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Effective Resistance of a Two Layer Mesh
Selçuk Köse, Student Member, IEEE, and Eby G. Friedman, Fellow, IEEE

Abstract—The effective resistance of a resistive mesh is a com-
monly used analogy for various scientific and engineering prob-
lems such as IR voltage drop estimation, distributed control
including time synchronization and sensor localization, determin-
ing the chemical distance among multiple bonds, and finding
the distance between two vertices in a graph. Resistive networks
are a commonly used structure in electronics to model different
elements of an integrated circuit, such as a physical substrate,
an integrated circuit layout, and a power distribution network.
On-chip power and ground networks are composed of orthogonal
metal lines from different metal layers, and a resistive mesh is
typically used to model these networks. A two layer mesh is there-
fore commonly used to analyze IR voltage drops and decoupling
capacitor placement. A closed-form expression is described here
for the effective resistance between the intersections of a two layer
resistive mesh where the horizontal and vertical unit resistances
are different. The physical distance between the nodes of interest
and the ratio between the horizontal and vertical resistances k are
included in the expression. The maximum error of the closed-form
expression, as compared with the exact solution, is less than 5%
for a wide range of k. The error further decreases with greater
separation between the nodes of interest.

Index Terms—Closed-form solution, effective resistance, noise
analysis, power grid, power/ground network.

I. INTRODUCTION

A RESISTIVE mesh structure can be considered as an
undirected graph where the weights associated with the

edges are determined by the resistance between adjacent nodes
within the mesh. An on-chip power and ground distribution
network is commonly modeled as a resistive mesh structure
with different vertical and horizontal unit resistances, as shown
in Fig. 1(a) [1]–[4], where the thickness and width of the metal
lines are typically different in orthogonal metal layers. Power
and ground networks are illustrated in Fig. 1(a) with, respec-
tively, dark and gray lines. A mesh structured power network
and the corresponding resistive circuit model are illustrated,
respectively, in Fig. 1(b) and (c). Since the power and ground
distribution networks exhibit similar characteristics, only the
power network is considered in this brief. This approach can
also be used to determine the effective resistance in any two
layer mesh structure with different horizontal and vertical unit
resistances.
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The effective resistance of a mesh is used in power grid
analysis [5], [6], substrate analysis [7], decoupling capacitance
allocation [8]–[11], power dissipation [12] and electrostatic dis-
charge (ESD) analysis [12], and measuring resistance variations
in power distribution networks [13]. The effective resistance is
used to determine the effective region of a decoupling capacitor
[8], [14]. For instance, the effective resistance between hot
spots and available white spaces in a circuit floorplan provides
a means to evaluate the effectiveness of a decoupling capacitor
placed at different locations. A lower effective resistance be-
tween a hot spot and a decoupling capacitor leads to a faster
response time for the decoupling capacitor. Additionally, the
effective resistance between a decoupling capacitor and a power
supply connection provides an estimate of the recharge time of
the capacitor. When the effective resistance between two circuit
blocks decreases, noise coupling through the power network in-
creases, which can now be quantified by the effective resistance
described in this brief. The effective resistance is also used to
determine the coverage and commute times of a random walk
in a graph [15]. In an undirected resistive graph, the effective
resistance is used to determine the effective chemical distance
between bonds, as in [16]. The effective resistance is also used
in distributive control and estimation such as synchronization
and localization of sensor networks [17].

Venezian [18] developed a closed-form expression of the
resistance of a uniform mesh where the vertical and horizontal
unit resistances are the same. The work described in this brief
is inspired by [18], where the effective resistance is generalized
for nonisotropic meshes with different vertical and horizontal
unit resistances. To determine the effective resistance between
nodes nx1,y1 and nx2,y1 , where x1, x2, and y1 are, respectively,
the horizontal and vertical coordinates of the nodes within an
infinite mesh, as shown in Fig. 2(a), the principal of super-
position is applied in two steps [18], [19]. First, current I is
introduced at nx1,y1 and exits the grid at the boundaries (i.e.,
at infinity), as illustrated in Fig. 2(b). The current from nx1,y1

