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Abstract—Graph convolutional networks (GCN) leverage
topology-driven graph convolutional operations to combine infor-
mation across the graph for inference tasks. In our recent work,
we have studied GCNs with covariance matrices as graphs in the
form of coVariance neural networks (VNNs) and shown that VNNs
draw similarities with traditional principal component analysis
(PCA) while overcoming its limitations regarding instability. In this
paper, we focus on characterizing the transferability of VNNs. The
notion of transferability is motivated from the intuitive expectation
that learning models could generalize to “compatible” datasets (i.e.,
datasets of different dimensionalities describing the same domain)
with minimal effort. VNNs inherit the scale-free data processing
architecture from GCNs and here, we show that VNNs exhibit
transferability of performance (without re-training) over datasets
whose covariance matrices converge to a limit object. Multi-scale
neuroimaging datasets enable the study of the brain at multiple
scales and hence, provide an ideal scenario to validate the transfer-
ability of VNNs. We first demonstrate the quantitative transferabil-
ity of VNNs over a regression task of predicting chronological age
from a multi-scale dataset of cortical thickness features. Further,
to elucidate the advantages offered by VNNs in neuroimaging data
analysis, we also deploy VNNs as regression models in a pipeline
for “brain age” prediction from cortical thickness features. The
discordance between brain age and chronological age (“brain age
gap”) can reflect increased vulnerability or resilience toward neuro-
logical disease or cognitive impairments. The architecture of VNNs
allows us to extend beyond the coarse metric of brain age gap and
associate anatomical interpretability to elevated brain age gap in
Alzheimer’s disease (AD). We leverage the transferability of VNNs
to cross validate the anatomical interpretability offered by VNNs
to brain age gap across datasets of different dimensionalities.

Index Terms—graph convolutional network, principal
component analysis, transferability, graphon, brain age,
interpretability.

I. INTRODUCTION

IN VARIOUS modern applications, the number of features
(denoted by m) in a dataset is a fundamental component of
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data acquisition that is typically a characteristic of the desired
application and logistics involved [1], [2]. Most machine learn-
ing algorithms and statistical inference approaches are designed
over a pre-defined feature set and hence, their computational
and sample complexities inherently depend on the dimensional-
ity m [3], [4]. In this paper, we study a deep learning framework
called coVariance neural networks (VNN) [5] that is based
on graph neural networks (GNNs) operating on the sample
covariance matrix from a given dataset and is scale-free, i.e.,
the number of learnable parameters in VNN is independent of
the dimensionality m of the dataset. The scale-free aspect of
VNNs makes it feasible for them to be transferable between
datasets of different dimensionalities without any changes to
their architecture, i.e., VNNs trained on a dataset with dimen-
sionality m = m1 can process another dataset with dimension-
ality m = m2 with the same set of learned parameters. Thus,
the notion of transferability of VNNs in this paper is primarily
focused on transferability across datasets of different dimension-
alities, under the same domain. Other notions of transferability in
machine learning, such as domain transferability or transference
between datasets of different distributions, are not considered in
this paper.

The convolution operation in VNNs is modeled by a poly-
nomial coVariance filter over a sample covariance matrix [5].
Covariance matrices and principal component analysis (PCA)
form the foundations of non-parametric analyses in various
practical applications that are characterized by spatially dis-
tributed, multi-variate data acquisition protocols. Some exam-
ples of such applications include neuroimaging [6], computer
vision [7], weather modeling [8], traffic flow analysis [9], and
cloud computing [10]. Moreover, GCNs admit the properties of
stability to topological perturbations and transferability across
graphs of different sizes in various settings [11], [12], [13],
[14], which makes them a well-motivated data analysis tool for
graph-structured data. Our results in [5] formalized the following
significant observations: i) there exist similarities between the
spectral analysis of graph convolution on a covariance matrix
and the standard PCA transformation; and ii) VNNs are robust
to the number of samples used to estimate the sample covariance
matrix, thus, overcoming a potential source of instability and
irreproducibility of PCA based statistical inference [15], [16].

The transferability of GNNs from training graphs to some
compatible family of test graphs has been previously studied
from different theoretical perspectives [14], [17], [18], [19].
The notion of transferability of GNNs broadly encapsulates the
intuition that GNNs may be able to retain their performance for
some inference task when applied over test graphs (irrespective
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of the size) that describe the same phenomenon as the training
graphs. In this context, the study in [17] considers transfer-
ability of GNNs over graphs that represent the discretization
of underlying topological spaces. Several studies also consider
GNN transferability over graphs that belong to a converging
sequence that approaches a limiting object in the asymptote of
a large number of nodes [14], [19]. In [18], the similarity be-
tween the ego graph distributions (derived from graph topology)
formed the workhorse for assessing transferability of GNNs.
Transferability of GNNs also provides advantages in terms of
computational complexity, which for GNNs scales as O(m2)
for dense graphs with m nodes. In this paper, we broaden the
notion of transferability to VNNs and establish the transference
over covariance matrices of different sizes that converge in some
sense. In this context, transferability is not feasible for traditional
statistical models as they are restricted within the feature space
of the original dataset and need to be re-evaluated if the number
of features change. Thus, transferability of VNNs is broadly
relevant to the domain of multivariate statistics.

Neuroimaging is an example of a timely application in which
the number of features can vary across datasets, yet different
datasets contain similar information [20], [21]. Specifically,
MRI data can be represented in many scales ranging from
single voxels (typically ∼ 1 mm3) to regions-of-interest (ROIs)
derived from multi-scale brain atlases that range from dozens
to thousands of parcellations (e.g., from 100 to 1000 number
of parcellations in a multi-scale brain atlas [22], [23]). There
has been a growing interest in multi-scale datasets in neuro-
science [21], [24], [25], [26], [27]. These datasets rely on brain
atlases or templates that allow a multi-scale parcellation of the
brain surface (for instance, Schaefer’s atlas [22] and Lausanne
atlas [23]). A multi-scale brain atlas partitions the brain cortex
into a variable number of regions at different scales. However,
statistically sound approaches that can leverage or cross-validate
the redundancy of information in datasets at multiple scales are
currently lacking.

Our recent work has demonstrated that VNNs can provide an
anatomically interpretable perspective to the task of “brain age”
prediction from cortical thickness features in AD [28]. Acceler-
ated aging (i.e., when brain age estimated from neuroimaging is
elevated as compared to chronological age) can be a predictor
of cognitive decline or neurological conditions like Alzheimer’s
disease and related dementias (ADRD) [29], [30]. Hence, in
this application, the difference between the brain age estimated
from neuroimaging data and the chronological age, i.e., the brain
age gap (Δ-Age) is the metric of interest. Here, we leverage the
transferability of VNNs to cross-validateΔ-Age predictions and
their associated anatomical interpretability across multi-scale
datasets.

Several machine learning and statistical approaches have been
adopted to estimate brain age from neuroimaging data [29], [30],
[31], [32], [33], [34], [35], [36]. Commonly, these methods rely
on models trained to predict chronological age of healthy popu-
lation. Deep learning approaches are often adopted due to their
ability to provide highly accurate estimates of chronological age
in healthy population. However, the accuracy of chronological
age prediction in healthy population may not be correlated with

the clinical utility of brain age estimates in adverse health condi-
tions [37]. Moreover, due to lack of transparency in such models,
it is not guaranteed that relevant disease-driven effects in the neu-
roimaging data were indeed leveraged in the estimates of brain
age. To address this, limited studies have utilized state-of-the-art
post-hoc, model-agnostic methods such as SHAP or LIME [36]
and saliency maps [35] to add explainability to their brain age
estimation approaches, identifying the input features most rele-
vant to the inference outcome. However, explainability offered
by such approaches may be unstable to small perturbations to
the input [38], [39], inconsistent to variations in training algo-
rithms [40] and model multiplicity (i.e., when multiple models
with similar performance may exist) [41], and computationally
expensive [42]. In this context, VNNs provide a transparent
learning model that is inherently interpretable and can associate
elevated Δ-Age with brain regions characteristic of a disease
or health condition as well as the principal components of the
covariance matrix, with no significant added computational cost.
Importantly, the implication of the transferability of VNNs is
that the anatomical interpretability offered by VNNs can also be
guaranteed on datasets of different dimensionalities; a feature
which is infeasible for state-of-the-art explainability methods.

Contributions: Our contributions can be summarized as fol-
lows:
� Transferability of VNNs: We theoretically characterize the

transferability of VNNs between datasets of different di-
mensionalities. For a dataset with m1 features and covari-
ance matrix Cm1

and another dataset with m2 features
and covariance matrix Cm2

, we establish that the outputs
of a VNN when instantiated on Cm1

and Cm2
are close in

some sense under appropriate conditions on the covariance
matrices Cm1

and Cm2
(see Theorem 2).

� Evaluation on multi-scale neuroimaging datasets: We train
VNNs for the regression task of predicting chronological
age from cortical thickness features. The transferability
of VNNs is validated by the transference of regression
performance across multi-scale cortical thickness datasets
curated according to different scales of a commonly used
brain atlas (Section IV-B). Further, in Section IV-C we
deploy VNNs in the pipeline for anatomically interpretable
brain age prediction from [28] and compare the Δ-Age
between healthy controls and individuals with AD diag-
nosis. We leverage the transferability of VNNs to cross-
validate the distributions of Δ-Age and the accompany-
ing anatomical interpretability across cortical thickness
datasets available at different scales of a multi-resolution
brain atlas. In the interest of reproducibility, the code de-
veloped is publicly available at https://github.com/sihags/
VNN_Brain_Age.

Previously, we have empirically demonstrated transferability
of VNNs on a regression task in [5] and a brain age prediction
task in [43]. However, no theoretical results regarding trans-
ferability were provided in these preliminary studies. More-
over, our prior work in [43] did not associate brain age with
anatomical interpretability. This paper extends the contributions
in [5] and [43] in various significant ways. First, we develop
a theoretical framework to establish transferability of VNNs.
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Also, a more comprehensive empirical evaluation in the context
of brain age is provided, where we leverage the transferability
of VNNs to cross-validate anatomical interpretability across
datasets of different dimensionalities.

