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Intracranial cerebrospinal and interstitial fluid (ISF) flow and solute trans-
port have important clinical implications, but limited in vivo access to the
brain interior leaves gaping holes in human understanding of the nature
of these neurophysiological phenomena. Models can address some gaps,
but only insofar as model inputs are accurate. We perform a sensitivity
analysis using a Monte Carlo approach on a lumped-parameter network
model of cerebrospinal and ISF in perivascular and extracellular spaces in
the murine brain. We place bounds on model predictions given the uncer-
tainty in input parameters. Péclet numbers for transport in penetrating
perivascular spaces (PVSs) and within the parenchyma are separated by at
least two orders of magnitude. Low permeability in penetrating PVSs
requires unrealistically large driving pressure and/or results in poor per-
fusion and are deemed unlikely. The model is most sensitive to the
permeability of penetrating PVSs, a parameter whose value is largely
unknown, highlighting an important direction for future experiments.
Until the value of the permeability of penetrating PVSs is more accurately
measured, the uncertainty of any model that includes flow in penetrating
PVSs is so large that absolute numbers have little meaning and practical
application is limited.
1. Introduction
Flow of cerebrospinal fluid (CSF) and interstitial fluid (ISF) in the brain has sig-
nificant implications for waste clearance and drug and nutrient delivery, the
failure of which leads to devastating clinical consequences and has been linked
to ageing and neurodegenerative disease [1–5]. The glymphatic model describes
a system where annular perivascular spaces (PVSs) surrounding arterial blood
vessels provide low resistance pathways that carry CSF into the brain interior
where it mixes with ISF in the parenchyma, delivering nutrients and picking
up waste that is then transported out of the brain via other low-resistance path-
ways, such as venous PVSs, lymphatic vessels and white matter tracts [6,7].

Experimental measurements, including two-photon imaging [6,8–10], transcra-
nial imaging [11], magnetic resonance imaging [12–16] and real-time iontophoresis
[17–20], provide insight regarding glymphatic flow and transport and form the
basis for the glymphatic model; however, each of these measurement techniques
provides only limited access to these flows, leaving gaps in our understanding
and limiting our ability to prevent and treat related pathological conditions. Math-
ematical models provide valuable insight into the mechanisms that drive
glymphatic flows and point out the most important unknown aspects. In particu-
lar, reduced-order network models [21–25] provide insight into how the flows
vary across different parts of system or under different conditions.

Tithof et al. [24] recently developed a network model of the murine glym-
phatic system based on experimental measurements. The model, depicted in
part in figure 1a, is composed of a hexagonal lattice of annular channels repre-
senting pial PVSs on the surface of the cortex, with penetrating arteriole PVSs
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Figure 1. (a) Schematic of the model, including a network of perivascular spaces (PVSs). (b) Schematic of the portion of the model inside the orange dashed box,
showing the direction of flow in the penetrating (red arrows) and capillary PVSs (dark green arrows) and in the parenchyma (purple arrows). PVSs are annular
spaces surrounding blood vessels. (c) Circuit schematic of the regions indicated by the blue and orange dashed boxes in (a). The grey resistors connected to the pial
PVSs inside the blue dashed box represent the conductance of the pial efflux routes CPE, while the grey resistors connected to the parenchymal and capillary routes
in the dashed orange box represent the conductance of the other efflux routes, Cefflux. Cefflux is typically much higher than CPE. Cpar is the combined conductance of
flow through the astrocyte endfeet gaps and the parenchyma, as described by Tithof et al. [24], and is thus represented by two resistors in series in the schematic.
Ccap, Cpen, Cpial are the conductances through capillary, pial and penetrating PVSs.
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branching from the pial PVSs and descending into the cortex.
Each penetrating arteriole PVS is connected to network
elements representing lumped resistance to flow through
capillary PVSs and the parenchyma. The capillary and par-
enchymal elements are modelled as parallel routes, as
illustrated in figure 1b,c. The route representing flow through
the parenchyma consists of two elements in series, account-
ing for the resistance to flow through gaps in the astrocyte
endfeet that form the outer boundary of the penetrating
PVS and the lumped resistance to flow through the parench-
yma, which is modelled as a porous medium.

