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Abstract—In its most basic form, the Random Dot Product
Graph (RDPG) model assigns a low-dimensional vector to each
vertex, and postulates that an edge between any two nodes
exists with probability given by the inner product of said
vectors. Recently, this latent position model has been extended to
account for weighted graphs (the so-called Weighted (W-)RDPG),
now embedding each node with a sequence of vectors. For a
given node pair, the inner product between the k-th elements
of the respective sequences specifies the k-th moment of the
edge weight’s distribution. However, graphs adhering to this
nonparametric W-RDPG model are constrained to be undirected
and homophilic (i.e., the adjacency matrix must be positive semi-
definite in expectation). In this work, we extend the model’s
expressivity by proposing a variant for directed graphs, which
may also include heterophilic nodes. To this end, we endow
each vertex with two sequences, respectively modeling the node’s
incoming and outgoing connectivity behavior. We propose an
embedding algorithm to estimate the latent nodal sequences from
an observed adjacency matrix, and also discuss graph generation
when the latent positions are given. The effectiveness of the
novel weighted and directed (WD-)RDPG model is illustrated via
several test cases, including both synthetic and real-life networks.

Index Terms—graph representation learning, node embed-
dings, directed graphs, weigthed graphs, graph generation.

I. INTRODUCTION

The Random Dot Product Graph (RDPG) model has
emerged as a popular latent position model for the analysis
and generation of undirected and unweighted network graphs.
In this model each node i ∈ {1, 2, . . . , N} is associated
to a latent vector xi ∈ Rd (which is unobserved and may
be interpreted as an embedding, tipically d ≪ N ), and the
probability of existence of an edge (i, j) between nodes i
and j is the inner product between xi and xj . In other
words, the entry Aij of the symmetrix adjacency matrix
A ∈ {0, 1}N×N has a Bernoulli(x⊤

i xj) distribution. For
X = [x1, . . . ,xN ]⊤ ∈ RN×d, the outer product XX⊤ is an
N ×N matrix collecting all edge formation probabilities.

The widespread adoption of this model resides in its sim-
plicity and interpretability, without compromising expressive
power. For instance, Erdös-Rényi (ER) or Stochastic Block
Models (SBMs) graphs, as well as other more sophisticated
models can be seen as particular cases of RDPG; see e.g., [1].

This work was partially funded by CSIC (I+D project 22520220100076UD)
and ANII (FCE-1-2023-1-176172).

With regards to interpretability, since the connection probabil-
ity is given by the inner product of the embeddings, the affinity
between the corresponding nodes is directly captured by their
alignment. For d ≤ 3, we may rely on visual inspection of the
vector representations to identify similar nodes. In general, we
may screen for community structure, or, carry out angle-based
clustering of nodes in latent space [2], [3].

This “vanilla” RDPG model, however, presents certain
shortcomings. Most germane to the contributions in this pa-
per, it can only describe graphs which are undirected, un-
weighted, and homophilic (meaning the adjacency matrix must
be positive semi-definite (PSD) in expectation, cf. E [A] =
XX⊤). Generalizations have been proposed to tackle some
of these limitations individually, for instance the Generalized
(G)RDPG [4], or the Weighted (W-)RPDG [5].

Here we propose a more general model to account for
weighted and directed (di)graphs, allowing also for het-
erophilic relations [6]. We model the first k moments of
the edge weight distributions via a sequence of k latent
position matrices X[k] ∈ RN×dk . For a given node pair, the
inner product of the respective embeddings specifies the k-
th moment of the incident edge weight. Directionality and
heterophily of links is achieved by encoding the mean (k = 1)
and higher-order moments using two matrix sequences, Xl[k]
and Xr[k]. This way, the outer products Xl[k](Xr[k])⊤ need
not be symmetric, and are devoid of spectral (sign) restrictions.

We develop a spectral embedding algorithm to estimate the
latent nodal sequences, from an observed adjacency matrix
adhering to the novel weighted and directed (WD-)RDPG
model. Unlike [7] that only models E [A], we show that
embedding the first few (k ≥ 1) moments of A offers a richer
representation of weighted network structure. Conversely, if
the sequences of latent positions are given (perhaps as outputs
of the aforementioned embedding step), we discuss how to
draw graph samples from the corresponding WD-RDPG.

The rest of the paper is organized as follows. In Section II
we formally define the WD-RDPG model. We then describe
how to infer the latent positions from an observed graph, and
analyze embeddings of a United Nations (UN) voting dataset
(Section III). In Section IV we discuss graph generation and
use global migration data to assess model goodness-of-fit.
Conclusions and limitations are presented in Section V.