II. COVARIANCE NEURAL NETWORKS

VNNs operate on covariance matrices and have similar archi-
tecture as GNNs.1 We start by providing preliminary definitions
pertaining to the architecture and discuss the theoretical proper-
ties associated with VNNs later.

Consider an m−dimensional random vector x ∈ R
m×1

whose ensemble covariance matrix is defined as

C � E[(x− E[x])(x− E[x])T], (1)

where ·T is the transpose operator and E[·] is the expectation
with respect to the probability distribution of x. In practice,
we usually have access to a dataset that provides us with the
statistical information about x. Therefore, we also consider a
dataset consisting of n random, independent and identically
distributed (i.i.d) samples of x, given by xi ∈ R

m×1, ∀i ∈
{1, . . . , n}, where the dataset can be represented in matrix form
as Xn = [x1, . . . ,xn]. Using Xn, the sample covariance matrix
estimator is given by

Ĉ � 1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)T, (2)

where x̄ is the sample mean. Next, we discuss the motivation
behind studying VNNs separately from GNNs.

A. Motivation

Covariance matrices are ubiquitous in real world applications
that have spatially distributed, multi-variate data acquisition
protocols [6], [8], [9], [10]. The eigenvectors of covariance
matrices are termed as principal components of the dataset and
constitute the PCA transformation [44]. The covariance matrix
C can be viewed as the adjacency matrix of a graph representing
the stochastic structure of the vector x, where the m dimensions
of x can be thought of as the nodes of an m-node, undirected
graph and its edges represent the pairwise covariance between
elements in x. Furthermore, the eigenvalues of C encode the
variability of the dataset along different directions in an orthogo-
nal space determined by the associated eigenvectors or principal
components.

In graph signal processing, a vector defined on the nodes of the
graph is viewed as the graph signal and the projection of a graph
signal on the eigenbasis of the graph yields the graph Fourier
transform [45]. The graph Fourier transform provides a sys-
tematic mathematical tool to analyze convolutional filters over
graphs [46], [47]. Interestingly, the classical Fourier transform
and graph Fourier transform converge over a discrete, periodic
time series represented on a directed, cyclic graph [48]. Similarly
to the graph Fourier transform, we can define the coVariance

1GCNs and GNNs are used interchangeably in the rest of the paper.

Fourier transform as the projection of a random instance x2

on the eigenvectors of the covariance matrix C [5, Definition
1]. The definition of coVariance Fourier transform from [5] is
stated next. For this purpose, consider the eigendecomposition
of C given by

C = VΛVT, (3)

where V = [v1, . . . ,vm] is a matrix of size m×m with its
columns as the eigenvectors and Λ = diag(λ1, . . . , λm) is a
diagonal matrix with its diagonal elements representing the
eigenvalues of C.

Definition 1 (coVariance Fourier Transform): The coVari-
ance Fourier transform (VFT) of a random sample x is defined
as its projection on the eigenspace of C and is given by

x̃ � VTx. (4)

The i-th entry of x̃, i.e., [x̃]i represents the projection of x on
eigenvector vi and hence, it is associated with the eigenvalue λi.
Thus, the similarity between PCA transformation and VFT
in (4) implies that eigenvalue λi encodes the variability of the
dataset Xn in the direction of the principal component vi. In
this context, the eigenvalues of the covariance matrix are the
mathematical equivalent of the notion of graph frequencies in
graph signal processing [45].

GNNs with convolutional filters that rely on a linear shift-
and-sum operation fundamentally exhibit the stability to changes
in graph topology [13]. Since the sample covariance matrix Ĉ
is likely to be perturbed with respect to C [49], stability is
desirable to mitigate finite-sample effects on statistical infer-
ence. Motivated by this observation, we define the notion of
coVariance filters that are polynomials in the covariance matrix
and characterize the convolution operation in VNNs.

Definition 2 (coVariance Filters): Given a set of real valued,
scalar parameters H = {hk}Kk=0, the coVariance filter on a
covariance matrix C is defined as

H(C) �
K∑

k=0

hkC
k. (5)

Furthermore, the output of the covariance filter H(C) for an
input x is given by

z = H(C)x. (6)

The application of coVariance filterH(C) on an inputx trans-
lates to combining information across different sized neighbor-
hoods. The spectral analysis of the covariance filtering operation
in Definition 2 via VFT of the filter output z yields the frequency
response of the covariance filter and reveals the similarities
between covariance filtering and PCA. After taking the VFT
of z, we have

z̃ = VTH(C)x =

K∑
k=0

hkΛ
kVTx =

K∑
k=0

hkΛ
kx̃, (7)

2For ease of exposition, we henceforth use the notation x to refer to a
realization of the random vector whose covariance matrix is C.
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where x̃ = VTx is the covariance Fourier transform ofx and (7)
is valid due to the orthonormality of eigenvectors of C. The
frequency response of the coVariance filter depends on the filter
taps H = {hk} as well as the eigenvalues of C, and is given by

h(λ) =

K∑
k=0

hkλ
k. (8)

Furthermore, since x̃ is a projection ofxon the eigenvector space
V and [z̃]i = h(λi)[V

Tx]i, the i-th element of z̃ exhibits simi-
larities with the standard PCA transformation. This observation
is formalized in Lemma 1.

Lemma 1 (Spectrum of coVariance Filter and PCA): Given a
covariance matrixCwith eigendecomposition in (3), if the PCA
transformation of input x is given by q = VTx, there exists a
filter bank of coVariance filters{Hi(C) : i ∈ {1, . . . ,m}}, such
that, the score of the projection of input x on eigenvector vi can
be recovered by the application of a coVariance filter Hi(C) as:

[q]i = vT
i Hi(C)x, (9)

where the frequency response hi(λ) of the filter Hi(C) is given
by

hi(λ) =

{
1, if λ = λi,

0, otherwise
. (10)

Lemma 1 asserts the equivalence between processing data
samples with a weighted PCA transformation and with a specific
polynomial on the covariance matrix.

Our previous work in [5] showed that in contrast to PCA
involving eigenvectors of the sample covariance matrix, infor-
mation processing with polynomials of the sample covariance
matrix can be stable to finite sample-induced perturbations.
Indeed, in practice we may only have access to the sample
covariance matrix Ĉ which is an estimate of C. Since Ĉ is
a consistent estimator of C, the eigenvalues and eigenvectors
of Ĉ approach those of C in the limit of infinite number of
samples, i.e., n → ∞. However, for finite n, the eigenvectors
and eigenvalues of Ĉ are perturbed with respect to those of
C [49]. In principle, statistical inference using PCA can be prone
to instability due to eigenvectors corresponding to eigenvalues
of the ensemble covariance matrix that are close [15] and, thus,
lead to irreproducible statistical conclusions [16]. In this context,
we informally state Theorem 2 from [5].

Lemma 2 (Stability of coVariance filter): Consider a dataset
with sample covariance matrix Ĉ formed by n samples and
the counterpart ensemble covariance matrix C. Under a mild
assumption in [5], the following holds with high probability:∥∥∥H(Ĉ)−H(C)

∥∥∥ = O
(

ν

n
1
2−ε

)
, (11)

for some ν > 0 and ε ∈ (0, 1/2).
Lemma 2 establishes that information processing using a

polynomial of the covariance matrix offers stability with respect
to the perturbations between the sample covariance matrix Ĉ
and C [5]. Also, as a corollary to Lemma 2, we can state that
the difference between outputs of coVariance filters instantiated
on distinct sample covariance matrices are bounded. These

Fig. 1. Representations of m-dimensional vector x and associated covariance
matrix C in the continuous domain. (a) Representation for x is obtained by
discretizing the interval [0,1]. (b) Representation WC for C is obtained by
discretizing the set [0, 1]2 according to (18). Thus, WC retains the symmetry
of C. The area spanned by the diagonal elements of C is marked in blue. The
size of the square area allotted to a diagonal element is proportional to its value.
Other parts of the grid accommodate the off-diagonal elements of C.

observations imply that statistical inference based on covariance
filters is robust to finite sample size effects and, thus, result in
consistent statistical outcomes with high confidence. No such
guarantees are offered by approaches that leverage PCA-based
transformation. Next, we discuss VNN architectures based on
coVariance filters, which results in VNNs inheriting the stability
offered by coVariance filters.

B. Architecture

We begin with the description of a coVariance perceptron that
forms one layer of the VNN architecture. To this end, we leverage
a pointwise, nonlinear activation functionσ(·), such that, forx =
[x1, . . . , xm], we have σ(x) = [σ(x1), . . . , σ(xm)]. Examples
of pointwise, nonlinear activation functions are ReLU and tanh.

Definition 3 (coVariance Perceptron): For a given pointwise,
nonlinear activation function σ(·), input x, a coVariance fil-
ter H(C) and its corresponding set of filter taps H, the coVari-
ance perceptron is defined as

Φ(x;C,H) � σ(H(C)x). (12)

A VNN can be constructed by stacking perceptrons to form a
multi-layer information processing architecture. This observa-
tion is formalized next.

Remark 1 (Multi-layer VNN): Consider an L-layer architec-
ture formed by stacking L coVariance perceptrons defined in
Definition 3. In this scenario, we denote the coVariance filter
in layer � by H�(C) and its corresponding set of filter taps are
given byH�. For a given pointwise nonlinear activation function
σ(·), the relationship between the input x�−1 and the output x�

for the coVariance perceptron in the �-th layer is given by

x� = σ(H�(C)x�−1) for � ∈ {1, . . . , L}, (13)

where x0 is the input x. We refer to this L-layer architecture as
an L-layer VNN.

A figurative illustration of a multi-layer VNN is included
in Fig. 1 in the Supplementary Material. Furthermore, suf-
ficient expressive power can be accommodated in the VNN
architecture via multiple input multiple output (MIMO) pro-
cessing at every layer. Formally, consider a VNN layer � that

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on July 03,2024 at 22:33:35 UTC from IEEE Xplore.  Restrictions apply. 