The model involves 23 parameters representing geometrical
and material properties of the network. While Tithof et al. vali-
dated many aspects of the model, including their idealization of
the vascular geometry, several parameters are largely unknown.
They explored eight scenarios, involving different combinations
of the five parameters with the largest uncertainties, and deter-
mined the most likely parameter regime. However, their eight
scenarios are based on various combinations of approximate
extrema for these five parameters. With only eight scenarios,
it is difficult to know how the uncertain values interact.
Additionally, the parameter values are based on median or
mean values, but all of the parameters have some degree of
natural variation that further complicates their interactions. In
this work, we perform a comprehensive sensitivity analysis to
identify the model parameters whose variations most strongly
affect the results. Our analysis provides insight into how the
different model parameters affect glymphatic flow and points
to the parameters whose accurate future measurement is
most important.
2. Methods
The model in this work is similar to that described by Tithof
et al. [24] with two adjustments. First, in the version described
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by Tithof et al. all of the flow in the pial PVSs enters the penetrat-
ing PVSs and exits through either the parenchyma or the
capillary PVSs. However, it is possible that there is some efflux
from pial PVSs to other routes; for example, flow could enter
venous pial PVSs directly, bypassing the parenchyma [26–28],
or flow could leak out of pial PVSs into the subarachnoid
space through stomata in the PVS walls [29,30] and exit through
the cribriform plate and other perineural routes to reach the
lymphatic system [26]. In order to simulate the effect of pial
PVS efflux, we add an additional exit pathway to each pial
node. Since the potential pial PVS efflux routes are not well
defined, we use the same conductance for all pial efflux path-
ways. We choose a fraction of the total flow which will exit
through pial efflux routes, then set the corresponding conduc-
tance, CPE, which is determined iteratively: CPE is adjusted
until the target fraction of pial flow Epial exits through the pial
efflux pathways.

We impose the limit Epial≤ 0.8 based on the observation by
Lee et al. [31] that 20% of a tracer injected into the cisterna
magna reached the parenchyma. This limit should be thought
of as an absolute upper bound because not all tracer injected
into the cisterna magna will enter pial PVSs (instead, some
directly exits the skull [2,32–34]), so it is likely that a portion of
the 80% of tracer that did not reach the parenchyma never
even entered pial PVSs (this may be a very substantial pro-
portion). It is also important to point out that the fraction of
tracer transported (as reported by Lee et al. ) does not precisely
reflect the fraction of fluid transport; however, if we assume
that solute transport prior to delivery to the parenchyma is domi-
nated by bulk fluid flow, the fraction of fluid delivered will
approximately match the fraction of solute delivered. Solute
transport is clearly dominated by advection due to unidirectional
bulk flow [35,36] (as opposed to transport induced by oscillatory
net zero flow and/or diffusion) in pial PVSs and probably in
penetrating PVSs as well [16,37]. Of course, this bound is only
valid for the conditions in Lee et al. [31]: rats anaesthetized
with dexmedetomidine (0.015–0.020mg −1 kg−1 h−1) sup-
plemented with 0.5–0.8% isoflurane. For other anaesthetics
or states of arousal the relative resistance of both the pathways
leading to the parenchyma and other efflux routes are likely to
change, leading to a different amount of tracer entering the par-
enchyma from the cisterna magna [18,21,38,39]. The efflux
fraction from pial PVSs may also be different in mice than in
rats; we hope future experimental measurements will provide
additional information.

The second adjustment we make to the model is that we
use the expression Schreder et al. [40] calculate for resistance to
flow in the murine parenchyma through an array of arterioles
and venules

Rpar ¼ 0:9563 � m

kpar
� n
lpen

, ð2:1Þ

where μ is the viscosity, lpen = 1000 μm is the total length of the
penetrating arteriole and n = 11 is the number of parenchymal
segments. CSF is well-modelled as Newtonian [41], and the
value we use for viscosity is the same used in the original
model, 7 × 10−4 Pa · s.

In this analysis, we vary 11 of the model parameters, which
are listed and defined in table 1 with the range of values we con-
sider. We chose to vary these parameters because their values are
uncertain (Epial, Γpen, κpen, L, r, Γcap, κcap, κpar, T, Fc) and/or the
values are expected to vary significantly with arousal state and
with location (Γpial, Γpen). All other model parameters are fixed
and are the same as described by Tithof et al. [24]. We use a
Monte Carlo approach as the basis for the analysis. We create
1000 different instances of the model using Latin hypercube
sampling (using the built-in MATLAB function lhsdesign). For
each instance, the 11 input parameters are randomly sampled
from distribution that spans the range in table 1. The distribution
is uniform for parameters with a range that spans less than one
order of magnitude, and the distribution is log-uniform if the
range spans more than an order of magnitude (κpen, κpar, κcap
and Fc). We solve for the volume flow rates and pressures in
each instance of the model in MATLAB, as described by Tithof
et al. [24]. As in their work, the total model driving pressure is
set so that the median pial PVS velocity is 18.7 μm s−1 for each
instance of the model, matching experimental measurements
[9]. This results in similar total volumetric flow rates for all of
the models. For the sensitivity analysis, we focus on how varying
the input parameters changes the total model conductance, C,
which is the inverse of the total model resistance, i.e. C = 1/R.