II. WEIGHTED AND DIRECTED RDPG MODEL

A. Weighted RDPG

The W-RDPG model was introduced for application pur-
poses in [5], and formally defined as a generative model in [8],
where we also establish the consistency and asymptotic nor-
mality of the embeddings. Specifically, we propose assigning
a sequence of vectors to each node, which are related to the
moment-generating function (MGF) of the weight distribution.

Specifically, each node is endowed with a sequence of
latent positions xi[k] ∈ Rdk that determine the k-th moment
of the weighted adjacency matrix as E

[
Ak

ij

]
= x⊤

i [k]xj [k],
for k ∈ N+. Given the sequence X := {X[k]}k, with
X[k] = [x1[k], . . . ,xN [k]]⊤ ∈ RN×dk , the W-RDPG model
specifies the MGF of the symmetric adjacency matrix A as

E
[
etAij |X

]
=

∞∑
k=0

tkE
[
Ak

ij

]
k!

= 1 +

∞∑
k=1

tkx⊤
i [k]xj [k]

k!
, (1)

with independent edge weights Aij . For A(k) := A◦A◦· · ·◦A
(k times), where ◦ is the entry-wise (or Hadamard) product, (1)
implies that M[k] := E

[
A(k)

]
= X[k]X⊤[k]. The “vanilla”

RDPG is recovered when xi[k] = xi, ∀k > 0.
There have been other RDPG generalizations to the

weighted case. In [9] and [10], adjacency matrix entries are
generated from a given parametric distribution Fθ(Aij), with
θ ∈ RL. In this framework each node now has L latent vectors
xi[l] ∈ Rdl (l = 1, . . . , L). For distribution Fθ(Aij), where the
l-th entry of θ is θl = x⊤

i [l]xj [l] and the Aij are independent.
Once more, the RDPG is recovered by letting Fθ(Aij) be a
Bernoulli(θ) distribution. However, this implies that all edges
must share the same weight distribution, albeit with poten-
tially different parameters. This limitation may be partially
overcome by considering a mixture distribution. Nonetheless,
a key restriction remains: Fθ(Aij) must be chosen a priori,
further limiting the model’s flexibility and applicability.

Remark 1 (Comparison with [7]). A different RDPG model
for weighted graphs was put forth in [7], where each node
has a single associated latent position zi ∈ Z , which is
endowed with a probability distribution F . It is postulated that,
given a family {H(z1, z2) : z1, z2 ∈ Z} of symmetric real-
valued distributions, there exists a map ϕ : Z 7→ Rd such
that if Aij ∼ H(zi, zj), then E [Aij ] = ϕ⊤(zi)Ip,qϕ(zj),
where Ip,q is a diagonal matrix of p ones and q minus
ones, such that p + q = d. This diagonal matrix facilitates
modeling heterophilic (or disassortative) behavior, as in [4].
Interestingly, one can consistently recover xi = ϕ(zi) via the
adjacency spectral embedding (ASE) of A, and the estimated
{xi} asymptotically follow a multivariate Normal distribution.
However, one can only recover ϕ(zi), i.e., the latent positions
for the mean matrix E [A]. Accordingly, this model cannot
discriminate between pairs of edges that are associated with
different distributions sharing a common mean.

Unlike existing models, W-RDPG does not require a priori
specification of the weight distribution, which can be either
discrete or continuous. We model the mean (k = 1) of the

weight distribution as well as its higher-order moments (k >
1), thus enhancing the model’s discriminative power; see [5].
Up to this point, the moment matrix M[k] = X[k]X⊤[k]
is by definition PSD, limiting the analysis to undirected
and homophilic (or assortative) networks. Next, we lift these
restrictions and extend our model to weighted digraphs. In
Section III, we discuss how to estimate the latent vectors from
an observed graph, with statistical guarantees as N → ∞.

B. A new model for weighted digraphs

For digraphs, the idea of using a pair of nodal latent
positions to model the in and out connectivity behavior of
each vertex was first introduced in [11]. Combining this idea
with our W-RDPG model, consider that each node has two
sequences of latent positions xl

i[k] ∈ Rdk and xr
i [k] ∈ Rdk .

Together, they determine the k-th moments of the weighted
adjacency matrix as E

[
Ak

ij

]
= (xl

i[k])
⊤xr

j [k], for k ∈ N+.
Given the sequences Xl := {Xl[k]}k, with Xl[k] =

[xl
1[k], . . . ,x

l
N [k]]⊤ ∈ RN×dk and Xr := {X[k]}k, with

Xr[k] = [xr
1[k], . . . ,x

r
N [k]]⊤ ∈ RN×dk the WD-RDPG model

specifies the MGF of the adjacency matrix as

E
[
etAij |Xl,Xr

]
=

∞∑
k=0

tkE
[
Ak

ij

]
k!