SIHAG et al.: TRANSFERABILITY OF coVARIANCE NEURAL NETWORKS 203

can process F�−1 number of m-dimensional inputs and outputs
F� number of m-dimensional outputs via F�−1 × F� number
of filter banks [13]. In this scenario, the input is specified
as Xin = [xin[1], . . . ,xin[Fin]], and the output is specified as
Xout = [xout[1], . . . ,xout[Fout]]. The relationship between the
f -th output xout[f ] and the input xin is given by

xout[f ] = σ

(
Fin∑
g=1

Hfg(C)xin[g]

)
, (14)

where Hfg(C) is the coVariance filter that processes xin[g].
Without loss of generality, we focus the subsequent discussion
on the scenario when we have F� = F, ∀� ∈ {1, . . . , L}. In this
case, the set of all filter taps is given by H = {H�

fg}, ∀f, g ∈
{1, . . . , F}, � ∈ {1, . . . , L}, where Hfg = {h�

fg[k]}Kk=0 and
h�
fg[k] is the k-th filter tap for filter Hfg(C). Thus, we can

compactly represent a multi-layer VNN architecture capable of
MIMO processing via the notation Φ(x;C,H), as the set of
filter taps H captures the full span of its architecture.

We also use the notation Φ(x;C,H) to denote the output
of the VNN. For a VNN with F number of m-dimensional
outputs in the final layer, the size of the VNN output Φ(x;C,H)
is m× F . The output Φ(x;C,H) is succeeded by a readout
function that maps Φ(x;C,H) to the desired output. In this pa-
per, we adopt a non-adaptive or non-learnable readout function
(e.g., mean, max or min functions), which preserves the property
of permutation invariance for the VNN model. Furthermore, a
non-adaptive readout function is essential for the transferability
property of VNNs (discussed in Section III).

It is prudent to study the robustness of VNN outputs to the
number of samples n in order to guarantee reproducibility of
VNN statistical outcomes. Specifically, it is desirable that the
change in VNN outputs is controlled or bounded when the
architecture is trained using sample covariance matrices esti-
mated from n1 or n2 samples, when n1 �= n2. In Theorem 1, we
informally state the result on the stability of VNNs by analyz-
ing ‖Φ(x; Ĉ,H)− Φ(x;C,H)‖, i.e., the operator norm of the
difference between the VNN outputs for the sample covariance
matrix Ĉ and the ensemble covariance matrix C. This Theorem
was also previously established in [5].

Theorem 1 (VNN Stability): Consider an ensemble covari-
ance matrixC and its estimate Ĉ formed from n samples. Given
a bank of coVariance filters with filter taps H = {H�

fg : f, g ∈
{1, . . . , F}, � ∈ {1, . . . , L}}, the coVariance filters are stable
under a mild assumption in [5] and satisfy

‖H�
fg(Ĉ)−H�

fg(C)‖ ≤ αn, (15)

for some αn > 0 with high probability (Lemma 2). Also, for a
pointwise, nonlinear activation function σ(·), such that, |σ(a)−
σ(b)| ≤ |a− b| for a, b ∈ R, we have

‖Φ(x; Ĉ,H)− Φ(x;C,H)‖ ≤ LFLαn. (16)

The parameterαn in (15) represents the finite sample effect on
the perturbations in Ĉ with respect to C, and is borrowed from
Lemma 2. By leveraging the perturbation theory of covariance
matrices to analyze the stability of coVariance filters, we also
show in the proof of Theorem 1 that αn scales as 1/n

1
2−ε, for

some ε ∈ (0, 1/2). We note that the bound in (16) becomes
looser as F or L increases, which is consistent with the (less
refined) results for GNNs [13]. However, without the analysis
of lower bounds on ‖Φ(x; Ĉ,H)− Φ(x;C,H)‖, we cannot
claim that the robustness of VNNs indeed worsens with an
increase in F or L. Moreover, we remark that VNNs sacri-
fice discriminability between eigenvectors associated with close
eigenvalues to achieve stability [5]. As a corollary, we also
state that Theorem 1 can readily be extended to characterize
the difference between VNN outputs corresponding to sample
covariance matrices estimated from n1 and n2 samples, via (16)
and application of the triangle inequality.

III. TRANSFERABILITY OF VNNS

The notion of transferability of VNNs across datasets of
different dimensionalities is made feasible by the “scale-free”
property of coVariance filters (Definition 2). From an imple-
mentation perspective, transferability of VNNs to a dataset of
different number of features amounts to replacing the covariance
matrix C in a VNN model Φ(·;C,H) with a covariance matrix
of another size, while keeping the parameters H fixed. Since we
consider covariance matrices of different dimensionalities, we
denote a covariance matrixC of sizem×m byCm. Informally,
we can state our objective for assessing transferability as follows.

Informal problem statement for VNN transferability: Given
a data point xm1

from a dataset with m1 features and asso-
ciated covariance matrix Cm1

, and another data point xm2

from a dataset with m2 features and associated covariance
matrix Cm2

, we aim to characterize the operator distance be-
tween VNN outputs Φ(xm1

;Cm1
,H) and Φ(xm2

;Cm2
,H). If

Φ(xm1
;Cm1

,H) andΦ(xm2
;Cm2

,H) converge in some sense,
we can conclude that the parameters H are transferable between
two datasets consisting of m1 and m2 features.

A. Continuous Representation of a VNN

Note that the VNN outputs Φ(·;Cm1
,H) and Φ(·;Cm2

,H)
have distinct dimensionalities ifm1 �= m2 and therefore, a direct
comparison between them is not natural. Fundamentally, it is
imperative to provide a mathematical framework to compare
vectors and covariance matrices of different sizes in order to
facilitate transferability analyses of VNNs. To this end, we con-
sider a simple mapping that represents the vector on a continuous
interval [0,1].

Specifically, given an m-dimensional vector x =
[x1, . . . , xm], we can define a continuous representation of
x as a function yx : [0, 1] 
→ R, such that, yx(u) = xi for
u ∈ Ui, where Ui is a pre-defined interval associated with the
i-th element ofx. Similarly, we can map a covariance matrixCm

to a compact set [0, 1]2 using the mapping WCm
: [0, 1]2 
→ R,

where we have WCm
(u, v) = [Cm]ij for u ∈ Ui and v ∈ Uj . A

pictorial illustration of yx and WC for covariance matrix C is
included in Fig. 1. Therein, the intervalsUi are parameterized by
variables ρi, which will be discussed subsequently in (18). Note
that we can recover x from yx and vice-versa (similarly for Cm

and WCm
). Hence, for data points xm1

and xm2
consisting of

m1 and m2 elements, respectively, the closeness of continuous
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representations yxm1
and yxm2

can be used as a metric to assess
the similarity between data points in multi-scale datasets. This
observation also extends to the comparison between matrices
Cm1

and Cm2
.

For a VNN architecture with F outputs in the final layer, the
dimensionality of VNN outputs Φ(xm1

;Cm1
,H) is m1 × F

and for Φ(xm2
;Cm2

,H) it is m2 × F . Thus, we can compare
Φ(xm1

;Cm1
,H) and Φ(xm2

;Cm2
,H) in terms of the continu-

ous representations of every column in outputsΦ(xm1
;Cm1

,H)
and Φ(xm2

;Cm2
,H), where these continuous representations

are defined in the same fashion as yx above. For VNN
Φ(xm1

;Cm1
,H), we use the notation ym1

[f ] to denote the con-
tinuous representation of the f -th output in Φ(xm1

;Cm1
,H),

i.e., y[Φ(xm1
;Cm1

,H)]f . Similar to the relationship between yx
and x, the f -th VNN output [Φ(xm1

;Cm1
,H)]f and its contin-

uous representation ym1
[f ] are operationally interchangeable

(see the Appendix for details). Using the continuous represen-
tations above, we can now formally describe the assessment of
transferability of VNNs.

Formal problem statement for VNN transferability: Consider
two VNNs Φ(xm1

;Cm1
,H) and Φ(xm2

;Cm2
,H) instantiated

on data with m1 and m2 features, respectively. If we have
the following conditions: (a) the continuous approximations
of inputs xm1

and xm2
are close, i.e., ‖yxm1

− yxm2
‖2 is

bounded; and (b) the continuous approximations of covariance
matrices Cm1

and Cm2
are close, i.e., ‖WCm1

−WCm2
‖2

is bounded; we aim to characterize the closeness between the
continuous representations of VNN outputs Φ(xm1

;Cm1
,H)

and Φ(xm2
;Cm2

,H), i.e., find ϑ > 0, such that,

‖ym1
[f ]− ym2

[f ]‖2 ≤ ϑ, ∀f ∈ {1, . . . , F}. (17)

B. Mathematical Foundations of Transferability

The continuous representations of graph signals and graphs
have previously been leveraged to study transferability of GNNs
under the domain of graphon information processing [50].
Specifically, GNNs can be transferable between graphs belong-
ing to a converging sequence if the graphs in this sequence
converge to a limit object called graphon, as the number of
nodes approaches infinity [51]. In a similar fashion, we leverage
the theory of graphons [51] and graphon signal processing [50]
to establish the transferability of VNNs. Graphons are the limits
of dense graphs (i.e., graphs with number of edges of the order
Θ(m2)) [52] and hence, appropriate to study limits of covariance
matrices that are typically dense. The definition of a graphon is
provided in Definition 4.

Definition 4 (Graphon): A graphon is a bounded, symmetric,
measurable function W : [0, 1]2 
→ [−1, 1].

To align the covariance matrix with the notion of graphon in
Defintion 4, we can consider an appropriate scaling procedure
(for instance, scaling the covariance matrix such that its max-
imum eigenvalue is 1). Recalling that a covariance matrix can
be viewed as a weighted graph, a sequence of covariance matri-
ces {Cm} being convergent implies that the sequence of their
continuous representations, i.e., {WCm

}, converges to some
graphon W if WCm

is appropriately constructed from Cm.
This claim is based on generalizing [51, Corollary 3.9] to our

setting and the formal statement is provided in Remark 2. This
statement leverages the notion of cut diatance to characterize
convergence. The definition of the cut distance between any
two covariance matrices Cm1

and Cm2
is borrowed from the

definition of cut distance between weighted graphs in [51, Sec.
2.3] and is also provided in the Supplementary Material.

