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ABSTRACT
As an essential part of modern power delivery networks, on-chip
voltage regulation consisting of multiple distributed voltage regula-
tors provides the required power and voltage levels for localized
load circuits. The harsh application environment of internet of
things (IoT) and heterogeneous computing systems including, but
not limited to, high temperature and large load current variations,
can lead to significant and uneven performance degradations of
on-chip voltage regulators due to aging. Investigating sustainable
on-chip voltage regulation schemes considering the lifetime of dif-
ferent distributed voltage regulators becomes imperative. Further-
more, techniques to mitigate the aging induced voltage regulator
degradations can consume the scarce on-chip area resource. In this
work, a new reliable on-chip voltage regulation technique is ex-
plored to simultaneously mitigate the performance degradation
and reduce the area cost of distributed on-chip voltage regulators
to achieve sustainable and compact design and satisfy the needs
of different IoT and heterogeneous computing systems consider-
ing the interactions among different regulators. A brief survey of
reliable design challenges and potential solutions is also provided.
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1 INTRODUCTION
The increasing number of internet connected devices enables more
advanced applications such as smart homes and smart cities be-
yond conventional stand-alone smart devices [34]. Efficient social
systems can be constructed with the support of vast deployment
of internet of things (IoT) devices and the integration of hetero-
geneous computing systems [28]. Besides the popularity of IoT
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devices, challenging design requirements such as power efficiency,
cost, security, and reliability are also emerging. Similarly, there
are open research problems such as workload partitioning, task
mapping, and thermal and power management [5, 8, 26] for per-
formance and energy efficiency improvement of heterogeneous
computing systems.

On-chip voltage regulation, as an essential part of both IoT and
heterogeneous computing systems, can greatly affect most of these
design concerns. Considerable amount of research has been per-
formed to improve the power efficiency of on-chip voltage regula-
tors [9, 15, 29, 38] and further the energy efficiency of the underly-
ing microprocessors [6]. Meanwhile, voltage regulators have been
leveraged as a low overhead solution to enhance the security of
the load circuits [16, 21, 37, 48–54]. On the other hand, reliability
issue of on-chip voltage regulator has recently drawn attention
[3, 32, 41–43]. However, as the application environment and load
current demand of different IoT devices and different portion of
heterogeneous computing systems can vary a lot, a homogeneous
methodology by designing voltage regulators for the worst case
scenario may lead to an over-design problem, which potentially
increases the area and cost of devices.

While intensive technology scaling has enabled increasingly
outstanding circuit performance, transistor aging induced circuit
performance degradation has also become more dramatic [2]. A
large circuit delay can be introduced and even circuit failure can
occur [46]. Transistor aging induced circuit performance degra-
dation is a strong function of temperature, electrical stress, and
the amount of time the transistor is under stress. It is thus impor-
tant to consider the variations of these parameters within IoT and
heterogeneous computing systems to achieve the targeted design
specifications. Furthermore, the reliability design constraints can
be relaxed within a certain portion of a chip that has less degree of
aging to reduce the total area cost or to spare additional area for
heavily aged regions.

Techniques to mitigate aging induced voltage regulator perfor-
mance degradations are investigated. As on-chip voltage regulation
with distributed voltage regulators becomes prominent in recent
design paradigms [18, 22, 36, 39, 40, 42], reliable on-chip voltage reg-
ulation within the context of distributed voltage regulators is also
explored. Furthermore, reliable on-chip voltage regulation consider-
ing the varying application environment and lifetime requirement
of IoT devices and heterogeneous computing systems is discussed.

The rest of the paper is organized as follows. Background in-
formation regarding on-chip voltage regulation, IoT devices, and
heterogeneous computing systems is introduced in Section 2. Major
transistor aging mechanisms and aging-aware on-chip voltage regu-
lators are discussed in Section 3. Reliable on-chip voltage regulation
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for sustainable and compact designs is investigated in Section 4.
Conclusion is offered in Section 5.

2 BACKGROUND
On-chip voltage regulation provides certain advantages as com-
pared to off-chip implementations such as reduced voltage noise,
fast dynamic voltage and frequency scaling (DVFS) capability, re-
duced number of power/ground pins, more compact design, and
reduced power loss due to parasitic impedance, which serves as an
ideal power supply solution for IoT and heterogeneous computing
systems.