to the adjacent nodes is determined by the resistance between
nx1,y1 and the adjacent nodes. When the mesh is uniform, the
currents from (x1, y1) to the adjacent nodes are symmetric and
I/4. Second, current I is introduced at infinity and exits the grid
at nx2,y1 , as depicted in Fig. 2(c). The current from the nodes
adjacent to nx2,y1 is similarly determined. When the mesh is
uniform, the currents from the adjacent nodes of (x1, y1) to
(x1, y1) are again symmetric and I/4. By applying superposi-
tion in these two steps, current I is modeled as entering the grid
from nx1,y1 and exiting the grid at nx2,y1 , as shown in Fig. 2(d).
This current is the sum of the currents in the first and second
steps of the superposition process, which is therefore I/2. The
voltage difference divided by the current provides the effective
resistance. The effective resistance between nx1,y1 and nx2,y1

within a uniform mesh is therefore

Reff = 2(Vx1,y1 − Vx2,y1)/I. (1)
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Fig. 1. Two layer orthogonal metal lines connected with vias; (a) two layer power and ground distribution network where the power and ground lines are
illustrated, respectively, with dark and light gray, (b) a two layer power distribution network only, and (c) a resistive mesh model of the power distribution network.

Fig. 2. In an infinite mesh structure, (a) current source I is connected to
(x1, y1), current load I is connected to (x1, y2), and the effective resistance
between these adjacent nodes is determined by applying the principle of
superposition in two steps. In the first step, (b) the load current is moved to a
node at infinity, and in the second step, (c) the source current is moved to a node
at infinity. The current profiles for these two cases are obtained, (d) the current
source and load are moved to the original positions, and the current during the
two superposition steps is summed to determine the effective resistance.

A similar analysis is performed for a nonisotropic mesh struc-
ture with different horizontal and vertical resistances to de-
termine closed-form expressions for the effective resistance
between two arbitrary nodes.

The brief is organized as follows. In Section II, Kirchhoff’s
current law is revisited to determine the voltages and currents
at a particular node in terms of the neighboring node volt-
ages and resistances. In Section III, inhomogeneous differential
equations are applied, where separation of variables is used to
determine the node voltages. The effective resistance between
two arbitrary intersections and the corresponding closed-form
expressions are described, respectively, in Sections IV and V.
The accuracy of the effective resistance model is discussed in
Section VI. The brief is summarized in Section VII followed
by an Appendix, describing the derivation of the closed-form
expression for the effective resistance.

II. KIRCHHOFF’S CURRENT LAW REVISITED

The mesh circuit model considered in this brief is shown
in Fig. 1(c) with horizontal (rh) and vertical (rv) resistors.
The voltage at node nx,y is Vx,y, and the current from nx,y

to ground is Ix,y . When a current source is connected to nx,y ,
Ix,y = I . Alternatively, when no current source is connected to
nx,y , Ix,y = 0.

The current load at an arbitrary node nx,y can be written
in terms of the sum of the current from the four adjacent

nodes as

Ix,y =
Vx,y − Vx,y+1

rv
+

Vx,y − Vx,y−1

rv

+
Vx,y − Vx+1,y

rh
+

Vx,y − Vx−1,y

rh
. (2)

The vertical resistance between adjacent nodes is r, and the
horizontal resistance between adjacent nodes is k ∗ r, where k
is number 0 < k < ∞, as

rv =r (3)
rh =k ∗ r. (4)

When Ix,y = 0, the voltage at nx,y is

Vx,y =
kVx,y+1 + kVx,y−1 + Vx+1,y + Vx−1,y

2k + 2
. (5)

When a current source is connected to nx,y , this current
can be described in terms of the adjacent node voltages and
corresponding resistors as

Ix,y =
(2k+2)Vx,y−(kVx,y+1+kVx,y−1+Vx+1,y+Vx−1,y)

kr
.