Remark 2 (Graphon as limit object [51]): A sequence of
covariance matrices {Cm} is deemed convergent if they form
a Cauchy sequence with respect to the cut distance [51, Sec.
2.3]. Furthermore, for any convergent sequence of covariance
matrices {Cm}, the corresponding sequence of graphon approx-
imations {WCm

} converges to a graphon W.
To establish transferability of VNNs, we consider a con-

verging sequence of covariance matrices {Cm} and investigate
whether the parameters H can be transferred between any two
VNNs instantiated on distinct covariance matrices in this se-
quence. The construction ofWCm

relies on appropriately defin-
ing the intervals Ui and is described in the following steps [51,
Sec. 3.1].

a) Partition the interval [0,1] into m disjoint intervals
[U1, . . . ,Um], such that,

Ui =

{
[0, ρ1] if i = 1

(ρi−1, ρi] if i ∈ {2, . . . ,m} ,

(18)

where ρi �
1

tr(Cm)

i∑
j=1

[Cm]jj , (19)

and tr(Cm) is the trace of Cm. Clearly, ρm = 1.
b) The relationship between feature i and feature j is given

by WCm
(ui, uj) = [Cm]ij for ui ∈ Ui, uj ∈ Uj .

If the continuous representation WCm
of Cm is constructed

according to the above steps, we refer to WCm
as the graphon

approximation of Cm. Thus, the graphon W forms the schema
for which the covariance matrix Cm represents the covariance
realization at resolutionm. Our main result on the transferability
of VNNs is contingent upon the following assumptions related to
the covariance matrix Cm, the graphon limit W, and frequency
response of the coVariance filters.

A1. ((Ω, ζ)-dominant property of covariance matrices.) For the
sequence {Cm}, there exist positive constants Ω and ζ, such
that we have

1

tr(Cm)
max

j∈{1,...,m}
[Cm]jj ≤ Ω

mζ
, (20)

for all finite m. We refer to the covariance matrix Cm sat-
isfying the property in (20) as being (Ω, ζ)-dominant. This
property implies that 1

tr(Cm) maxj∈{1,...,m}[Cm]jj → 0, as
m → ∞.

A2. (Lipschitz continuity of Graphon.) If W is the limit of the
sequence {WCm

} as m → ∞, then W satisfies

|W(u1, v1)−W(u2, v2)| ≤ α1(|u1 − u2|+ |v1 − v2|),
(21)

for any u1, v1, u2, v2 ∈ [0, 1] and α1 > 0. Any graphon satis-
fying (21) is termed an α1-Lipschitz graphon. The Lipschitz
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continuity of graphon W determines the smoothness of the
information present between any two coordinates (u1, v1) and
(u2, v2).

A3. The graphon approximation WCm
and the limit W satisfy

WCm
(ρi, ρj) = W(ρi, ρj), where ρi is defined in (19).

A4. (Lipschitz inputs to VNNs.) The continuous approximations
of the inputs to VNNs are α2-Lipschitz for some α2 > 0.
Given an input xm1

, its continuous approximation yxm1
sat-

isfies

|yxm1
(u)− yxm1

(v)| ≤ α2|u− v|, for u, v ∈ [0, 1].

(22)

A5.(Lipschitz coVariance filters.) The frequency response of a
coVariance filter isα3-Lipschitz for someα3 > 0, i.e., it satis-
fies |h(η)− h(η̂)| ≤ α3|η − η̂| for any pair of scalars (η, η̂).

Assumption A1 suggests that the variance profile of individual
features in the dataset, characterized by their corresponding
diagonal elements in the covariance matrix, must not be concen-
trated in a small subset of features. Also, since the covariance
matrix Cm is considered to be a finite realization of graphon
W, a smaller Lipschitz constant α1 in Assumption A2 implies
a smaller information mismatch between W and WCm

for a
finite m, when WCm

and W satisfy the construction in As-
sumption A3. Assumption A4 characterizes the smoothness of
entries across the features of the dataset and, hence, the Lipschitz
constant α2 is a property of the given data. Assumption A5
characterizes the variability in the coVariance filter outputs and
is derived from the analyses of the transferability of VNNs.

Next, we state the main result of this section that establishes
the transferability between VNNs processing datasets consisting
of m1 and m2 features.

Theorem 2 (Transferability of VNNs): Consider two VNNs
Φ(xm1

;Cm1
,H) and Φ(xm2

;Cm2
,H) consisting of L layers

and F outputs per layer. Under Assumptions A1-A5, the con-
tinuous representations of covariance matrices and inputs to the
VNNs are close, i.e.,

‖WCm1
−WCm2

‖2 ≤ α1�(Ω, ζ,m1,m2), (23)

and ‖yxm1
− yxm2

‖2 ≤ α2�(Ω, ζ,m1,m2). (24)

Moreover, we have

‖ym1
[f ]− ym2

[f ]‖2 ≤ LFLα�(Ω, ζ,m1,m2), (25)

for f ∈ {1, . . . , F}, where

�(Ω, ζ,m1,m2) � Ω3/2

(
1

m
3ζ/2−1
1

+
1

m
3ζ/2−1
2

)
, (26)

α = (α1(α3 + β) + α2) for some contant β > 0, and ζ ∈
(2/3, 1].

Proof: See Appendix. �
Theorem 2 implies that continuous representations of

all F outputs of the respective final layers of VNNs
Φ(xm1

;Cm1
,H) and Φ(xm2

;Cm2
,H) converge as m1 and

m2 grow. Since the continuous representation ym1
[f ] and VNN

output [Φ(xm1
;Cm1

,H)]f are operationally interchangeable,

we expect the measures of central tendency (e.g., mean, me-
dian) of outputs [Φ(xm1

;Cm1
,H)]f and [Φ(xm2

;Cm2
,H)]f

to converge as well. By extension, we also expect the measures
of central tendency for Φ(xm1

;Cm1
,H) and Φ(xm2

;Cm2
,H)

to converge if Theorem 2 holds. In this context, if the VNN read-
out function is the unweighted mean, we expect the statistical
outcomes of VNNs Φ(xm1

;Cm1
,H) and Φ(xm2

;Cm2
,H) to

be close and this convergence to be stronger for large m1 and
m2. We also remark that Assumption A5 must hold only for a
pair of scalars η and η̂ that characterize the eigenvalues of the
limiting graphon W and the graphon approximation WCm

in
the proof of Theorem 2 and hence, is less stringent in practice.

The impact of Theorem 2 is broad, as we have shown that
the parameters H can be “scale-free” while preserving the
performance over an inference task. Specifically, a VNN can
be instantiated on a dataset of different dimensionality than the
training dataset and the VNN recovers close statistical outcomes
for the same parameters H for both datasets, provided the data
samples and covariance matrices of the training dataset and
the new dataset are close in terms of their continuous repre-
sentations. Thus, VNNs also offer a significant advantage over
PCA-based analysis approaches as the principal components are
restricted within the feature space of a dataset. They do not
provide any mathematical insight into the structure of another
dataset of different dimensionality, even when the datasets may
be related. Fig. 2 provides an overview of the transferability
of VNNs. Note that the theoretical results in Theorem 2 and
the associated Assumptions A1-A5 have been provided in the
context of ensemble covariance matrices. In practice, the VNNs
operate on sample covariance matrices, which are estimates of
the ensemble covariance matrices. Under the inherent statistical
uncertainty due to the finiteness of the data, Assumption A3 may
not be satisfied exactly for sample covariance matrices. Thus, the
sample size and hence the closeness of the sample covariance
matrices to the ensemble covariance matrices may also dictate
the quality of transferability of VNNs.

As discussed previously, a multi-scale neuroimaging dataset
provides an ideal setting for validating the transferability guar-
antees in Theorem 2. Indeed, VNNs also provide feature-level
expressivity at the final layer. For instance, if a VNN is deployed
for a regression task and the readout layer is a simple mean
function, the VNN outputs can be used to characterize the contri-
butions of each feature in the dataset to the regression outcomes.
This can be of great value in neuroimaging applications, as each
feature in a neuroimaging dataset is typically associated with a
distinct brain region. Thus, VNNs naturally provide a feasible
way to interpret the final statistical outcomes. Importantly, in-
terpretability offered by VNNs can be traced to individual prin-
cipal components of the covariance matrix. Hence, we contend
VNNs are inherently interpretable, unlike other black-box deep
learning architectures that rely on model-agnostic substrates for
explainability, such as SHAP [53] or LIME [54]. Moreover,
explanations offered by these methods may be unstable [38],
[39], inconsistent [40], and computationally prohibitive [42].
Unlike a simpler statistical model such as PCA-based regression,
VNNs offer theoretical stability guarantees that are of practi-
cal relevance; see [5] for an empirical demonstration of this
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Fig. 2. Overview of the transferability of VNNs.

advantage. We can further intertwine the interpretability with
the transferability of VNNs to cross-validate findings across
datasets of different dimensionalities. This desirable feature is
lacking for most explainability methods in machine learning,
which are primarily driven by sensitivity analyses of model
outputs to perturbations in the input features. The observations
made here motivate well investigating the utility of VNNs on
multi-scale neuroimaging datasets; the subject dealt with next.

IV. EXPERIMENTS

A. Multi-Scale FTDC Datasets

These datasets consist of the cortical thickness data extracted
at different resolutions from a group of healthy controls (HC;
n = 105, age = 62.6± 7.62 years, 57 females) and a group of
67 individuals with mild cognitive impairment or Alzheimer’s
disease diagnosis (AD+; age=68.52± 9.29 years, 28 females).
For each individual, the cortical thickness data was curated
according to multi-resolution Schaefer atlas [22], at 100 parcel,
300 parcel, and 500 parcel resolutions with finer resolution
cortical thickness estimates with increasing number of parcel-
lations. The ANTs cortical thickness pipeline [55], [56] was
used to derive mean cortical thickness within each atlas parcel
using 3 T T1-weighted MRIs (∼1 mm isotropic resolution).
We investigate the transferability of VNNs on three datasets:
FTDC100, FTDC300 and FTDC500, that constitute the cortical
thickness datasets corresponding to 100, 300 and 500 cortical
thickness features, respectively. Also, the FTDC100, FTDC300,
and FTDC500 datasets are jointly referred to as FTDC datasets.
All participants in the FTDC datasets took part in an informed
consent procedure approved by an Institutional Review Board
convened at University of Pennsylvania. The MRI data for FTDC

datasets were provided by the Penn Frontotemporal Degener-
ation Center (NIH AG066597). Cortical thickness data were
made available by Penn Image Computing and Science Lab at
University of Pennsylvania. We remark that results consistent
with the ones reported here have been obtained on publicly
available datasets in recent work [57].

