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Overview

Context: Information from graph-structured data is of interest in applications
such as network neuroscience, traffic networks, power grid networks, among others

Idea: Formulate an ADMM-based method for online identification of dynamic
networks from streaming signals

Motivation: Proximal ADMM (PADMM) exhibits local linear convergence (fast
graph learning) in batch settings[1], do benefits carry over online?

[1] Xiaolu Wang, Chaorui Yao, and Anthony Man-Cho So. “A Linearly Convergent Optimization Framework for Learning Graphs From Smooth Signals”. In: IEEE Trans. Signal
Inf. Process. Netw. 9 (2023), pp. 490–504.
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Graph learning from smooth signals

Problem statement

Estimate the undirected graph G (V, E ,W) given the network measurements X ={
x(k)

}
(smooth on G), with a potentially time-varying weight matrix W.

Distance matrix: Zij = ∥Xi ,: − Xj ,:∥22, (i , j) ∈ V
Total variation of signal x: TV(x) := x⊤Lx (Laplacian: L = D−W)

Sparsity and smoothness are linked:
∑T

t=1 TV
(
x(t)

)
= tr

(
X⊤LX

)
= 1

2 ∥W ⊙ Z∥1
Graph learning problem[2]

min
W∈Rn×n

∥Z⊙W∥1,1 − α1⊤n log (W1n) +
β

2
∥W∥2F

subject to diag (W) = 0n,Wij = Wji ≥ 0, i ̸= j

[2] Vassilis Kalofolias. “How to Learn a Graph from Smooth Signals”. In: Proc. Int. Conf. Artif. Intell. Statist. 2016, pp. 920–929.
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Batch graph learning via PADMM

Reformulated problem

min
w∈Rr ,v∈Rn

f (w) + g (v)

subject to Sw − v = 0

w = vec [triu(W )] ∈ Rr , r = n(n−1)
2

Variable-splitting constraint: Sw − v

v: vector of nodal degrees

f (w) = 2z⊤w + β ∥w∥22 + ιw≥0

g (v) = −α1⊤log (v)

Lρ (w, v,λλλ) = f (w) + g (v) + λλλ⊤ (Sw − v) + ρ
2 ∥Sw − v∥22

Proximity terms use the following matrices:

G = τ−1
1 I− ρS⊤S H =

(
τ−1
2 − ρ

)
I
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PADMM updates

Parameters: 0 < τ1 <
1
ρ ∥S∥2, 0 < τ2 <

1
ρ

PADMM iteration

w(k+1) = argmin
w∈Rr

L̃ρ
(
w, v(k),λλλ(k)

)
v(k+1) = argmin

v∈Rn
L̃ρ

(
w(k+1), v,λλλ(k)

)
λλλ(k+1) = λλλ(k) + ρ

(
Sw(k+1) − v(k+1)

)
PADMM enjoys local linear convergence[3].

[3] Xiaolu Wang, Chaorui Yao, and Anthony Man-Cho So. “A Linearly Convergent Optimization Framework for Learning Graphs From Smooth Signals”. In: IEEE Trans. Signal
Inf. Process. Netw. 9 (2023), pp. 490–504.
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w = w(k) − ρτ1S
⊤

[
Sw(k) − v(k) +

λλλ(k)

ρ

]
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w − 2τ1z

2τ1β + 1
, 0
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OPADMM: Algorithm outline

Input: S; z(k); reg. hyp. α and β; PADMM hyp. ρ, τ1 and τ2; w(0), v(0) and λλλ(0)

Output: Tracking solution available w(k)

for k = 1, 2, . . . do

Update γ(k)

z1:k ←
(
1− γ(k)

)
z1:k−1 + γ(k)z(k)

w← w(k−1) − τ1ρS⊤
(
Sw(k−1) − v(k−1) + λλλ(k−1)