(6)

III. SEPARATION OF VARIABLES

The difference equations (5) and (6) can be solved by apply-
ing separation of variables [18]. A solution for (5) is

Vx,y = exα+jyβ . (7)

By substituting (7) into (5), (5) can be written as

(2k + 2)exα+jyβ = exα+jyβ(kejβ + ke−jβ + eα + e−α) (8)

2k + 2 = k(ejβ + e−jβ) + (eα + e−α). (9)

Using the cosine and sine properties, (9) is

k + 1 = k cos β + cosh α. (10)

When a current source is connected to n0,0 and is assumed to
exit the system at infinity, the following equations are satisfied
due to the symmetry of the mesh structure as follows:

Vx,y = V−x,y = Vx,−y = V−x,−y. (11)

One possible solution to (11) is

Vx,y = e−|x|α cos yβ. (12)

The currents can be described in terms of these voltages. By
substituting x = y = 0 into (6), current i0,0 at n0,0 becomes

i0,0 =
(2k + 2)V0,0 − kV0,1 − kV0,−1 − V1,0 − V−1,0

kr
. (13)
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By substituting (12) into (13), current I at n0,0 becomes

i0,0 = 2(k + 1 − k cos β − e−α)/kr. (14)

By substituting (10) into (14), the current at n0,0 becomes

i0,0 = (2 cosh α − 2e−α)/kr. (15)

By using identities coshx = 1/2(ex + e−x) and sinhx =
1/2(ex − e−x) from Euler’s formula [20], the current expres-
sion i0,0 becomes

i0,0 = 2 sinh α/kr. (16)

Similarly, when y �= 0, current i0,y at n0,y becomes

i0,y =
(2k+2)V0,y−kV0,y+1−kV0,y−1−V1,y−V−1,y

kr
(17)

and by substituting (10) into (17), the current can be rewrit-
ten as

i0,y =
(
(2k + 2) cos yβ − e−α cos yβ − e−α cos yβ

−k cos(y + 1)β − k cos(y − 1)β) /kr. (18)

After applying certain trigonometric identities and
simplifications

i0,y =
(
(2k+2−2e−α) cos yβ−2k cos yβ cos β

)
/kr. (19)

The current i0,y at n0,y is

i0,y = 2(k + 1 − e−α − k cos β) cos yβ/kr. (20)

By substituting (10) into (20) and applying Euler’s formula,
the current at n0,y becomes

i0,y =
2 sinh α cos yβ

kr
. (21)

IV. EFFECTIVE RESISTANCE BETWEEN TWO NODES

The voltage at nx,y is a function of α and β where the
relationship between these two parameters in (10) is in terms
of k. The voltage at an arbitrary node nx,y is the sum of all β
values as follows:

Vx,y =

π∫
0

F (β)vx,y(β)dβ (22)

where F (β) is a function that satisfies a current source at n0,0

and satisfies no current source at n0,y when y �= 0. Thus, all of
the current sources other than at n0,0 are effectively eliminated
[18]. The corresponding current at nx,y is

Ix,y =

π∫
0

F (β)ix,y(β)dβ. (23)

The current at n0,0, by substituting (16) into (23), becomes

I0,0 =

π∫
0

F (β)
2 sinh α

k
dβ (24)

and the current at n0,y , by substituting (21) into (23), becomes

I0,n =

π∫
0

F (β)
2 sinh α cos yβ

k
dβ. (25)

From inspection, F (β) is

F (β) =
kIr

2π sinh α
(26)

to satisfy (22) when only one current source located at n0,0 is
present within the mesh. By substituting (26) and (12) into (22),
the voltage at nx,y becomes

Vx,y =
kIr

2π

π∫
0

e−|x|α cos yβ

sinh α
dβ. (27)

V. CLOSED-FORM EXPRESSION OF THE

EFFECTIVE RESISTANCE

The effective resistance of a mesh between n0,0 and nx,y is

Rx,y = 2(V0,0 − Vx,y)/I (28)

as discussed in Section I. By substituting (27) into (28), the
effective resistance between n0,0 and nx,y becomes