B. Transferability of VNNs for a Regression Task

VNNs were trained as regression models to predict chrono-
logical age using cortical thickness data of the HC group from
FTDC datasets across different resolutions of Schaefer’s atlas.
To begin with, we remark that the sequence of covariance ma-
trices formed by cortical thickness features extracted according
to 100, 300, 500 parcellations for HC group in FTDC datasets
was converging (see Fig. 2 in the Supplementary Material,
which uses the algorithm from [58] for implementation). This
assessment was pertinent as our theoretical results in Theorem 2
hold for a converging sequence of covariance matrices. Our
primary objective here is to show that predictive performance
is transferable by VNN models across FTDC datasets, with-
out re-training. Hence, this experiment is beyond the scope
of traditional multivariate regression approaches that rely on
a PCA-based transformation in the first step, followed by a
regression model.

VNN learning: We trained three sets of VNN models; one
each for the HC group in FTDC100, FTDC300, and FTDC500
datasets. The training process was similar for all VNNs.
Note that the VNN output of the architecture represented by
Φ(x; Ĉ,H)3 for one m-dimensional input is of dimension

3We use the notation Ĉ for covariance matrix here, as the VNN architecture
is instantiated on the sample covariance matrix in practical implementations.

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on July 03,2024 at 22:33:35 UTC from IEEE Xplore.  Restrictions apply. 



SIHAG et al.: TRANSFERABILITY OF coVARIANCE NEURAL NETWORKS 207

m× F if the VNN architecture hasF m-dimensional outputs in
the final layer. The regression output is determined by a readout
layer which evaluates an unweighted mean of all outputs of the
final layer of VNN. Therefore, the regression output for a vector
of cortical thickness features x is given by

ŷ =
1

Fm

m∑
j=1

F∑
f=1

[Φ(x; Ĉ,H)]jf . (27)

Prediction using unweighted mean at the output implies that
the VNN model exhibits permutation-invariance (i.e., the final
output is independent of the permutation of the input features
and covariance matrix) and transferability. For a regression task,
the training dataset {xi, yi}ni=1 is used to learn the filter taps in
H for the VNN Φ(·; Ĉ,H) such that they minimize the training
loss, i.e.,

Hopt = min
H

1

n

n∑
i=1

�(ŷi, yi), (28)

where ŷi is evaluated similar to (27) and �(·) is the mean-squared
error (MSE) loss function.

Each dataset was split into an approximately 90/10 train/test
split. Thus, the test sets for FTDC datasets consisted of 10
individuals. The sample covariance matrix was evaluated using
all samples in the training set (n = 95) and we had the sam-
ple covariance matrix Ĉ of size m×m (where m = 100 for
FTDC100, m = 300 for FTDC300, m = 500 for FTDC500).
Furthermore, for all datasets, Ĉ was normalized such that its
maximum eigenvalue was 1. Next, the training set was randomly
split internally, such that, the VNN was trained with respect to the
MSE loss between the predicted age and the true age in n = 84
samples for FTDC datasets. The loss was optimized using batch
stochastic gradient descent with Adam optimizer available in
PyTorch library [59] for up to 100 epochs. The batch size was
34 for FTDC100 dataset, 8 for FTDC300 dataset, and 12 for
FTDC500 dataset. The VNN model with the minimum MSE
on the remaining samples in the training set (which acted as a
validation set) was included in the set of nominal models for
this permutation of the training set. For each dataset, we trained
and validated the VNN models over 100 permutations of the
complete training set of n = 95 samples for each of the FTDC
datasets, thus, leading to 100 trained VNN models (also referred
to as nominal models) per dataset.

The hyperparameters for the VNN architecture and learning
rate of the optimizer were chosen according to a hyperparameter
search procedure using the package Optuna [60]. For FTDC100,
the VNN had a L = 2-layer architecture, with a filter bank such
that we had F = 26 and 2 filter taps in each layer. The learning
rate for the optimizer was 0.058. The number of learnable
parameters for this VNN was 1456. For FTDC300, the VNN
had a L = 2-layer architecture, with a filter bank such that we
had F = 39 and 3 filter taps in the first layer and 2 filter taps in
the second layer. The learning rate for the optimizer was 0.0241.
The number of learnable parameters for this VNN was 3237.
For FTDC500, the VNN model had a L = 2-layers with a filter
bank such that we had F = 27 and 4 filter taps in the first layer
and 2 filter taps in the second layer. The number of learnable

TABLE I
TRANSFERABILITY ACROSS DATASETS (MAE FOR VNN REGRESSION OUTPUTS

WITH RESPECT TO THE GROUND TRUTH)

TABLE II
TRANSFERABILITY ACROSS DATASETS (PEARSON’S CORRELATION BETWEEN

VNN OUTPUTS AND GROUND TRUTH)

parameters for this VNN was 1620. The learning rate for the
Adam optimizer was set to 0.0631.

Since the readout layer in all trained VNNs was non-adaptive
and it evaluated the unweighted mean of the outputs of the final
VNN layer to form an estimate for chronological age, the trained
VNN could readily process a dataset with different dimension-
ality without any retraining or alteration to the architecture.
The performance outcomes were quantified in terms of mean
absolute error (MAE) and Pearson’s correlation between the
VNN output and ground truth.

Results: We tabulate MAE in Table I and Pearson’s correlation
between ground truth and VNN output in Table II. Since the
objective is to illustrate transferability of VNNs over different
scales, the MAE and Pearson’s correlation results are reported
for complete datasets. These metrics for only the test sets have
been provided in the Supplementary Material. For both tables,
the row ID provides the dataset on which VNN models were
trained and the column ID indicates the dataset for which the
VNN performance is reported (after transferring the VNNs if
training and testing datasets are different). For instance, the
element with row ID “FTDC100” and column ID “FTDC300”
in Table I represents the mean and standard deviation of MAE
evaluated on FTDC300 dataset (m = 300) for the 100 nominal
VNN models trained on FTDC100 dataset (m = 100). The
elements with same row ID and column ID in Tables I and II
provide the baseline performance to gauge performance after
transferring VNNs.

The results in Tables I and II show that the performance
of VNNs in terms of MAE and correlation between VNN
output and ground truth was preserved after transferring VNNs
across FTDC datasets that were curated according to different
resolutions of Schaefer’s atlas. The transferability of VNNs
across FTDC datasets was corroborated by scatterplots (see
Fig. 4 in the Supplementary Material). We also remark that
this experiment is not feasible for PCA-regression models as
the principal components and the regression model from one
dataset cannot be naively transferred to process another dataset
that has a different number of features. Next, we demonstrate
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Fig. 3. Cross-validation of Δ-Age and associated anatomical interpretability by leveraging the transferability of VNNs. If the transferability of parameters H for
the chronological age prediction task holds for different datasets of m1 and m2 features (according to Theorem 2), we expect to see similar Δ-Age distributions and
associated anatomical interpretability (characterized by regions of interest (ROIs) highlighted in red color on the brain templates) across them without re-training.

Fig. 4. Brain age prediction across datasets curated according to multiple
scales of Schaefer’s atlas. Panel (a) illustrates the regional profiles consisting of
brain regions with robust, elevated regional residuals in the combined AD+ group
with respect to the HC group. The VNNs were trained to predict chronological
age on FTDC100 and the robustness was evaluated over 100 nominal VNN
models. The regional profiles were obtained for the datasets with 300 features
and 500 features after transferring the VNNs from FTDC100 to FTDC300 and
FTDC500. Panel (b) displays the box plots for Δ-Age corresponding to the
regional profiles in Panel (a). Panel (c) plots brain age versus chronological age
for datasets with 100, 300, and 500 cortical thickness features.

the utility of regression models trained in Section IV-B in the
task of anatomically interpretable brain age prediction. Besides
sacrificing the transferability property of VNNs, the usage of
adaptive readout functions can also potentially impact the inter-
pretability offered by VNNs in the context of brain age prediction
(Appendix I in [28]). Hence, VNNs trained as regression models
without adaptive readout functions can provide an explainable
perspective to an inference task, albeit without achieving the
best possible performance.

C. Transferability of Interpretability in Δ-Age Prediction Task

Δ-Age is a known biomarker of cognitive decline and neu-
rodegeneration [29], [33]. Also, age is a major risk factor for
Alzheimer’s disease (AD) and hence, AD is characterized by
biological traits that signify accelerated aging [61]. We start by
leveraging our Δ-Age prediction pipeline from [28] to provide
an anatomical perspective toΔ-Age in AD in FTDC100 dataset.

1) Δ-Age Prediction in FTDC100: A layman overview of
the procedure of inferring Δ-Age using neuroimaging data can
be summarized in three steps.
� Step 1: Train a VNN model to predict chronological age of

a healthy population from a neuroimaging dataset.
� Step 2: If the correlation between chronological age es-

timate and ground truth is smaller than 1, it may induce
an age-related bias in the VNN model output (implying
underestimation for older individuals and overestimation
for younger individuals). Hence, an age-bias correction
model (e.g., using linear regression) is applied to correct
for this bias in the VNN model outputs.

� Step 3: The output of the VNN model after age-bias correc-
tion forms the brain age estimate. The difference between
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the brain age estimate and chronological age provides the
Δ-Age for an individual.

