 [|w —w k)HG 3 [lv = v H2H
@ Proximity terms use the following matrices:

G=m'1-pS'S  H=(r;'=p)l



PADMM updates

@ Parameters: 0 < 711 < % 1S]l,, 0 <™ < %

PADMM iteration

wlktl) = arg min ENp (w,v(k),)\(k)>
weR"

v — arg min ENP (w(k+1),v,)\(k))
veR?

A+ — 20 (sw(k+1) _ V(k+1)>

e PADMM enjoys local linear convergencel3.

[3] Xiaolu Wang, Chaorui Yao, and Anthony Man-Cho So. “A Linearly Convergent Optimization Framework for Learning Graphs From Smooth Signals”. In: IEEE Trans. Signal
Inf. Process. Netw. 9 (2023), pp. 490-504.



PADMM updates
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PADMM iteration
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PADMM updates

e Parameters: 0 < 71 < % 1S]l,, 0 <™ < %

PADMM iteration

wiktD) = arg min £~p (w,v(k),)\(k)>
welR”

Auxiliary variable update

k
v v ISW(kH) NG /\”]
p

v = arg min ENP (w(k+1),v,)\(k))

veR? = =2
2V 40l
V(k+1) _ VvV + v© + T2

AFD) — 200 4 (Sw(k+1) _ v(k+1)> 5

o PADMM enjoys local linear convergencel3).

[3] Xiaolu Wang, Chaorui Yao, and Anthony Man-Cho So. “A Linearly Convergent Optimization Framework for Learning Graphs From Smooth Signals”. In: IEEE Trans. Signal
Inf. Process. Netw. 9 (2023), pp. 490-504.
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OPADMM: Algorithm outline

Input: S; z(k), reg. hyp. a and 3; PADMM hyp. p, 71 and 7; w(©, y(0) and A(©)
Output: Tracking solution available w(k)
for k=1,2,... do

Update ~(K)
Zy:p < (1 - ’Y(k)) Zy.4—1 + fy(k)i(k)

W wk-D — 78T (Sw(k_l) — k) 4 #)

w() — 5d s max (W — 271214, 0,)
Vi (L4 pr2) v — prpSw) 4 mpalkh)
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Output: Tracking solution available w(k)
for k=1,2,... do

Update ~()

Zy:p < (1 - ’Y(k)) Zy.4—1 + fy(k)i(k)

W wk D) 8T (sw<k—1> — kD) Q)

(k) . 1 =
Wi o oy max (W — 27121, 0y) Standard PADMM iteration

V (14 pr2) vk — prySwk) 4 (k=) Only one iteration is run per
time instant k

v 1 (v+ V24 472041")

A A=) 4 (Sw) — (k)

end



OPADMM: Algorithm outline

Input: S; z(k), reg. hyp. a and 3; PADMM hyp. p, 71 and 7; w(©, y(0) and A(©)
Output: Tracking solution available w(k)

for k=1,2,... do Online Adaptation
Update (K K _ 1 stationary graphs
214 — (1 _ y(k)) 21.4-1 +7RzK) 2 x 1073 time-varying graphs

W wk D) 8T (sw<k—1> — kD) #)

w() — 5d s max (W — 271214, 0,)
Vi (L4 pr2) v — prpSw) 4 mpalkh)
vk 1 (v+ v+ 4Tza1n>

AR 2D 1) (Swlk) — ()

end



OPADMM: Analysis

@ Tracking: Proximity terms on w and v apply temporal-variation regularization

[4] Huahua Wang and Arindam Banerjee. “Online Alternating Direction Method". In: Proc. Int. Conf. Mach. Learn. Edinburgh, Scotland, 2012, 1699-1706.
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OPADMM: Analysis

Tracking: Proximity terms on w and v apply temporal-variation regularization
= This allows OPADMM to yield enhanced tracking capabilities

. . . _ n(n-1)
Computational cost per iteration: O(r), r = =5

Online efficiency: Memory storage and computation cost do not increase

Convergence guarantees: OPADMM achieves a sublinear static regret!*!

[4] Huahua Wang and Arindam Banerjee. “Online Alternating Direction Method". In: Proc. Int. Conf. Mach. Learn. Edinburgh, Scotland, 2012, 1699-1706.
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Experiments settings

@ Tech. details: MATLAB R2023b, Intel i7-7700HQ CPU @ 2.8 GHz, 8 GB RAM
o Reg. hyperparameters: o and 5 chosen by grid search on batch graph learning
o OPADMM hyperparameters: p, 7 and 7> chosen by grid search
o Suboptimality (tracking error): ||w(¥) — W&/,
o Methods: Online PGP, online DPGI®l, OPADMM (proposed)
o Data: Computer-simulated graphs and real world data
[lfgzieyed Saman Saboksayr, Gonzalo Mateos, and Mujdat Cetin. “Online Graph Learning under Smoothness Priors”. In: Proc. of European Signal Process. Conf. 2021, pp. 1820~
L6g ?E)ée,d Saman Saboksayr and Gonzalo Mateos. “Dual-Based Online Learning of Dynamic Network Topologies”. In: Proc. Int. Conf. Acoustics, Speech, Signal Process. 2023,



Results: Computer-simulated stationary graphs

K\\ e : TSN
' —— ) i e Sy ) o
20 . 2 ' N : N ]
N | o S
S ! E ! &
—onine PG online —oniine PG
40! {——online DPG| " H|——online DPX [—online DPG|
—oraomM | —oPaDMM
20 400 600 800 1000 200 400 600 800 1000 ° 20 400 600 800 1000
[ K [
(a) Gaussian (b) ER (c) PA

@ 1000 signals corrupted with Gaussian noise (i = 0, 0> = 0.01), 100 nodes
@ We used three random models:

= Gaussian: threshold 0.8, scale 0.2

= Erdds-Rényi (ER): edge probability 0.1

= P. attachment (PA): 2 initial nodes

o OPADMM outperforms both DPG and DPG in convergence speed

10/15



Results: Computer-simulated dynamic graphs
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2000 signals corrupted with Gaussian noise (= 0, o2 = 0.01), 100 nodes
Piecewise-stationary graphs (10% of edges resampled after 1000 samples)
Dynamic graphs use same models and parameters as stationary graphs

OPADMM adapts better to abrupt topology changes

11/15



Results: Real-world data
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o Datasets from the SuiteSparse Matrix Collectionl’:

= Structural engineering data: meshlel (48 nodes)
= Power network data: bcspwr03 (118 nodes)
= Thermal network data: Ishp_265 (265 nodes)

@ 1000 synthetic smooth signals corrupted with Gaussian noise (1 = 0, o2 = 0.01)
o OPADMM vyields a faster convergence than online PG and online DPG

[7] Timothy A. Davis and Yifan Hu. “The University of Florida Sparse Matrix Collection”. In: ACM Trans. Math. Softw. 38.1 (Dec. 2011).
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Concluding remarks

We propose OPADMM, an efficient online method for graph learning

It excels at tracking due to temporal-variation regularization in topology updates
OPADMM exhibits sublinear static regret under simplifying assumptions

It outperforms state-of-the-art online algorithms in synthetic tests

OPADMM s effective in both stationary and dynamic settings
= Robust performance on real-world datasets

13/15



Thank youl!
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