2.1 Internet of things
IoT covers a wide range of application domains such as smart
home, smart city, wearable device, automotive industry, agriculture,
and health care [33]. Different applications may impose different
lifetime requirements. Furthermore, even with the same lifetime
requirement, the aging speed of functional circuits within IoT de-
vices can be quite different. For example, it would be acceptable
to have a lifetime requirement of only five years for smart home
devices such as Amazon Echo and Google Home, since functions of
these devices may quickly run out of date as technology advances
and replacement of them can be effortless. It would be, however,
more desirable to set a lifetime target of more than ten years for
implantable medical devices to reduce potentially costly and painful
operations.

On the other hand, temperature sensors for IoT applications
may experience quite challenging environmental changes. A digital
temperature sensor with a wide industrial temperature range of
-40oC ∼ 150oC [12], may operate around room temperature or near
the low/high temperature boundaries. Individual transistors age
much faster in high temperature operations as discussed in Sec-
tion 3. The desired circuit level performance such as accuracy of
the temperature sensor may degrade faster as well within a high
temperature environment. For two identical temperature sensors
with quite different operating temperatures, performance degra-
dations between them can also significantly vary after a five-year
period. In order to have similar performance degradation and oper-
ate with acceptable accuracy, temperature sensors operating mostly
in higher temperature may need to be designed with a higher level
of reliability standard at design time. Similarly, for low temperature
operations, reliability constraint can be relaxed to reduce cost or
design complexity.

2.2 Heterogeneous computing systems
Increasing number of IoT devices generates huge amount of data
that needs to be processed by microprocessors. These data can
be transmitted to specialists or servers for analysis. However, the
transmission bandwidth and latency can limit the applications [1].
Edge computing has become a promising way to directly equip IoT
devices with sufficient computation capability to overcome data
transmission induced bandwidth, latency, and energy consumption
limitations [1]. The emerging edge computing necessitates hetero-
geneous computing systems at either chip-level or network-level
[1]. As IoT devices can have different functions and data charac-
teristics, design requirements for IoT microprocessors also vary

a lot. Such varying demands can be fulfilled with chip-level solu-
tion with heterogeneous cores on a single chip or network-level
approach with different cores for different devices [1]. Regardless of
chip-level or network-level strategy, the existence of heterogeneity
demands heterogeneous on-chip power delivery among different
cores or different part of the chip.

2.3 On-chip voltage regulation
On-chip voltage regulation is widely adopted in processors [9, 14,
36], energy harvesting devices [7, 24, 27, 29], and wearable devices
[30, 44, 45], enabling various IoT applications. Three commonly
used voltage regulator topologies including buck or boost converter,
switched-capacitor (SC) converter, and low dropout regulator (LDO)
covermost IoT application scenarios due to their respect advantages.
A buck converter can achieve high power conversion efficiency over
a wide load current range and voltage conversion ratios [29, 30]
while a boost converter is needed for certain energy harvesting
applications [17, 47] due to low input voltage levels. SC converters
gain popularity due to the easiness of integration and higher power
density over inductive approach. LDOs can achieve sub-ns response
time and are adopted in themost recent IBMPOWER8 and POWER9
processors [14, 36].

Although a single voltage regulator is typically implemented
for most applications, distributed on-chip voltage regulation [14,
18, 22, 36–40, 42], where multiple parallel voltage regulators are
distributed across the chip, has recently drawn significant attention.
Better voltage noise performance and fast localized load response
can be achieved. By adaptively turning on/off some of the dis-
tributed voltage regulators, a high power conversion efficiency can
be obtained over a wide dynamic load range [37, 38]. It also provides
a degree of freedom to mitigate hot spots on a certain chip and
simultaneously optimize power efficiency, on-chip temperature,
and voltage noise profile [19, 20].

3 RELIABLE ON-CHIP VOLTAGE
REGULATION

Despite the advantages of on-chip voltage regulation, less attention
has been paid to the reliability issues and aging induced on-chip
voltage regulator performance degradations especially within IoT
and heterogeneous computing system applications. To realize reli-
able on-chip voltage regulation, it is essential to first understand
major transistor aging mechanisms and mitigate their side effects
on individual voltage regulators.

3.1 Transistor aging mechanisms
Major transistor aging mechanisms include bias temperature insta-
bility (BTI), hot carrier injection (HCI), time dependent dielectric
breakdown (TDDB), and electromigration (EM) [46]. BTI, which
includes positive BTI (PBTI) for NMOS transistors and negative BTI
(NBTI) for PMOS transistors, is the dominant reliability concern
among others [11, 25, 35]. NBTI (PBTI) is caused by negatively
(positively) applied transistor gate to source voltage Vдs and it can
introduce significant threshold voltage Vth degradations. BTI in-
duced Vth degradation is related to the generated Si/SiO2 interface
traps when electrical stress is applied [4]. |Vth | increases when elec-
trical stress is applied and partially recovers when electrical stress
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Figure 1: NBTI induced threshold voltage degradation with
different temperature.

is removed. BTI induced |Vth | degradation with time t and activity
factor α can be expressed as [35]

∆Vth = χKl t

√
Cox (|Vдs | − |Vth |)e

−Ea
kT (αt)

1
6 (1)

where α is the percentage of time the transistor is under stress
and k , T , and Cox are Boltzmann constant, temperature, and the
oxide capacitance, respectively. Kl t and Ea are fitting parameters
to match the model with experimental data [35]. As α is included
in the model, the BTI recovery effect is already considered.