In Step 1, we utilize the VNN models trained to predict
chronological age for FTDC100 group in Section IV-B. Because
the regression output by the VNN model was determined by
unweighted aggregation of the final layer outputs, it can be
conceptualized as an unweighted mean of age predictions at
individual brain regions. Therefore, the VNN architecture allows
us to compute “regional residuals” (scalar output at a given
region derived from VNN final layer output - aggregated VNN
output or age estimate formed by VNN) at each brain region
to assess their contribution to the final output of VNN. This
procedure is formalized next.

Identification of regions associated with neurodegeneration:
The VNN architecture allows us to associate a scalar output with
each of them dimensions in the final layer. Specifically, we have

pi =
1

F

F∑
f=1

[Φ(xi; Ĉm,H)]f , (29)

wherepi is the vector denoting the mean of all final layer outputs
associated with filters in the filter bank at the final layer. Note that
the mean of all elements ofpi is the prediction ŷi formed in (27).
In the context of cortical thickness datasets, we can associate
each element of pi with a distinct brain region. Therefore, the
vector pi is a vector of “regional contributions” to the output ŷi
by the VNN. The parameters H were learnt over the HC group
as described previously and kept unchanged in the subsequent
analyses. We use the notation Ĉ100 for the covariance matrix
formed by the cortical thickness features from HC group.

Next, we leverage (29) to capture the effect of neurodegen-
eration on brain regions. For this purpose, in the FTDC100
dataset, we evaluated the covariance matrix ĈAD+

100 from the
combined cortical thickness data of HC and AD+ groups. Note
that the VNN models were not re-trained for Δ-Age evaluations
and hence, were oblivious to the AD+ group during training.
For every individual in the combined dataset of HC and AD+
groups, we processed their cortical thickness data x through the
VNN model Φ(x; ĈAD+

100 ,H), where parameters H were learnt
in the regression task on the data from HC group as described
previously. Hence, the mean vector of all final layer outputs for
cortical thickness input x is given by

p =
1

F

F∑
f=1

[Φ(x; ĈAD+
100 ,H)]f , (30)

and the VNN output is ŷ = 1
100

∑100
j=1[p]j . Furthermore, we de-

fine the vector of residuals as r, whose a-th element (associated
with brain region represented by feature a in this case) is given
by

[r]a � [p]a − ŷ. (31)

Thus, (31) allows us to characterize the residuals with respect
to the VNN output ŷ at the regional level for an individual
with cortical thickness data x. Henceforth, we refer to the
residuals evaluated according to (31) as “regional residuals”.
We hypothesized that a larger brain age in a neurodegenerative

condition could be linked to an aggregated effect of contributions
from certain biologically plausible brain regions.

The population of residual vectors for HC group is denoted
by rHC and that for individuals in AD+ group by rAD+. ANOVA
was performed to test for group differences between the regional
residuals from the individuals in HC and AD+ groups. Also,
since the objective is to capture accelerated aging, our results
focus only on elevated regional residual distribution in AD+
group with respect to HC group. Further, the group difference
between AD+ and HC groups in the residual vector element for
a brain region was deemed significant if it met the following
criteria: i) the corrected p-value (Bonferroni correction) for
the clinical diagnosis label in the ANOVA model was smaller
than 0.05; and ii) the uncorrected p-value for clinical diagnosis
label in ANCOVA model with age and sex as covariates was
smaller than 0.05. An example for this regional analysis of VNN
outputs is included in [28, Appendix F]. The analysis of regional
residuals described above was performed for each trained VNN
model, and we tabulated the number of VNN models for which
a brain region was deemed to have a higher regional residual in
the AD+ group with respect to the HC group. A higher number
of VNN models isolating a brain region as significant suggested
higher robustness of the effect observed for that brain region.
The fsbrain package in R was used to project the robustness
of significantly elevated regional residuals for a brain region on
the brain template [62].

Subject-level brain age prediction: In general, the systemic
bias in the gap between ŷ and y, where the age may be under-
estimated for older individuals and overestimated for younger
individuals, may confound the interpretations of brain age [63].
Therefore, to correct for this age-driven bias, we adopted a
linear regression model based approach to correct any age bias
in the VNN age estimates [63], [64]. Specifically, the VNN
estimate ŷ was bias-corrected to obtain the brain age ŷB for
an individual with chronological age y and cortical thickness
data x, by adopting the following procedure.
� Step 1: Fit a linear regression model on the complete dataset

to determine coefficients α and β in the following linear
model: ŷ − y = αy + β.

� Step 2: Evaluate brain age as follows: ŷB = ŷ − (αy + β).
For an individual with cortical thickness x and chronological

age y, the brain age gap Δ-Age is defined as

Δ-Age � ŷB − y. (32)

The linear regression model in the age-bias correction procedure
was trained only for the HC group to account for bias in the VNN
estimates due to healthy aging, and then applied to the AD+
group. Further, the distributions of Δ-Age were obtained for all
individuals in HC and AD+ groups. We verified that differences
in Δ-Age for AD+ and HC group were not driven by age or
gender differences via ANCOVA with age and sex as covariates.

Results: The brain regions with significantly elevated regional
residuals in AD+ with respect to HC are projected on the brain
template for the FTDC100 dataset in Fig. 4(a). Specifically,
Fig. 4(a) displays the robustness (from analyses of 100 VNN
models) for various brain regions in having an elevated regional
effect in their corresponding residual elements for AD+ group
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with respect to HC group. The highlighted brain regions were
concentrated in various biologically plausible regions for AD,
such as, bilateral medial temporal, temporal pole, entorhinal,
and frontal regions. Additional experiments showed that the
anatomical interpretability inferred by the analyses of residual
elements was highly correlated with specific eigenvectors of
ĈAD+

100 (see Supplementary Material).
The Δ-Age for AD+ group was 3.67± 3.73 years and for

HC was 0± 2.06 years. Hence, as expected, the Δ-Age tended
to be elevated for the AD+ group. Fig. 4(b) displays the box
plots for Δ-Age in HC and AD+ groups for FTDC100 dataset
and Fig. 4(c) displays the scatter plots between brain age and
chronological age for both groups.

2) Cross-Validation on FTDC300 and FTDC500 Datasets
Using Transferability of VNNs: Next, we leverage the trans-
ferability of VNNs to cross-validate the Δ-Age results ob-
tained via analyses of FTDC100 dataset on FTDC300 and
FTDC500 datasets. For this purpose, the VNNs trained on
FTDC100 dataset were transferred to predict chronological age
in FTDC300 and FTDC500 datasets, followed by age-bias cor-
rection to obtain brain age and Δ-Age in both scenarios. Our
approach to cross-validating Δ-Age and its associated anatom-
ical interpretability is depicted in Fig. 3.

Due to the transferability of VNNs across FTDC datasets,
Δ-Age profiles and brain age versus chronological age plots for
FTDC300 and FTDC500 datasets in Fig. 4 were observed to be
consistent with that for FTDC100 dataset. Hence, the transfer-
ability of VNNs enabled us to recover results similar to that of
FTDC100 dataset in FTDC300 and FTDC500 datasets without
re-training. This observation suggests that Δ-Age inferred by
VNNs was transferable, and its anatomical interpretability was
robust across different parcellations of Schaefer’s atlas.

V. CONCLUSION

The graph convolution operator on a covariance matrix,
termed as a coVariance filter, forms the backbone of the VNN ar-
chitecture. The coefficients of the coVariance filter characterize
its ability to manipulate the data according to the eigenspectrum
of the covariance matrix to achieve a learning objective. Thus,
statistical inference using VNNs draws similarities with PCA-
driven statistical approaches. However, PCA conventionally op-
erates within the feature space of a given dataset and hence,
does not provide any notion of similarity between principal
components of datasets with different number of features. In
this paper, we have studied the key property of transferability of
VNN models, which allows VNNs to be transferable between
datasets with similar characteristics but different number of
features. The notion of similarity between datasets consisting
of different number of features is borrowed from the existing
theory of graphons that studies limits of dense graphs [52].
Specifically, our theoretical results have shown that if there exists
a sequence of covariance matrices that converges to a continuous
limit object in the limit of infinite number of features, then VNNs
can be transferred between any two covariance matrices of such
a sequence for statistical inference. The underlying theoreti-
cal results rely on the convergence of the eigenspectrum of a

continuous approximation of covariance matrices, which result
in convergence of the coVariance filter outputs for covariance
matrices belonging to a converging sequence, and subsequently,
the convergence of VNN outputs. Our experiments pertain to
dense anatomical covariance matrices and therefore, graphon
model-based analyses were certainly appropriate to study trans-
ferability of VNNs. Furthermore, sparse covariance matrices are
also of practical interest as they can help manage computational
complexity [65]. Therefore, studying VNN transferability over
sparse covariance matrices is a future direction of interest.

In the experiments in Section IV-C, VNNs that were trained on
the healthy population were deployed on a population with AD
diagnosis. Thus, in principle, VNNs learned information about
healthy aging from the healthy population and were able to quan-
tify accelerated aging as a biomarker in AD. Furthermore, the
transferability of VNNs to datasets of various dimensionalities
and populations in different clinical contexts draws similarities
with the adaptability and transference of large-scale founda-
tion models [66]. The observations made here could further
be extended to study VNNs trained on healthy population as
foundation models for biomarkers for various health conditions
in future work [57].

APPENDIX

GRAPHON INFORMATION PROCESSING

The theory of graphons has previously been leveraged to study
the transferability of GNNs between graphs in the same graphon
family [14]. The proof of Theorem 2 relies on establishing the
transferability of VNNs between datasets in the setting where
their corresponding covariance matrices belong to a converging
sequence characterized by a graphon. Our first objective in
this section is to show that data processing over coVariance
filter can equivalently be represented in the continuous domain
using its graphon approximation. Establishing this property will
ultimately allow us to compare VNNs instantiated on covariance
matrices derived from datasets with different numbers of fea-
tures. Using the theory of convergence of graphons and interpret-
ing the covariance matrix as a weighted graph representation of
data, a graphon W exists as a limiting object for the sequence of
graphon approximations {WCm

} if the sequence of covariance
matrices {Cm} converges in the cut distance [51]. A distinct
feature of the cut distance is that it allows the comparison of
covariance matrices of different sizes. Hence, all covariance
matrices whose graphon approximations converge to a graphon
can be considered to be a part of that graphon family.