ρ

)
w(k) ← 1

2τ1β+1 max (w − 2τ1z1:k , 0r )

v← (1 + ρτ2) v(k−1) − ρτ2Sw(k) + τ2λλλ
(k−1)

v(k) ← 1
2

(
v +

√
v2 + 4τ2α1n

)
λλλ(k) ← λλλ(k−1) + ρ

(
Sw(k) − v(k)

)
end
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Standard PADMM iteration
Only one iteration is run per

time instant k
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Online Adaptation

γ(k) =

{
1
k stationary graphs

2× 10−3 time-varying graphs



OPADMM: Analysis

Tracking: Proximity terms on w and v apply temporal-variation regularization

⇒ This allows OPADMM to yield enhanced tracking capabilities

Computational cost per iteration: O(r), r = n(n−1)
2

Online efficiency: Memory storage and computation cost do not increase

Convergence guarantees: OPADMM achieves a sublinear static regret[4]

[4] Huahua Wang and Arindam Banerjee. “Online Alternating Direction Method”. In: Proc. Int. Conf. Mach. Learn. Edinburgh, Scotland, 2012, 1699–1706.
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Experiments settings

Tech. details: MATLAB R2023b, Intel i7-7700HQ CPU @ 2.8 GHz, 8 GB RAM

Reg. hyperparameters: α and β chosen by grid search on batch graph learning

OPADMM hyperparameters: ρ, τ1 and τ2 chosen by grid search

Suboptimality (tracking error):
∥∥w(k) − ŵ

∥∥
2

Methods: Online PG[5], online DPG[6], OPADMM (proposed)

Data: Computer-simulated graphs and real world data

[5] Seyed Saman Saboksayr, Gonzalo Mateos, and Mujdat Cetin. “Online Graph Learning under Smoothness Priors”. In: Proc. of European Signal Process. Conf. 2021, pp. 1820–
1824.

[6] Seyed Saman Saboksayr and Gonzalo Mateos. “Dual-Based Online Learning of Dynamic Network Topologies”. In: Proc. Int. Conf. Acoustics, Speech, Signal Process. 2023,
pp. 1–5.
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Results: Computer-simulated stationary graphs

(a) Gaussian (b) ER (c) PA

1000 signals corrupted with Gaussian noise (µ = 0, σ2 = 0.01), 100 nodes

We used three random models:

⇒ Gaussian: threshold 0.8, scale 0.2
⇒ Erdös-Rényi (ER): edge probability 0.1
⇒ P. attachment (PA): 2 initial nodes

OPADMM outperforms both DPG and DPG in convergence speed

10 / 15



Results: Computer-simulated dynamic graphs

(a) Gaussian (b) ER (c) PA

2000 signals corrupted with Gaussian noise (µ = 0, σ2 = 0.01), 100 nodes

Piecewise-stationary graphs (10% of edges resampled after 1000 samples)

Dynamic graphs use same models and parameters as stationary graphs

OPADMM adapts better to abrupt topology changes
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Results: Real-world data

(a) mesh1e1 (b) bcspwr03 (c) lshp 265

Datasets from the SuiteSparse Matrix Collection[7]:

⇒ Structural engineering data: mesh1e1 (48 nodes)
⇒ Power network data: bcspwr03 (118 nodes)
⇒ Thermal network data: lshp 265 (265 nodes)

1000 synthetic smooth signals corrupted with Gaussian noise (µ = 0, σ2 = 0.01)

OPADMM yields a faster convergence than online PG and online DPG

[7] Timothy A. Davis and Yifan Hu. “The University of Florida Sparse Matrix Collection”. In: ACM Trans. Math. Softw. 38.1 (Dec. 2011).
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Concluding remarks

We propose OPADMM, an efficient online method for graph learning

It excels at tracking due to temporal-variation regularization in topology updates

OPADMM exhibits sublinear static regret under simplifying assumptions

It outperforms state-of-the-art online algorithms in synthetic tests

OPADMM is effective in both stationary and dynamic settings

⇒ Robust performance on real-world datasets
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Thank you!
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