It is unknown whether the penetrating and capillary PVSs
are open or porous; therefore, the permeability of those spaces
ranges between a lower bound (provided in table 1) and a
value for permeability that produces a resistance equivalent to
flow through an open (non-porous) PVS, as described by
Tithof et al. [24] in their electronic supplementary material. It is
important to note that a permeability value larger than this
bound is non-physical, as it corresponds to a scenario in which
the presence of obstructions (the solid porous media phase)
increase flow speed compared to that of an open, unobstructed
space. Since the permeability corresponding to an open space
depends on the vessel radius and area ratio, the upper bound
listed in table 1 is the effective permeability for the upper
bound on vessel radius and area ratio. For each of the 1000
instances of the model, if the permeability assigned in the initial
Latin hypercube sampling is larger than the permeability
equivalent to an open space for the vessel radius and area
ratio of that instance, the permeability is reduced to the
open-space-equivalent permeability.
2.1. Proportional reduction of error
In order to quantify the effect of each input parameter on the
total model conductance, C, we calculate the proportional
reduction of error for a linear regression fit of the total conduc-
tance as a function of the 11 varying input parameters. We
centre C by subtracting the C value calculated with the midpoint
of the range for every input parameter, which we denote Cm

Ĉj ¼ Cj � Cm, ð2:2Þ
where j ∈ {1, 2,…, 1000} indicates the simulation number.
We denote an arbitrary input parameter as Xi,j, where i∈ {1,
2,…, 11} indicates the variable. We scale the input parameters
so they vary from zero to one; for the linearly distributed
variables,

X̂i,j ¼
Xi,j � li
ui � li

, ð2:3Þ

and for the logarithmically distributed variables,

X̂i,j ¼
log10ðXi,jÞ � log10ðliÞ
log10ðuiÞ � log10ðliÞ

, ð2:4Þ

where li are the lower bounds of the ranges and ui are the upper
bounds, all provided in table 1. It is also useful to name the input
parameter values at the midpoints of their ranges, which for lin-
early distributed variables are

Xi,m ¼ 0:5ðui þ liÞ, ð2:5Þ
and for logarithmically distributed variables are

Xi,m ¼ 100:5ðlog10ðuiÞ�log10ðliÞÞþlog10ðliÞ: ð2:6Þ
We calculate the summed squared error, SSEnone, for the linear
regression fit of ĈjðX̂i,j ), with all variables included. We then
exclude one variable X̂i,j from the fit and calculate the new



Table 1. Parameters and the range of values included in the sensitivity analysis.

input parameters (Xi) lower (li) upper (ui) ref.

pial fraction pial efflux Epial 0 0.8 [31]

pial area ratio Γpial 0.5 2 [9]

penetrating penetrating area ratio Γpen 0.5 2 [9]

penetrating PVS permeability (m2) κpen 4.50 × 10−15 3.71 × 10−12 [16,42]

capillary capillary effective length (m) L 5.00 × 10−5 4.00 × 10−4 [24]

capillary radius (m) r 1.50 × 10−6 4.50 × 10−6 [43]

capillary area ratio Γcap 0.07 0.36 [44,45]

capillary PVS permeability (m2) κcap 2.25 × 10−18 4.66 × 10−14 [22,46]

parenchymal parenchymal permeability (m2) κpar 1.20 × 10−17 4.50 × 10−15 [42,47]

endfoot wall thickness (m) T 2.00 × 10−7 1.00 × 10−6 [48]

endfoot cavity fraction Fc 0.003 0.37 [48,49]
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summed squared error, SSEi. The proportional reduction of error,

PREi ¼ SSEi � SSEnone

SSEnone
, ð2:7Þ

indicates, with a single number, how dependent a linear
regression fit of C is on the input parameters across the entire
parameter space.
2.2. Local sensitivity analysis
In order to determine how the sensitivity varies across the par-
ameter space, we also calculate the local sensitivity for each of
the 1000 instances of the model. We do this using a forward
difference approach, where we perturb the value of each input
parameter one at a time while holding all other parameters con-
stant, then divide the amount C changes by the perturbation
amount. We use two different measures of local sensitivity: we
perturb the input parameters by increasing them by either 5%
of the range (range sensitivity) or 5% of the value of the par-
ameter (value sensitivity). We normalize the change in total
model conductance ΔCi,j by the total model conductance Cj for
the jth instance of the model, and we normalize the change in
the variable ΔXi,j by either the range (indicated by subscript r)
or the value of the parameter (indicated by subscript v):