A Information Processing With Graphons

We next show that a coVariance filter H(Cm) can be equiv-
alently represented in the continuous domain using convolution
operations over graphon representations WCm

. Given a coVari-
ance filter output z = H(Cm)x, the continuous representation
of x is yx and that of Cm is WCm

. The operation Cx is funda-
mental to the convolution operation in H(Cm)x and therefore,
we first provide its continuous equivalent. For s = Cx, the i-th
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element of s is

[s]i =

m∑
j=0

[Cm]ij [x]j . (33)

Thus, [s]i is a linear combination of elements in x according to
the i-th row ofCm. In the continuous space, we can equivalently
write (33) as

ys(u) =

∫ 1

0

WCm
(u, v)yx(v)dv, (34)

where yx is the continuous representation of x obtained accord-
ing to the intervals defined in (18). Note that ys is a continuous
representation of s, i.e., they satisfy ys(u) = [s] for u ∈ Ui.
Hence, ys and s can be recovered from each other. This obser-
vation can be extrapolated to define the continuous equivalent
of a coVariance filter. This is feasible because we can write
the entity Ck

mx in H(C) in a recursive form. Specifically, if
we have sk = Ck

mx, then we can rewrite sk as sk = Cmsk−1,
where s0 = x. Thus, using the same reasoning that established
the equivalence between (33) and (34), we conclude that the
continuous representation ysk of sk can be recovered via the
following operation

ysk(u) =

∫ 1

0

WCm
(u, v)ysk−1

(v)dv. (35)

Since the coVariance filter output z is a weighted aggregation of
the terms sk, we can write its continuous representation yz as

yz(u) =

K∑
k=0

hkysk(u). (36)

Using the mathematical steps leading up to (36), we have shown
that the continuous representation of the covariance filter output
z can be recovered via the convolution operations over the
graphon representation WCm

in (34) and (35). Also, z and
yz are operationally interchangeable. Moreover, we can also
extrapolate this correspondence between z and yz to covariance
perceptrons and VNNs with multi-layer architecture and MIMO
information processing. The extension of this observation to co-
Variance perceptron and a basic VNN is trivial as the coVariance
output is evaluated after application of pointwise non-linearity σ
on z and a basic VNN is formed by stacking multiple coVariance
perceptrons and number of inputs and outputs at each layer (i.e.,
F ) being set to 1.

We use the notation xm to denote an input vector with m
features. Thus, if VNN output Φ(xm;Cm,H) is of size m× 1
and we have F = 1 and number of layers L, its continuous
approximation yΦ(xm;Cm,H) can be recovered by a convolu-
tional architecture instantiated on WCm

with input yxm
. For

a VNN with MIMO processing, each VNN layer has multi-
ple m-dimensional inputs and multiple m-dimensional outputs.
Thus, we can equivalently define an architecture capable of
performing MIMO processing that is instantiated on WCm

and xm and produces multiple continuous representations as
the output. Such an architecture has previously been studied
in the form of graphon neural networks [50]. In this context,
we define the model Φ̃(yxm

;WCm
,H) that is modeled via

convolution operations over WCm
in (35) and has the same

architecture as the VNNΦ(xm;Cm,H). Note that the outputs of
Φ̃(yxm

;WCm
,H) are continuous representations of the outputs

of VNN Φ(xm;Cm,H) (see also Fig. 2 for an illustration).
Thus, we can investigate the transferability of parameters H
between VNNs instantiated on covariance matrices Cm1

and
Cm2

by analyzing the difference between Φ̃(yxm1
;WCm1

,H)

and Φ̃(yxm2
;WCm2

,H).
In this context, our analysis hinges on the setting in which

the graphon approximations WCm1
and WCm2

belong to a
sequence of graphon approximations {WCm

} that converges
to a graphon W. Thus, we also consider an information pro-
cessing architecture Φ̃(y;W,H) instantiated on graphon W,
such that y and continuous representations yxm

always satisfy
yxm

(ρi) = y(ρi), ∀i ∈ {1, . . . ,m}. Here, we can also interpret
Φ̃(y;W,H) as a generative model with Φ̃(yxm

;WCm
,H)

being an instance of Φ̃(y;W,H) at resolution m. Thus, our
analysis of transferability of VNNs also includes the study of
convergence of outputs from Φ̃(yxm

;WCm
,H) with that from

Φ̃(y;W,H).
To this end, we now formally define a convolution filter over a

graphon and characterize its frequency response. We denote the
k-hop aggregation (analogous toCkx) onWCm

and continuous
representation yxm

by the operator T k
WCm

yxm
that is given by

(T k
WCm

yxm
)(u) �

∫ 1

0

WCm
(u, v)(T k−1

WCm
yxm

)(v)dv, (37)

for any k > 1, where

(TWCm
yxm

)(u) �
∫ 1

0

WCm
(u, v)yxm

(v)dv. (38)

Thus, based on the discussion above, T k
WCm

yxm
and Ck

mxm

are operationally interchangeable. We can also define k-hop
aggregation over W using the operator TWy when y is related
to yxm

by yxm
(ρi) = y(ρi), where ρi is defined in (18). Thus,

graphon W and the continuous representation y can be seen as
generative models for covariance matrix Cm and data point xm.
This observation is in parallel to that in the context of graphs and
graphons [50]. We denote the graphon filter for a set of filter taps
H = {hk}Kk=0 by Ψ(y;W,H) : [0, 1] → R, which is defined as

Ψ(y;W,H)(u) �
K∑

k=0

hk(T
k
Wy)(u). (39)

Similar to coVariance filter, the frequency response of a graphon
filter can be characterized via using eigendecomposition of W
in (39). Because W is bounded and symmetric, the spectral
decomposition of W can be expressed as

W(u, v) =
∑

i∈Z\{0}
ηiΓi(u)Γi(v), (40)
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where ηi, ∀i ∈ Z\{0} are eigenvalues and Γi are the
eigensignals of W. Therefore, (39) can be re-stated as

Ψ(y;W,H)(u) =
∑

i∈Z\{0}

K∑
k=0

hkη
k
i Γi(u)

∫ 1

0

Γi(v)y(v)dv,

(41)

=
∑

i∈Z\{0}
h̃(ηi)Γi(u)

∫ 1

0

Γi(v)y(v)dv, (42)

for u ∈ [0, 1]. Note that (41) follows from (39) using (40)
and (37), and we have used the definition h̃(η) �

∑K
k=0 hkη

k

in (42). The term h̃(ηi) characterizes the frequency response
of a graphon filter and depends on the filter taps {hk} and the
graphon eigenvalues.

B Proof of Theorem 2

In Theorem 2, we compare the continuous representa-
tions of the f -th outputs of VNNs Φ(xm1

;Cm1
,H) and

Φ(xm2
;Cm2

,H). Our discussion in Appendix A showed
that these continuous representations appear naturally as
the outputs of the architectures Φ̃(yxm1

;WCm1
,H) and

Φ̃(yxm1
;WCm1

,H) instantiated on graphon approximations
WCm1

and WCm2
, respectively. Therefore, our subsequent

analysis is focused on the comparisons between their con-
stituent graphon filters that eventually enables us to establish
the convergence between f -th outputs of Φ̃(yxm1

;WCm1
,H)

and Φ̃(yxm1
;WCm1

,H).
We begin by establishing various results pertaining to the

comparisons between W and WCm
, y and yxm

, and difference
between eigenvalues of two distinct graphons. We leverage the
(Ω, ζ)-dominant property of sequence of covariance matrices
{Cm} in (20) and the Lipschitz condition of graphon in (21) to
establish the following result.

Lemma 3: Given an α1-Lipschitz graphon W and WCm
as

graphon representation of a (Ω, ζ)-dominant covariance matrix
Cm, we have

‖W −WCm
‖2 ≤ α1Ω

3/2

m3ζ/2−1
. (43)

Proof: From the construction of WCm
, we have

‖W −WCm
‖2

=

(∫ 1

0

∫ 1

0

‖W(u, v)−WCm
(u, v)‖2dudv

) 1
2

, (44)

=

⎛
⎝∑

i,j

∫
Ui

∫
Uj

‖W(u, v)−WCm
(u, v)‖2dudv

⎞
⎠

1
2

. (45)

Without loss of generality, we assume that U1 = [0, ρ1] is the
largest interval. Using the α1-Lipschitz continuity of graphon

WCm
and noting that WCm

(ρi, ρj) = W(ρi, ρj), we have

‖W −WCm
‖2 ≤

⎛
⎝∑

i,j

∫
Ii

∫
Ij

α2
1(|u|+ |v|)2dudv

⎞
⎠

1
2

,

(46)

≤
(
m2

∫ ρ1

0

∫ ρ1

0

α2
1(|u|+ |v|)2dudv

) 1
2

,

(47)

≤
(
m2

∫ ρ1

0

∫ ρ1

0

α2
1(|u|+ |v|)dudv

) 1
2

,

(48)

≤ αmρ
3/2
1 . (49)

Using the assumption that Cm is (Ω, ζ)-dominant, we have

‖W −WCm
‖2 ≤ α1Ω

3/2

m3ζ/2−1
. (50)

�
Next, we characterize the difference between a graphon signal

y ∈ L2([0, 1]) and approximation yxm
obtained from a random

sample x in Lemma 4. For this purpose, we have the follow-
ing assumption: a graphon signal y satisfies |y(a)− y(b)| ≤
α2|a− b|, ∀a, b ∈ [0, 1]. We term a graphon signal satisfying
this property as α2-Lipschitz graphon signal.