Rx,y =
kr

π

π∫
0

(
2 − e−|x|α cos yβ

)
sinhα

dβ. (29)

Rx,y is solved by dividing the integral into two, and by writ-
ing (29) as a sum of two integrals, Rx,y/r = R1(x,y) + R2(x,y),
i.e.,

Rx,y/r =

√
k

π

π∫
0

(
1 − e−x

√
k|β| cos yβ

)
β

dβ

+
k

π

π∫
0

[
1√

(k + 1 − k cos β)2 − 1
− 1

β
√

k

]
d β. (30)

The first integral R1(x,y) is rewritten in terms of the expo-
nential integral Ein(z) [20], as follows:

Ein(z) =

z∫
0

1 − e−t

t
dβ (31)

and R1(x,y), i.e.,

R1(x,y) = (1/πk)Re
{

Ein
[
π

(√
kx+

)]}
(32)

is numerically solved, and R1(x,y) is

R1(x,y) =

√
k

2π

[
ln(x2 + ky2) + 2(0.57721 + lnπ)

]
(33)

while the second integral R2(x,y) is determined assuming k =
n + ε, as follows:

R2(x,y) =
k

π

π∫
0

((
(n+1−n cos β)2−1

)−1/2− 1
β
√

n

)
dβ

+
k

π

π∫
0

(
−ε

(1−cos β)(n+1−n cos β)

((n+1−n cos β)2−1)3/2
+

ε

2βn
√

n

)
dβ. (34)

A derivation of (34) is provided in the Appendix. The effec-
tive resistance between any two arbitrary nodes Rx,y within a
mesh when k approaches a different constant is listed in Table I.
For instance, the effective resistance when k → 1 is

Rx,y/r =

√
k

2π

[
ln(x2 + ky2) + 3.44388

]
− 0.033425k − 0.0629k(k − 1), for k → 1. (35)
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TABLE I
CLOSED-FORM EXPRESSIONS FOR R1(x,y) AND R2(x,y) WHERE

R(x,y)/r = R1(x,y) + R2(x,y) WHEN k APPROACHES A CONSTANT

TABLE II
ACCURACY OF THE CLOSED-FORM SOLUTION FOR THE EFFECTIVE

RESISTANCE WHEN rv = 1 Ω, rh = k Ω, AND rvia = l Ω

VI. EXPERIMENTAL RESULTS

The accuracy of the proposed effective resistance model is
compared with the exact solution (29) in Table II. Although
the via resistance rvia connecting orthogonal metal layers is ne-
glected in the proposed effective resistance model, for practical
values of rvia (i.e., when rvia is between zero and 5% of the
horizontal or vertical resistance [21]), the proposed effective
resistance model is in good agreement with the experimental
results. The via resistance rvia is modeled as rvia = l · rv . The
maximum error is less than 5% for 1 < k < 10 and 0 < l <
0.05. The error is maximum when the distance between the
two nodes is smallest, and the error decreases with greater
separation between the nodes of interest if rvia is zero. rvia

is neglected in the expressions; the approximation error in the
proposed expressions converges to zero with greater separation
between the nodes of interest. When rvia is nonzero, the error
exhibits a nonmonotonic behavior (i.e. the error does not nec-
essarily decrease with greater separation between the nodes of
interest).

TABLE III
ERROR INDUCED BY THE INFINITE GRID APPROXIMATION FOR

POWER GRIDS WITH DIFFERENT SIZES

Practical mesh structures have finite dimensions. Since an in-
finite mesh is assumed in the development of these expressions,
the error of the proposed expressions is compared with four
differently sized mesh structures (see Table III where k = 1
and l = 0). With increasing separation between the nodes of
interest, the error originating from the infinite grid assumption
naturally increases. Additionally, the error increases when both
nodes of interest are not at the center of the finite grid. In
Table III, both nodes of interest (x, y) = (2, 3) and (x, y) =
(10, 10) are not at the center of the grid. The error is less
than 3% when the nodes of interest are twenty lines from the
boundary.