@C
@Xi

� �
r
¼ DCi,j=Cj

DXi,j=ðui � liÞ , ð2:8Þ

and

@C
@Xi

� �
v
¼ DCi,j=Cj

DXi,j=Xi,j
: ð2:9Þ

These two different measures of local sensitivity offer differ-
ent, complementary insights into the model. Perturbing and
normalizing by a fraction of the range (range sensitivity (∂C/
∂Xi)r) elucidates how the size of the range, or the uncertainty
of each parameter, affects the output. The range sensitivity indi-
cates how changing an input variable by 5% of the range changes
the output, C. If we do not know the value of a parameter very
precisely (a large input range), a variation of 5% of the range will
result in large changes in the output, C. In standard uncertainty
theory, the uncertainty of a parameter can be estimated using the
Taylor Series method, where uncertainty due to each component
is calculated by the change in the output parameter with respect
to the input parameter multiplied by the uncertainty of that
component, i.e. U2
C ¼ P

ið@C=@XiÞ2U2
Xi

where U is the uncer-
tainty. If we consider the range to be the uncertainty of each
input parameter, then normalizing the perturbation amount
ΔXi,j (in the denominator) by dividing by the range is equivalent
to multiplying ∂C/∂Xi by the uncertainty. Therefore, the range
sensitivity can be considered an estimate of the uncertainty in
C due to each input parameter.

However, if we are less concerned with the uncertainty in a
parameter or are not confident in the range, we can perturb
and normalize by a per cent of the parameter value (value sensi-
tivity, (∂C/∂Xi)v). The value sensitivity tells us how much
changing the input by 5% changes the output, C, and is indepen-
dent of the range. This is a useful feature if we do not have high
confidence in the range or if we know the value more precisely
than indicated by the range (e.g. if future experimental measure-
ments estimate the unknown value with greater precision). To
summarize, the range sensitivity provides a practical indication
of how the uncertainty in each input parameter affects the
model, while the value sensitivity indicates how sensitive the
model is to each input parameter, independent of its range.
2.3. Speed and Péclet number
We calculate the flow speed u by dividing the absolute value of the
volume flow rate in each segment by the area, u = |Q|/A. For the
penetrating and capillary segments, the area A is the PVS cross-
sectional area. For the parenchymal segments, A is the surface
area through which fluid entering the parenchyma exits the
penetrating PVS, i.e. A ¼ pdpen

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gpen þ 1

p� �ðlpen=nÞ, where
dpen

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gpen þ 1

p
is the diameter of the penetrating PVS outer wall

and lpen/n is the length of each penetrating PVS segment. Note
that since parenchymal flow is modelled as planar and flows
radially outward from the penetrating PVS in the transverse
plane, this is the maximum velocity in the parenchyma. We
report the median speed for each type of segment.

We define the Péclet number for each type of segment as

Pe ¼ UL
Deff

, ð2:10Þ

where U is the median velocity for each segment type as
described above, L is the characteristic length of the segment
and Deff is the effective diffusivity. We use the median velocity
to calculate Pe, but the velocity for each segment type varies
widely, with velocity generally decreasing with depth into the
parenchyma as more fluid exits through other pathways.
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However, the median velocity is a convenient measure to provide
a general estimate of the relative importance of advection and
diffusion. The characteristic lengths are L ¼ 1000mm for the
penetrating PVSs, L ¼ L for the capillary PVSs, and L ¼ 128mm
for the parenchymal segments, which is the average nearest-
neighbour distance between murine arterioles and venules in
data provided by Blinder et al. [40,50].

We calculate Pe for monomeric amyloid-β, for which the free
diffusion coefficient is D = 1.35 × 10−10 m2 s−1 [51]. For flow
through the parenchyma, we calculate the effective diffusivity,
Deff, by dividing D by the square of the tortuosity, which
accounts for the fact that the diffusion occurs in a porous
medium

Deff ¼ D
l2

, ð2:11Þ

where the tortuosity λ = 1.6 [52]. Ray et al. estimated that λ = 1.85
[17], which would make Pe 30% higher. It is unclear whether
penetrating and capillary PVSs are open or porous: if they are
porous, the tortuosity would likely be different from that of par-
enchymal brain tissue. Here, we use Deff =D for the penetrating
and capillary PVSs, assuming them to be open, but if they are
porous, Pe would be greater: for tortuosities of 1.6 or 1.85, Pe
would increase by a factor of 2.6 or 3.4, respectively.
57
2.4. Exclusion criteria
Some combinations of variables in the parameter space result in
scenarios that behave unrealistically; we can eliminate those
scenarios, further narrowing the parameter space. For example,
some combinations of variables require driving pressures that
are unreasonably large. The network model is based on conduc-
tance of the various segments and therefore is independent of the
driving mechanism, but it is unlikely that any mechanism will
produce a pressure drop larger than 1mmHg across the entire
network model. Another requirement of the glymphatic model
is that flow must reach the deeper levels of the cortex, producing
reasonably uniform CSF perfusion. We expect reasonably uni-
form perfusion based on evidence of tracer penetration into the
cortex and evidence that flow is important for metabolic waste
removal, as suggested by Tithof et al. [6,12,14,18,24,53–58]. There-
fore, we suggest that scenarios in which more than 50% of the
flow that enters penetrating PVSs exits the cortex in the first
90 μm below the surface (ϕ90 > 0.5) are unlikely. We calculate
ϕ90 as