Lemma 4: Given an α2-Lipschitz graphon signal y and a
graphon signal approximation yxm

obtained from xm ∈ R
m×1,

we have

‖y − yxm
‖2 ≤ α2Ω

3/2

m3ζ/2−1
. (51)

Proof: Note that

‖y − yxm
‖2 =

∑
Ui

‖y − yxm
‖L2[Ii], (52)

=
m∑
i=1

(∫ ρi

ρi−1

(y(u)− yxm
(u))2du

) 1
2

, (53)

where we have ρ0 = 0. Using the Lipschitz property of graphon
signal and (Ω, ζ)-property of Cm, we have

‖y − yxm
‖2 ≤ m

(
α2
2

∫ ρ1

0

u2du

) 1
2

≤ α2Ω
3/2

m3ζ/2−1
. (54)

�
Next, we state Proposition 4 from [14] that characterizes

a bound on the difference between eigenvalues from two
graphons.

Lemma 5 (Proposition 4 from [14]): Consider two
graphons W and W′ with set of eigenvalues {ηi}∞i=1

and {βi}∞i=1, respectively. Then, for all i ∈ Z
+, we have

|ηi − βi| ≤ ‖TW−W′ ‖2 ≤ ‖W −W′‖2.
We leverage Lemmas 3, 4, and 5 to bound the difference be-

tween graphon convolution Ψ(y;W,H) and convolution by the
approximation Ψ(yxm

;WCm
,H) realized from the coVariance

filter over Cm.
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In the following Lemma, we use the notations {η̂i} and {Γ̂i}
for the set of eigenvalues and eigenfunctions, respectively, of
WCm

. The frequency response is assumed to be band-limited,
such that, |h̃(η)| = 0 for η ≤ ηc. Furthermore, we assume that
mc largest eigenvalues of graphon W in terms of magnitude
satisfy |η| > ηc and the set of such eigenvalues is denoted by C.

Lemma 6 (Transferability of Graphon Filters): For a convo-
lution Ψ(y;W,H) and its approximation Ψ(yxm

;WCm
,H),

under the assumptions A1-A5 and when Lemmas 3–5 hold, we
have

‖Ψ(y;W,H)−Ψ(yxm
;WCm

,H)‖2

≤ Ω3/2

m3ζ/2−1

(
α2 + α1

[
α3 +

πmc

2Δc

])
, (55)

where Δc = mini �=j;i,j∈C{|ηi − η̂j |} and ‖y‖2 ≤ 1.
Proof: Note that we can rewrite ‖Ψ(y;W,H)−

Ψ(yxm
;WCm

,H)‖2 as

‖Ψ(y;W,H)−Ψ(yxm
;WCm

,H)‖2
= ‖Ψ(y;W,H)−Ψ(y;WCm

,H)

+ Ψ(y;WCm
,H)−Ψ(yxm

;WCm
,H)‖2, (56)

and using triangle inequality, we have

‖Ψ(y;W,H)−Ψ(yxm
;WCm

,H)‖2
≤ ‖Ψ(y;W,H)−Ψ(y;WCm

,H)‖2︸ ︷︷ ︸
Term 1

+ ‖Ψ(y;WCm
,H)−Ψ(yxm

;WCm
,H)‖2︸ ︷︷ ︸

Term 2

. (57)

Next, we analyze Terms 1 and 2 from (57) separately.
Analysis of Term 1: Using the expansion of Ψ(y;W,H) and

Ψ(y;WCm
,H), we have

‖Ψ(y;W,H)−Ψ(y;WCm
,H)‖2 =

(∫ 1

0

f2(v)dv

)1/2

,

(58)

where

f(v)

=
∑

i=∈Z\{0}

[
h̃(ηi)Γi(v)

∫ 1

0

y(u)Γi(u)du− h̃(η̂i)Γ̂i(v)

×
∫ 1

0

y(u)Γ̂i(u)du

]
. (59)

By adding and subtracting h̃(η̂i)Γi(v)
∫ 1

0 y(u)Γi(u)du in (59)
and using the triangle inequality, we obtain

‖Ψ(y;W,H)−Ψ(y;WCm
,H)‖2

≤
(∫ 1

0

f2
1 (v)dv

)1/2

+

(∫ 1

0

f2
2 (v)dv

)1/2

= ‖f1‖2 + ‖f2‖2, (60)

where

f1(v) =
∑

i∈Z\{0}

[
(h̃(ηi)− h̃(η̂i))Γi(v)

∫ 1

0

y(u)Γi(u)du

]
,

(61)

and

f2(v) =
∑

i∈Z\{0}

[
h̃(η̂i)Γi(v)

∫ 1

0

y(u)(Γi(u)− Γ̂i(u))du

]
.

(62)

Using the Lipschitz property of graphon filter, we have |h̃(ηi)−
h̃(η̂i)| ≤ α3|ηi − η̂i|. Therefore, Lemma 5 and Lemma 3 lead
to

‖f1‖2 ≤ α3α1Ω
3/2

m3ζ/2−1
. (63)

for any y that satisfies ‖y‖2 ≤ 1. To analyze ‖f2‖2, we leverage
the Cauchy-Schwarz inequality to have

‖f2‖2 ≤
∑

i∈Z\{0}
|h̃(η̂i)|‖Γi‖2‖y(Γi − Γ̂i)‖2, (64)

≤
∑

i∈Z\{0}
|h̃(η̂i)|‖Γi − Γ̂i‖2, (65)

where (65) follows from (64), without loss of generality
for ‖y‖2 = 1, ‖Γi‖2 = 1 and another application of Cauchy-
Schwarz inequality. Next, we note that the integral operator
TW, such that, (TWy)(v) =

∫ 1

0 W(u, v)y(u)du is a self-adjoint
Hilbert-Schmidt operator and W admits the spectral decom-
position with {ηi} as eigenvalues and {Γi} as eigensignals.
Therefore, to analyze ‖Γi − Γ̂i‖2, we note that Γi is projec-
tion of operator TW associated with eigenvalue ηi and Γ̂i is
projection of operator TWCm

associated with eigenvalue η̂i. By
dividing the spectrum of TW as spec(TW) = {ηi} ∪ {ηj}j �=i

and that ofTWCm
as spec(TWCm

) = {η̂i} ∪ {η̂j}j �=i, we apply
Proposition 2.3 from [67] to have

‖Γi − Γ̂i‖2 ≤ π

2

‖TW − TWCm
‖2

di
, (66)

where di > 0 is a constant that satisfies |ηi − η̂i+1| ≥ di, |ηi −
η̂i−1| ≥ di, |ηi+1 − η̂i| ≥ di, and |ηi−1 − η̂i| ≥ di. Using (66),
Lemma 5 and Lemma 3 in (65), we have

‖f2‖2 ≤ παΩ3/2

2Δcm3ζ/2−1

∑
i∈Z\0

|h̃(η̂i)|, (67)

where Δc = mini di. Next, we note that |h̃(η̂i)| ≤ 1 under
Assumption A5 as all eigenvalues of WCm

are smaller than
or equal to 1. Hence, we have

∑
i∈Z\0 |h̃(η̂i)| ≤ mc under the

band-limiting condition h̃(η̂i) = 0 for |ηi| ≤ ηc and h̃(η̂i) �= 0
for at most mc eigenvalues. In this scenario, we can rewrite (67)
as

‖f2‖2 ≤ πα1Ω
3/2mc

2Δcm3ζ/2−1
. (68)

Clearly, there is a trade-off between mc and ζ as we must
have mc < m3ζ/2−1 and ζ > 2/3 for (68) to have decreasing
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behavior in m. Equations (63) and (68) provide the upper bound
on Term 1.

Analysis of Term 2:. We can expand term 2 as

‖Ψ(y;WCm
,H)−Ψ(yxm

;WCm
,H)‖2=

(∫ 1

0

g2(v)dv

)1/2

,

(69)

where

g(v) =

∞∑
i=1

[
h̃(ηi)Γ̂i(v)

∫ 1

0

(y(u)− yxm
(u))Γ̂i(u)du

]
.

(70)

Therefore, using (70), we have

‖Ψ(y;WCm
,H)−Ψ(yxm

;WCm
,H)‖2

= ‖Ψ(y − yxm
;WCm

,H)‖2. (71)

Note that for a frequency response that satisfies h̃(η) ≤ 1, the
graphon filter is non-expanding and therefore, we have

‖Ψ(y;WCm
,H)−Ψ(yxm

;WCm
,H)‖2 ≤ ‖y − yxm

‖2.
(72)

Using Lemma 4, we have

‖Ψ(y;WCm
,H)−Ψ(yxm

;WCm
,H)‖2 ≤ α2Ω

3/2

m3ζ/2−1
. (73)

Therefore, by combining the upper bounds on Term 1 and Term
2 from (63), (68), and (73), the proof of Lemma 6 is concluded.�

Lemma 6 establishes the transference between the graphon
W and the graphon approximation WCm

obtained from the
covariance matrix Cm. We leverage the result in Lemma 6 to
establishing the transference for graphon neural networks in a
similar setting. We denote the f -th output for graphon neural
network Ψ̃(y;WCm

,H) with F outputs in the final layer by
[Ψ̃(y;WCm

,H)]f .
Lemma 7 (Transferability of Graphon Neural Networks):

Consider a graphon neural network Φ̃(·;W,H) with L lay-
ers and F outputs per layer and a VNN Φ(·;Cm,H) with
graphon neural network representation as Φ̃(·;WCm

,H). If the
covariance matrix Cm belongs to a (Ω, ζ)-dominant sequence
of covariance matrices and its graphon approximation WCm

belongs to a graphon family of α-Lipschitz graphon W, then
under the assumptions A1-A5, for ‖y‖2 ≤ 1 and 2/3 < ζ ≤ 1,
we have

‖[Φ̃(y;W,H)]f − [Φ̃(yxm
;WCm

,H)]f‖2

≤ LFL

(
Ω3/2

m3ζ/2−1

[
α2 + α1

[
α3 +

πmc

2Δc

]])
. (74)

The proof of Lemma 7 leverages Lemma 6 and accommo-
dates the impact of multi-layer VNN architecture. We refer the
reader to (23)–(28) in [14] for exact analytical steps. Finally,
by applying the triangle inequality on (74), we establish the
transference between graphon neural network approximations
Φ̃(·;WCm1

,H) and Φ̃(·;WCm2
,H) for VNNs Φ(·;Cm1

,H)
and Φ(·;Cm2

,H), respectively, and the proof of Theorem 2 is
concluded.
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