VII. CONCLUSION

A closed-form expression for the effective resistance of a
two layer mesh structure is presented in this brief. The unit
resistance of the horizontal and vertical metal lines within a
power grid is often different in adjacent orthogonal metal layers
due to the difference in the width and thickness of these metal
lines. The closed-form expression presented in this brief uses
parameter k to model the ratio of the horizontal and vertical
resistances. The closed-form expression provides a fast and
accurate solution to the effective resistance of a two layer
mesh, which can be used to solve a variety of problems found
in different disciplines. Examples include IR voltage drop
analysis of integrated circuits, synchronization and localization
of sensor networks, the effective chemical distance between
bonds, metal mesh interference filters in terahertz physics, and
the commute and cover times of undirected graphs.

APPENDIX

R2(x, y) is simplified to obtain a numerical solution similar
to R1(x, y). Multiple numerical solutions exist for different
values of k. To obtain a general solution of R2(x, y) for all
possible values of k, k is expanded when approaching a positive
real number n. In this Appendix, the second part of the integral
in (30) is simplified by applying a Taylor series expansion
when k → n + ε, where ε � 1 (i.e., when k approaches n) and
certain trigonometric identities. From (30), R2(x,y) is

R2(x,y) =
k

π

π∫
0

[
1√

(k+1−k cos β)2−1
− 1

β
√

k

]
dβ. (36)

By substituting (1 + ε)m ≈ 1 + mε multiple times into (36),
R2(x,y) is simplified to (37)–(40), as shown at the top of the
next page.
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R2(x,y) =
k

π

π∫
0

({
(n + ε + 1 − (n + ε) cos β)2 − 1

}−1/2

− 1
β

(n + ε)−1/2

)
dβ (37)

R2(x,y) =
k

π

π∫
0

⎛
⎝{

(n + 1 − n cos β)2
(

1 + ε
1 − cos β

n + 1 − n cos β

)2

− 1

}−1/2

− 1
β
√

n

(
1 − ε

1
2n

)⎞
⎠ dβ (38)

R2(x,y) =
k

π

π∫
0

((
(n + 1 − n cos β)2 − 1 + 2ε(1 − cos β)(n + 1 − n cos β)

)−1/2

− 1
β
√

n
+ ε

1
2n

√
nβ

)
dβ (39)

R2(x,y) =
k

π

π∫
0

((
(n + 1 − n cos β)2 − 1

)−1/2
(

1 − ε
(1 − cos β)(n + 1 − n cos β)

(n + 1 − n cos β)2 − 1

)
− 1

β
√

n
+ ε

1
2n

√
nβ

)
dβ (40)

R2(x,y) is grouped into two parts as follows:

R2(x,y) =
k

π

π∫
0

((
(n+1−n cos β)2−1

)−1/2− 1
β
√

n

)
dβ

+
k

π

π∫
0

(
−ε

(1−cos β)(n+1−n cos β)

((n+1−n cos β)2−1)3/2
+

ε

2βn
√

n

)
dβ. (41)

R2(x,y) can be numerically determined by assigning n to
a constant. For instance, when k → 1 (i.e., n = 1), the first
and second parts of (41) are numerically determined by, re-
spectively, assigning n = 1 and substituting ε = k − 1. R2(x,y)

becomes

R2(x,y) = −0.033425k

−k(k − 1)
π

π∫
0

(
(1 − cos β)(2 − cos β)

((2 − cos β)2 − 1)3/2
− 1

2β

)
dβ. (42)

The second integral is numerically solved, and the closed-
form expression for R2(x,y) when k → 1 is

R2(x,y) = −0.033425k − 0.0629k(k − 1). (43)

When k approaches another constant, (41) is similarly de-
termined. Closed-form approximations for R1(x,y) and R2(x,y)

are listed in Table I for different values of n, where the effective
resistance Rx,y = R1(x,y) + R2(x,y).
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