f90 ¼
Qcap,90 þQpar,90

QPVS
, ð2:12Þ

where QPVS is the total flow into the penetrating PVS and Qcap,90

and Qpar,90 are the total flow that enters the capillary and par-
enchymal routes in the first 90 μm below the surface. In some
of the results discussed below, we use these two requirements,
a driving pressure drop greater than 1mmHg or more than
50% of the flow exiting by the first 90 μm below the surface, to
identify combinations of parameters that behave unrealistically,
thus narrowing the parameter space.
3. Results
3.1. Proportional reduction of error
We show the proportional reduction of error for a linear
regression fit of total model conductance in figure 2a. The
proportional reduction of error indicates how much exclud-
ing a variable impacts the goodness of a linear regression
fit of total model conductance, C, as a function of the input
parameters. Across the parameter space, the parenchymal
permeability κpen has the largest influence on the fit of C.
When κpen is excluded from the linear regression, the sum
squared error is more than 50% larger. The large influence
of κpen is due in part to the fact that the range of values of
κpen in the Monte Carlo simulation spans almost three
orders of magnitude. Other input parameters, such as the
capillary PVS permeability and the parenchymal per-
meability, also have large ranges of possible values, but the
flow that passes through the penetrating PVSs is split
between the capillary PVSs and parenchyma. In other
words, the resistances to flow in the parenchyma and capil-
lary PVSs are connected in parallel with each other but
connected in series with the resistance to flow in the penetrat-
ing PVSs, so capillary/parenchymal resistances and their
associated parameters have less influence those of the pene-
trating PVSs. Relative to the other parameters, the
parenchymal permeability is also important, as is the fraction
pial efflux.

The simplicity of the proportional reduction of errormakes
this approach a convenient way to estimate model sensitivity.
However, it is an indirect measure of the single-parameter
sensitivity, because it indicates how excluding each parameter
affects the linear regression fit, rather than how each par-
ameter contributes to C directly. Furthermore, because the fit
covers the entire parameter space, it does not capture how
the sensitivity varies across the parameter space.
3.2. Local sensitivity
In order to demonstrate how the sensitivity varies across the
parameter space, we show the local sensitivity for all 1000
instances of the model in figure 2b,c. Figure 2b shows box
plots of the local range sensitivities for all 1000 instances of
the model. The range sensitivity shows how much perturbing
each input variable with respect to its range changes the total
model conductance; for example, a sensitivity of 10 indicates
that changing Xi by 1% of its range results in a 10% change in
C. When considering the range sensitivity, κpen is not only the
most sensitive parameter overall, as indicated by the PRE
analysis, but it is also very sensitive in most of the 1000
instances of the model, meaning it is important at most
points in the parameter space. Though the sensitivity varies
widely across the parameter space, the median sensitivity is
280, i.e. a variation in κpen of 1% of its range changes C by
280%; thus, we can have little confidence in C without greater
confidence in κpen. This result highlights the need to reduce
the uncertainty in κpen in order to accurately model glympha-
tic flows. Normal physiological changes and the uncertainty
associated with other parameters have relatively little influ-
ence on C when compared with the influence of κpen. C is
also moderately sensitive to parenchymal permeability κpar,
and the pial efflux fraction Epial is consistently sensitive
across the entire parameter space.

It is also instructive to determine how the local sensitivity
changes when normalized with respect to the value of each
variable (i.e. the value sensitivity), rather than its range. Cal-
culating sensitivity in this manner shows how perturbing a
given input parameter affects the total model conductance;
for example, a sensitivity of two indicates that changing Xi

by 1% of its value will result in a 2% change in C. In figure
2c, we show that, when considering the value sensitivity,
κpar is still important, but the penetrating PVS area ratio
Γpen is also important. The total conductance is also relatively
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Figure 2. (a) The proportional reduction of error (PRE) for a linear regression fit of total model conductance, showing that across the entire parameter space, the
model is most sensitive to the penetrating PVS permeability, κpen. (b) Box plots indicating the median, interquartile range, full range and outliers of the local range
sensitivities. The penetrating PVS permeability is not only the most sensitive input parameter, but it is relatively sensitive across all instances of the model, covering
a large parameter space. (c) Box plots of the local value sensitivities. When not accounting for the large uncertainty associated with penetrating permeability, other
parameters are also important. (d ) The distribution of capillary flow fractions across the 1000 instances of the model. Regardless of which (range or value) sensitivity
is used, capillary PVS flow variables have relatively little influence on the total conductance because parenchymal conductance always dominates, so the majority of
the flow passes through the parenchyma.
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sensitive to the pial efflux fraction, and in some cases it is
very sensitive, with sensitivities as high as 3 and 4. This
occurs in cases where the pial efflux fraction is large, meaning
a larger fraction of the flow is exiting the pial PVS and not
entering the penetrating PVS, and the resistance through
other pathways is relatively low, requiring an extremely
high pial efflux conductance in order to draw the flow.