= 1 +
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k=1

tk(xl
i[k])

⊤xr
j [k]

k!
,

where again the entries Aij are independent. The “vanilla”
RDPG is recovered when xl

i[k] = xr
i [k] = xi, ∀ k > 0, and

the W-RDPG is obtained by setting xl
i[k] = xr

i [k],∀ k > 0.

III. INFERENCE UNDER THE WD-RDPG MODEL

Let us now discuss the inference problem. That is, how to
estimate the sequence of embeddings {X̂l[k], X̂r[k]}k given
an observed adjacency matrix A ∈ RN×N , which may be
asymmetric. Recall that in this case we have that the expected
value of the entry-wise k-th power of the adjacency matrix is
precisely M[k] := E

[
A(k)

]
= Xl[k](Xr[k])⊤. Consequently,

we can view A(k) as a noisy observation of M[k]. Following
the ASE approach for RDPG inference [2], for target k and
prescribed dk we form the least-squares (LS) estimator:

{X̂l[k], X̂r[k]} ∈ argmin
Xl,Xr∈RN×dk

∥∥∥A(k) −Xl(Xr)⊤
∥∥∥2
F
. (2)

In words, M̂[k] = X̂l[k](X̂r[k])⊤ is the best rank-dk approx-
imation to the entry-wise k-th power adjacency matrix A(k),
in the Frobenius-norm sense.

One possible solution to (2) is provided by the Singular
Value Decomposition (SVD) of A(k), which we write as
A(k) = U[k]D[k]V⊤[k]. Given a prescribed embedding
dimension dk, we define D̂[k], Û[k] and V̂[k] by keeping only
the dk most significant singular values and the corresponding
columns of U[k] and V[k]. We thus arrive to the following
ASE solution:

X̂l[k] = Û[k]D̂[k]1/2 and X̂r[k] = V̂[k]D̂[k]1/2.

Note that “backwards-compatibility” is enforced by the choice
of the factor D̂[k]1/2. This way, if A(k) is symmetric, we have



Fig. 1. Inference results for a two-class SBM with Gaussian weights and N =
2000 nodes. The two rightmost plots show histograms of the estimated M̂[k]
and the vertical lines indicate the true moments. Embeddings and moments
are accurately estimated up to k = 4.

that X̂l[k] = X̂r[k] as in W-RDPG embeddings. Regarding the
embedding dimension dk, it can be chosen through the elbow
rule on the scree plot of A(k)’s singular values, as in ASE
numerical packages [12]. This will be the method of choice
for the ensuing numerical experiments.
Synthetic test case. Consider a relatively simple but illus-
trative example. We have a large SBM graph consisting of
N = 2000 nodes, where community c1 has 70% of the
nodes. The interconnection probability is given by the matrix
Π =

(
0.7 0.3
0.1 0.5

)
and all the weights are normally distributed

with a mean 1 and standard deviation 0.5.
The estimated embeddings X̂l[k] and X̂r[k] corresponding

to moments k = 1, 4 are shown in Fig. 1. The correctness of
these embeddings is verified in the rightmost panels of Fig.
1, which depict histograms of M̂[k] superimposed to the true
moments. Note how the embeddings seem to follow a multi-
variate Normal distribution, and (as expected) the accuracy of
the estimate M̂[k] tends to decrease with k.

This last observation is further corroborated in Fig. 2, where
we have repeated the previous experiment, but using only
N = 200 nodes. We find the embeddings for k = 1 are
still relatively well estimated. However, the limited amount of
data hinders estimation of the embeddings corresponding to
the fourth moment. A more thorough analysis of the relation
between the estimation’s accuracy and the number of nodes
(i.e., the sample size) is subject of ongoing investigation. In
any case, these finite sample effects will be revisited in the
following numerical example.
UN voting data. Let us now discuss a real-life example which
will also help us illustrate two advantages of the proposed
WD-RDPG model: its interpretability and its ability to cluster
nodes beyond their mean behavior; see Remark 1. In particular,
we will consider UN General Assembly voting data [13]. For
each roll call and member country, the dataset indicates if the
country was present and if so the corresponding vote (either
‘Yes’, ‘No’, or ‘Abstain’) for each proposal. We represent an
year’s worth of votes as a bipartite digraph, where nodes are

Fig. 2. Inference results for a two-class SBM with Gaussian weights and
N = 200 nodes. The accuracy of the estimated embeddings degrades
when compared to the N = 2000 setting. In particular, the embeddings
corresponding to k = 4 are quite noisy.

both member countries and roll calls, and an edge from a
country to a roll call may have a weight of either 1, −1 or 0
(corresponding to a ‘Yes’, ‘No’, or, either ‘Abstain’ or absent
vote, respectively).