Utilizing the PMOS transistor parameters in 32 nm metal gate,
high-k strained-Si CMOS technology from PTM model library [10],
which is typically used in the literature for reliability study [2, 13,
25, 35], NBTI induced Vth degradation under different temperature
is demonstrated in Fig. 1. As shown in Fig. 1, more than 150 mVVth
degradation can be introduced within a ten-year time frame with a
temperature of 125oC. Even with a room temperature of 27oC, 50
mV Vth degradation can be introduced. NBTI induced ∆Vth can be
significant as compared to the initial value of 491.55 mV.

Transistor Vth degradation can further lead to circuit level per-
formance degradations. As demonstrated in [3], aging can induce
degradation of current sensing accuracy of multiphase buck con-
verter, mismatches between each phase, and degradation of power
efficiency. Important performance metrics of a digital LDO (DLDO),
including maximum current supply capability, load response time,
and magnitude of the transient voltage droop, are shown to experi-
ence significant degradation as the power transistor array ages [41].
Experimental results in [43] also demonstrate side effects of aging
on LDO DC performance and electromagnetic interference (EMI)
immunity level. Local hotspots near voltage regulators can occur
and further lead to transistor breakdown, top metal rupture, and
even system level malfunction [32]. Furthermore, within an on-chip
power delivery network consisting of many distributed individual
voltage regulators, unbalanced current sharing among different
voltage regulators can occur due to parasitic on-chip power grid
resistance mismatches. This unbalanced current distribution causes
different aging speed of metal wires connected to each voltage reg-
ulator due to electromigration (EM) induced wear-out [42]. The
mean time to failure (MTTF) of metal wires which provide larger

current can be much less than those providing less current. This
phenomenon may lead to the earlier failure of the whole on-chip
power delivery network [42]. Thus, a reliability-aware design ap-
proach should be adopted and reliability enhancement techniques
need to be investigated for on-chip voltage regulators.

3.2 Aging-aware on-chip voltage regulators
A rotational phase shedding scheme for multiphase buck converters
is proposed in [3] to mitigate the aging induced efficiency degra-
dation especially under light load. For conventional multiphase
buck converters, only one phase can be active under light load. For
medium and heavy load conditions, additional phases are activated.
The conventional phase activation scheme imposes too much elec-
trical stress on a certain phase P1 among all the N phases (P1 to
PN ) as P1 is always activated at light load condition. The phase
shedding scheme [3] rotationally turns on one of the N phases to
make sure that electrical stress can be evenly distributed among
all the phases at light load condition. The scheme may not work
well under all the load current conditions as it is only activated
at light load. A decoding methodology to decide which portion of
the power transistor array to be turned on is proposed in [32] to
mitigate or eliminate the hotspots generated by DLDOs. The power
transistor array is divided into n rows andm columns. One power
transistor in a certain row and middle column is turned on first and
the one in the adjacent column and next row is activated as load
current increases. A code rotation scheme is formed to spread the
current distribution under all load conditions. The implementation
cost of the proposed scheme is not clear and it may also introduce
side effects on DLDO performance such as increased output voltage
ripple. A lightweight aging mitigation scheme for DLDO is pro-
posed in [41]. Instead of utilizing the conventional bidirectional
shift register, a unidirectional shift register is proposed by sim-
ple modifications of the control circuit. The proposed NBTI-aware
DLDO works well under arbitrary load conditions with little side
effects on the performance of DLDO as the number of power tran-
sistors activated/deactivated per clock cycle remains the same. The
power and area overhead incurred by the proposed technique are
also negligible. Within the context of distributed on-chip voltage
regulation, an effective current balancing scheme is proposed in
[42] that can be applied to most regulator types which need a refer-
ence voltage to operate. Through balancing the current distribution
among all the regulators, EM induced metal wear-out effects can
be minimized.