The total model conductance is relatively insensitive to
changes in parameters related to capillary PVS flow for
both the range and value sensitivity. This is because in 80%
of the cases simulated, less than 1% of the flow in the pene-
trating PVS exits through the capillary PVSs, as we show in
figure 2d. In the network model, flow through the parench-
yma and capillary PVS routes are in parallel, so the
capillary PVS flow fraction is exactly related to a ratio of
the capillary PVS conductance and the sum of the capillary
PVS and parenchymal conductances

Qcap

Qpar þQcap
¼ Ccap

Cpar þ Ccap
: ð3:1Þ

Across the large parameter space, we are investigating, most
of the flow exits through the parenchyma rather than the
capillary PVSs, and the parenchymal conductance dominates
the equivalent conductance of the parallel exit routes, so
changes in capillary conductance have little impact on the
overall conductance.
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In order to gain more insight into the relative importance
of the different model parameters, we rank their local per cent
sensitivities for each of the 1000 cases we simulate. In
figure 3a, we show for which fraction of the simulations
each variable is the most sensitive (based on the value sensi-
tivity). No variable is the most sensitive in the majority of
cases. The pial efflux fraction and penetrating area ratio are
each the most sensitive in about one-third of the cases. Inter-
estingly, κpen is never the most sensitive variable, although it
is often the second most sensitive, as demonstrated in figure
3b, which shows the distribution of rank for each variable.
The sensitivity of the penetrating PVS conductance to κpen
is identical to the sensitivity to Γpen, but Γpen also appears
in the expression for the conductance through the endfeet
gaps, and thus the total model conductance is always more
sensitive to Γpen than κpen.

Which variable is most sensitive depends on where the
model lies within the parameter space. For several of the par-
ameters, particularly the highly uncertain ones, the sensitivity
is strongly dependent on the value of the parameter; they are
highly nonlinear since their first derivatives change across their
ranges. For example, as we show in figure 4,κpen, κpar and Fc
are very sensitive near their lower bounds but relatively insen-
sitive near their upper bounds, while Epial is more sensitive as
it approaches its upper bound but less sensitive near its lower
bound. As these variables approach the ends of their range,
they often become the crucial factor that dominates the total
conductance, making them the most sensitive variable. Exper-
iments that narrow the range of uncertainty of these four
variables would greatly improve the accuracy of the network
model or any model of CSF flow in the cortex that includes
these properties.

The area ratios Γpial and Γpen do not change sensitivity
systematically across the range. The noisy plots of the value
sensitivities shown in figure 4 suggest that they have strong
interactions with other variables. The remaining parameters
(L, r, Γcap, κcap and T) have low sensitivities across their
ranges.
3.3. Speed and Péclet number
The median speed for each segment type is shown in
figure 5a. Though the speeds vary widely due to the large
ranges of the input parameters, the majority of the simu-
lations predict significant differences in speeds between
penetrating PVSs and the parenchyma. Speed generally
decreases with increasing pial efflux fraction, as less fluid
enters the penetrating PVSs, and yet even when 80% of the
fluid is exiting at the pial level and not entering the penetrat-
ing PVS, the speeds predicted in the penetrating PVSs and
parenchyma are not negligible. Speeds in penetrating and
capillary PVSs have not been measured directly, so models
such as this one provide useful predictions, and the range
of speeds can be narrowed as the uncertainty of the input
parameters is reduced. We plot flow speeds predicted in pre-
vious studies with dashed lines for comparison, and we
discuss the comparison further in the Discussion.