The estimated embeddings X̂l[1] and X̂r[1] (i.e., the first
moment) for d = 2 are shown in the top of Fig. 3. Note that
xl
i[k] = 0 for nodes i corresponding to roll calls (roll calls

do not vote) and likewise xr
j [k] = 0 for countries j (countries

are not voted), so we are omitting those components in Fig. 3.
Furthermore, countries are depicted with circles and roll calls
with diamonds. The colors are chosen according to a Gaussian
Mixture Model clustering, to ease visualization.

Apparently, countries can be broadly categorized into three
groups. The first group, marked by a red ellipse in Fig. 3 (top)
and exemplified by the USA, stands in stark opposition to the
majority of roll calls. This is evidenced by the predominantly
negative inner product between the nodal embeddings of these
countries and most roll calls, suggesting they have opposed
the majority of proposals. The second group, highlighted by
a green ellipse and including Uruguay, aligns with most roll
calls, indicating consistent affirmative voting patterns.The third
group, represented by a yellow ellipse and typified by France,
occupies an intermediate position between the other two.

Regarding roll calls, they can be arguably clustered into
three groups. We will focus on the rightmost group in Fig. 3
(top), enclosed by a dashed ellipse. Note that this group of roll
calls is orthogonal to the green group of countries, meaning
that their expected weight is approximately zero. This could
mean that these countries mostly abstained to these roll calls
(i.e., a large probability for a weight equal to zero), or that
they actually had a more balanced distribution among the three
possibilities (even including not abstaining at all, but being
equally likely to oppose or support the roll calls).

In order to elucidate between these two possibilities, we
have to resort to the embeddings corresponding to k = 2; see
Fig. 3 (bottom). This second moment evidences that this group
is actually conformed by two subgroups of roll calls. A first



Fig. 3. X̂l[k] and X̂r[k] for k = 1 (top) and k = 2 (bottom) corresponding to
the UN dataset for the year 2003. Countries (●) and roll calls (◆) are colored
using a Gaussian Mixture Model clustering (for k = 1). Selected countries
and the inferred behavior of the corresponding clusters are indicated.

one which is still orthogonal to the vector representation of
the green group of countries, indicating that these countries
did abstain in these roll calls. The relative alignment to the
rest of the roll calls, together with our previous observations
for k = 1, suggest that this group of countries actually tend
to oppose this second subgroup of roll calls.

IV. GRAPH GENERATION UNDER THE WD-RDPG MODEL

In the “vanilla” RDPG model, if we have access to the latent
positions for every node, then it is straightforward to sample
graphs adhering to the model: we draw N(N−1)

2 independent
Bernoulli random variables, each with parameter given by the
inner product between the latent positions of nodes incident
to each edge. Here we outline the necessary steps to generate
graph samples from an WD-RDPG model.

We will assume that we have access to a finite subset of
the latent positions sequences (or estimates for that matter),
i.e., we know Xl[k] and Xr[k], k = 0, 1, . . . ,K for some
finite integer K. The problem is then to generate an adjacency
matrix A such that for all 1 ≤ i, j ≤ N , it holds that
E
[
Ak

ij

]
= (xl

i[k])
⊤xr

j [k] for all k = 0, 1, . . . ,K.
If we make the extra assumption that Aij (the weight of

edge (i, j)) follows a discrete distribution that takes distinct
values v0, v1, . . . , vQ with probabilities p0, p1, . . . pQ

1, then

1Both the vi’s and the pi’s might depend on i and j. We are not making
this explicit in our notation for ease of exposition.

we are after a solution to the following system of equations:
p0 + p1 + · · ·+ pQ = Mij [0]

v0p0 + v1p1 + · · ·+ vQpQ = Mij [1]
...

...
vK0 p0 + vK1 p1 + · · ·+ vKQ pQ = Mij [K]

(3)

where Mij [k] = (xl
i[k])

⊤xr
j [k] as per the WD-RDPG model.

Furthermore, if the values v0, v1, . . . , vR are known, then
(3) is a linear system of equations Vp = m, where
p = [p0, p1, . . . , pQ]

⊤ is the probability mass function,
m = [Mij [0],Mij [1], . . . ,Mij [K]]⊤ collects the given (or
estimated) moments, and V is the Vandermonde matrix

V =


1 1 . . . 1
v0 v1 . . . vQ
...