4 RELIABLE VOLTAGE REGULATION FOR
SUSTAINABLE AND COMPACT DESIGN

Besides aging mitigation techniques for individual on-chip voltage
regulators, the application environment of on-chip voltage regula-
tor needs to be considered to fully exploit the benefits of reliable
on-chip voltage regulation. Seen from (1), temperature effects on
∆Vth can be more significant than α and |Vдs |. Thus, thermal man-
agement techniques can be essential for reliable on-chip voltage
regulation. Thermally aware on-chip voltage regulation is inves-
tigated in [19] by turning on/off distributed voltage regulators in
a thermally aware fashion. A nearly optimal chip-wide tempera-
ture profile can be achieved and up to 20oC maximum temperature
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Figure 3: Reliable on-chip voltage regulation for IoT and het-
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reduction can be obtained as compared to a voltage noise optimal
approach. The benefits of temperature reduction regarding relia-
bility can be prominent as shown in Fig. 1. Furthermore, it is also
important to consider different load current profile of each volt-
age regulator. It is demonstrated in [3, 31] that light and medium
load current are consumed most of the time for mobile and mi-
croprocessor applications. However, voltage regulators need to be
designed for the maximum load current supply capability, which
may lead to varying aging speed of different voltage regulator por-
tions [41] or individual voltage regulators. Balancing load current
distribution among each power transistor, distributed voltage regu-
lator, and different functional blocks through, respectively, reliabil-
ity enhancement techniques [3, 32, 41], balanced current sharing
schemes[36, 42], and reconfigurable voltage regulation [23, 31] can
be beneficial. The road map to achieve reliable on-chip voltage
regulation is summarized in Fig. 2.

Furthermore, different portions (functional block) of a chip can
have quite different load current and temperature profiles. As in-
vestigated in [19, 41], the representative temperature profile among
a load store unit, an execution unit, an instruction fetch unit, an
instruction scheduling unit, and a cache can vary from 62oC to
90oC. The maximum load current varies from 1.356A to 12.092A.
On the other hand, for IoT applications where various devices are
connected to the Internet, temperature and load current profile vary

at the network level. It is thus necessary to consider the hetero-
geneity characteristics at both the chip level and network level, as
shown in Fig. 3 to implement reliable on-chip voltage regulation for
IoT and heterogeneous computing systems. On-chip voltage regu-
lator design simultaneously considering temperature, load current,
and lifetime requirement, needs to be adopted for reliable on-chip
voltage regulation.

Benefits of reliable on-chip voltage regulation can be manifold
as summarized in Fig. 2. Reliability enhancement techniques for
individual voltage regulators directly translate into improved volt-
age regulator performance such as reduced steady state output
voltage ripple, faster load response, and lower voltage noise char-
acteristics. Enhanced individual voltage regulator performance
further strengthens distributed on-chip power delivery benefits
and helps achieve faster and more accurate DVFS capability. Also,
aging-aware on-chip voltage regulator can essentially reduce the
area/power overhead needed for mitigation of aging induced volt-
age regulator performance degradation. For example, the NBTI-
aware DLDO proposed in [41] only induces ∼ 2.6% area overhead
and achieves up to 43.2% DLDO performance degradation mitiga-
tion. A conventional DLDO designed in an aging-unaware fashion
may need extra decoupling capacitors to achieve the equivalent
performance after aging. The area overhead of deploying an addi-
tional decoupling capacitor can be much larger than that induced
by implementation of NBTI-aware DLDO. Reliable on-chip voltage
regulation by adopting a heterogeneous on-chip power delivery
network design at both the chip level and network level further
reduces the area cost of on-chip voltage regulators. Not only sus-
tainable and compact IoT and heterogeneous computing systems
can be realized through reliable on-chip voltage regulation, but
also significant area savings can be reaped. As area can be a strin-
gent resource for IoT applications, area savings can be leveraged
for enhanced security performance and even added functionality.
Increased battery capacity, more number of voltage regulators, and
reduced fabrication cost can also be enabled.

5 CONCLUSION
Reliable on-chip voltage regulation is investigated to realize sus-
tainable and compact IoT and heterogeneous computing systems.
The characteristics of IoT devices necessitate the embedded appli-
cation of heterogeneous computing features and on-chip voltage
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regulation provides an optimal power supply solution for such sys-
tems with enhanced security. Transistor aging induced threshold
voltage increase can lead to on-chip voltage regulator performance
degradations. Aging mitigation techniques for individual voltage
regulators as well as thermal-aware on-chip voltage regulation are
critical nodes on the road map to reliable on-chip voltage regulation.
Heterogeneous voltage regulators tailored for the special needs of
different functional blocks of a certain chip and even different por-
tions of the IoT network enable significant area overhead savings,
which further translate into enhanced security, improved power
delivery performance, and additional functionality.
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