We show the Péclet number, Pe, for penetrating, capillary
and parenchymal segments of the network for all 1000 simu-
lations in figure 5b. When Pe≫ 1, we expect amyloid-β
monomers to be transported primarily by advection, whereas
when Pe≪ 1, we expect transport to be primarily by diffu-
sion. For reference, the Péclet number in pial PVSs is 72 for
all simulations (using a characteristic length of 525 μm, the
length of pial PVS segments in our model) since the
median velocity in the pial PVSs is always 18.7 μm s−1.
Given the large uncertainty associated with the parameters,
it is not possible to rule out either advection or diffusion as
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a potentially significant contributor to mass transport in the
penetrating PVSs because in approximately a quarter of the
simulations, 0.1 < Pe < 10, indicating that both modes of trans-
port are significant. However, even with the large uncertainty,
across the large parameter space we explore, 90% of simu-
lations have Pe > 0.1 in the penetrating PVSs, indicating that
advection likely plays a significant role in mass transport in
the penetrating PVSs, even if it is not the dominant mode.
The finding that advection plays a significant role in transport
in penetrating PVSs is consistent with work from Iliff et al.
who found that molecules of very different sizes (less than
1 kDa and approx. 200 kDa) had similar rates of transport,
which suggests that advection, rather than diffusion, is dom-
inating transport [37]. Fewer than 1% of the capillary PVSs
and none of the parenchymal spaces have Pe > 10, indicating
that diffusion most likely plays the dominant role in mass
transport in capillary PVSs and the parenchyma, at least for
amyloid-β monomers. Thirteen per cent of the simulations
have parenchymal Pe > 0.1, and none have Pe > 1, so while
bulk flow likely exists in the parenchyma, advection likely
plays a smaller role than diffusion in transport of amyloid-
β-sized molecules and smaller. This agrees with Koundal
et al. [55], who found evidence that diffusion plays a
significant role in transport in the brain parenchyma.
3.4. Exclusion criteria
The amount of fluid that reaches the deeper levels of the cortex
and the uniformity of perfusion along the cortical depth is
determined by the ratio of the conductance in the penetrating
PVS (into the cortex) and the combined conductance of trans-
verse routes (capillary PVSs and parenchyma). In the network
model, the segments of penetrating PVS, capillary PVS, or par-
enchyma are identical, so even though the flow rate in each
penetrating PVS is different, the fraction of transverse to pene-
trating flow at each level of the cortex is identical and depends
explicitly on the ratio between the combined conductance
Cb ¼ Ccap þ Cpar and the penetrating PVS conductance Cpen.
We show the cumulative flow fraction, or total amount of
fluid that exits penetrating PVSs within a given cortical
depth, as a function of the ratio Cb=Cpen in figure 7a. When
the penetrating PVS conductance Cpen is large relative to the
combined conductance of parenchymal and capillary segments
Cb, the amounts of fluid that enter the capillary and parenchy-
mal routes at each level of the cortex approach equality. As
Cb=Cpen approaches zero, the perfusion becomes perfectly uni-
form, with the same amount of fluid perfusing into capillary
PVSs and/or parenchyma at every level of the cortex.

To this point, the results have included all 1000 scenarios.
However, some combinations of variables result in scenarios
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that behave unrealistically, requiring large pressure drops or
exhibiting non-uniform perfusion. Of the 1000 different scen-
arios we simulated, 550 meet the requirements of a total
driving pressure drop less than 1mmHg and less than 50% of
the flow exiting in the first 90 μm of the cortex. We can exclude
the remainder and thereby narrow the parameter space. One
straightforward requirement is that Cb=Cpen , 5:5, which can
be obtained from the plot of Cb=Cpen in figure 6a, as indicated
by the dashed vertical line. However, since Cpen and Cb both
involve several variables, this does not provide much insight.
In figure 6b, we show the scenarios that meet the criteria in
blue and those that do not in red. No scenario with a parench-
ymal permeability less than 1 × 10−14 met the inclusion criteria.
Also, as the pial efflux fraction decreases, the minimum viable
permeability also increases. The dashed line approximately
delineates the region containing scenarios that are never viable.

In figure 7a,b, we show the box plot of the local sensi-
tivities with and without the excluded scenarios, for
comparison. The overall distribution of sensitivities is not sig-
nificantly different, so the points raised in relation to figure 2c
are still applicable. However, there are some noteworthy
differences. First, the median sensitivities for both Γpen and
κpen are lower because simulations with small κpen are
excluded and, as we show in figure 4, C is most sensitive to
κpen when it is small. When κpen is small, the conductance
in the penetrating vessels dominates the total conductance,
and κpen and Γpen become the most important. By eliminating
scenarios where the penetrating PVS conductance dominates
(which leads to large pressure drops and large perfusion), the
median sensitivity of κpen and Γpen is reduced. This line of
reasoning leads to an important conclusion: if κpen is closer
to the high end of its range, e.g. if the penetrating PVS is
an open space, the penetrating PVS conductance would
not dominate and κpen and Γpen would not be the most
sensitive parameters.

Second, Γpial κpar, T and Fc have higher median sensi-
tivities. The sensitivity of C to other parameters is low
when the penetrating PVS conductance dominates C, so by
eliminating those simulations, we increase the median sensi-
tivities of the other parameters. The increase in median
sensitivity is most dramatic for Γpial, which now becomes
the most sensitive parameter in most cases.