...
. . .

...
vK0 vK1 . . . vKQ

 .

Thus, if K = Q (i.e., we are given the same amount of
moments than symbols), the system has a unique solution
p = V−1m. Note that every Vandermonde matrix is invertible
if the vi’s are distinct, which ensures us existence of a unique
solution. Also, the inverse of such a Vandermonde matrix has a
well known closed form expression, which allows us to avoid
the cost of naively inverting V. Given the estimated discrete
edge-weight distribution p, one can sample edge weights Aij

to generate graphs.
Global migration data. We now illustrate this method using a
global migration dataset from 1990 [14]. This dataset provides
estimates of the number of people who migrated between
each of the 232 countries and regions, capturing flows in both
directions.

Our digraph will thus have the countries (and regions) as
nodes, but instead of using the raw numbers for edge weights,
we will consider (Q+1)-quantiles. That is, Aij = 0 will
indicate relatively low number of migrants from country i to
country j, whereas the opposite is true if Aij = Q. This way
we have discretized the weight’s distribution, and by changing
Q we can test the effect of having different number of symbols
for a given graph size. In particular, we tested Q = 2, 3, 5.

For each value of Q we estimate the sequence
{X̂l[k], X̂r[k]} for k = 1, . . . , Q so that we have as many
moments as symbols. We then estimate the edge weights’ dis-
tribution following the aforementioned method (separately for
each edge) and generated 100 graphs by sampling N×(N−1)
random variable per graph. The results are compared to the
original migration graph in terms of the nodal in-degree and
out-degree sequences, as well as the betweeness centrality of
the vertices, in what could be interpreted as a goodness-of-fit
test of the generated graphs. The resulting histograms for each
value of Q and each network statistic are depicted in Fig. 4.

Note how for both Q = 2, 3 (top and middle panels),
the generated digraphs closely follow the original network’s
structure (at least in terms of the three network statistics
considered). However, as we move to Q = 5, which requires
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Fig. 4. Goodness-of-fit test for the generative method on the UN migration
data example using Q+ 1 symbols, with Q equal to 2 (top), 3 (middle) and
5 (bottom). As the number of symbols increases, and so does the required
number of moments to be estimated, the generated digraphs deviate from the
original network’s structure.

good estimates of up to the fifth moment of the weights’ dis-
tribution, the generated graphs fail to reproduce the structural
properties in the UN migration graph. The reason behind this
poor performance was discussed in the synthetic example of
Section III. Given a graph of certain size N , the embedding
method can produce accurate estimates of M̂[k] up to some
order k. Here, we find this value is around k = 4 and the
moments are overly noisy for the system (3) with Q = 5.

V. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this paper we have presented a variant of the popular
RDPG model to represent weighted digraphs. Edge weights
can have any distribution (as long as all their moments are
well-defined) and we do not require any a priori specification
of this probabilistic law. Furthermore, the directed model can
seamlessly accommodate heterophilic behaviour in the nodes.

We also introduced an inference method based on the SVD
decomposition of the entry-wise powers of the adjacency
matrix. Additionally, we highlighted how our moment-based
approach preserves the interpretability of the “vanilla” RDPG,
while enabling the clustering of nodes beyond their mean
behavior. Studying the theoretical properties of our estimator,
such as characterizing its consistency and distribution, repre-
sent a natural next step of our research. Further extensions
could explore how to incorporate missing (i.e., unobserved)
edges in the adjacency matrix, building on existing work in
the context of the (directed) RDPG [15], [16].

We have also discussed an associated graph generation
procedure, to sample WD-RDPG graphs when edge weights
are discrete random variables. The proposed method assumes
that we have estimated as many moments as possible symbols,
and when feasible, the generated graphs faithfully replicate
structural properties of the training graph. However, we have
empirically shown that, as expected, given a certain graph size
we can only accurately estimate moments up to a certain order.

It would thus be interesting and useful to design an algorithm
that can generate samples with only a few moments of the
underlying edge weight distribution.

The other aspect that deserves attention in our generative
model is its scalability. The proposed approach estimates
the distribution for each edge and subsequently samples
the corresponding weight. This means we need to estimate
N × (N − 1) distributions, and for each new graph, we then
generate N × (N − 1) samples. However, if the graph follows
a structure such as an SBM, where groups of nodes exhibit
similar behavior, we could cluster these nodes and estimate
the weight distributions collectively for each group. This
approach has the potential to both enhance estimation accuracy
and significantly reduce computational costs. Exploring this
idea through empirical and theoretical studies represents an
intriguing direction for future research.
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