We also show spread of the Péclet number Pe, after
imposing exclusion criteria, in figure 7c. The simulations
with very low Pe are eliminated, and the conclusion about
the relative importance of advection and diffusion in the
penetrating PVSs is strengthened: in penetrating PVSs, Pe >
1 in all of the simulations and Pe > 10 in 91% of the simu-
lations, suggesting advection likely dominates transport
there. In the capillary PVSs and parenchyma, we find 0.1 <
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Pe < 10 in 29% and 17% of the simulations, respectively, so we
cannot say that diffusion dominates, nor can we say that
advection does not play a role, nor can we very decisively
say that they both play a role.
4. Discussion
The proportional reduction of error and the range sensitivity
indicate how the input parameter ranges, which reflect their
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uncertainty or natural variation, affect the total model con-
ductance. Both the proportional reduction of error and the
range sensitivity clearly show that the variations in κpen
with respect to its range have the largest impact on C. With-
out narrowing the range of possible values for κpen, we can
have little confidence in C. Variations and uncertainty in
other parameters are relatively unimportant in the face of
the uncertainty in κpen, which must be reduced in order to
accurately model glymphatic flows.

Since one of the primary conclusions of this work is the
importance of reducing the uncertainty associated with
κpen, we describe here the work that has already been done
to estimate κpen and how more accurate measurements
might be obtained in the future. The true value of κpen was
suggested to be approximately that of the upper bound by
Tithof et al. [24] based on the following reasoning. Basser
et al. [42] performed experiments that estimated the parench-
ymal (not penetrating PVS) permeability at 4.5 × 10−15 m2,
but Holter et al. [47] estimated the parenchymal permeability
as 1.2 × 10−17 m2 based on a numerical reconstruction of the
neuropil, and they speculated that the discrepancy with the
findings of Basser and other experimental studies could be
attributed to fluid escaping to high-permeability pathways
such as penetrating PVSs in those experiments. Tithof et al.
supposed that the value of 4.5 × 10−15 m2 from Basser et al.
[42] accurately represents the penetrating PVS permeability
and used that as their lower bound. The upper bound is
based on the possibility that penetrating PVSs are open—as
pial PVSs have been shown to be [59]—rather than porous.
Ray et al. conducted a quantitative analysis of murine DCE-
MRI data to estimate the relative contributions of advection
and diffusion, determining that the large transport rates
they observed suggest that the large penetrating PVSs are
open [16]. Others that have estimated penetrating PVS per-
meability have used values that fall in between these upper
and lower bounds [22,60]. Reliable permeability measure-
ments are challenging to obtain. Permeability values based
on ex vivo measurements are questionable due to the changes
in the extracellular space that occur after death and during
fixation; consequently, permeability can only be estimated
using numerical reconstructions such as those of Holter
et al. [47] or Jin et al. [61]. Both groups used the same ex
vivo data from Kinney et al. [62] but implemented different
approaches, obtaining permeability estimates that differed
by a factor of 72. Mestre et al. [9] provided strong evidence
that perfusion fixation dramatically alters the size of PVSs,
so estimates of penetrating PVS permeability based on ex
vivo measurements would be highly unreliable. Estimating
the permeability using this approach in vivo is challenging
due to the high-spatial-resolution required. Though estimates
of permeability based on ex vivo samples would not be
reliable, examining ex vivo samples of penetrating PVSs
might offer insight into whether the spaces are open or
porous, narrowing the uncertainty associated with κpen.
Another method for measuring the permeability would be
to track particles in the penetrating PVS: this method could
also at least determine whether penetrating PVSs are open
or porous, as described by Min Rivas et al. [59], narrowing
the uncertainty associated with κpen. However, the 1 μm par-
ticles they used do not enter penetrating PVSs, which may
indicate that the penetrating PVSs are porous, and if so, smal-
ler particles would be required. Another exciting possibility is
the approach of Ray et al. [16], who used in vivo MRI to
estimate effective diffusivities in different regions of the
brain and from that inferred velocities and Pe. Their approach
could potentially be refined to narrow the possible range of
penetrating PVS permeability.

This sensitivity analysis is based on the model described
by Tithof et al. [24]. However, given the uncertainty surround-
ing several of the geometrical and material properties
governing flow of CSF in the cortex, it is important to perform
a rigorous sensitivity analysis on any model of glymphatic
flow. Some of the conclusions from the sensitivity analysis pre-
sented here also apply to other models. For example, the
impact of the uncertainty in κpen is applicable to any model
that includes flow in the penetrating PVSs. Faghih & Sharp
[25] use a reduced-order approach to model flow in PVSs,
although they did not distinguish between pial and penetrat-
ing PVSs and used a branching network, in contrast to our
hexagonal latticewith branching penetrating PVSs. Theymod-
elled both open and porous PVSs and also found a large
difference (a factor of 667) in the required driving pressure
when using a permeability of 1.8 × 10−14 m2, supporting the
conclusion that reducing the uncertainty of the PVS per-
meability is critical for modelling glymphatic flows. Though
some of the conclusions from the sensitivity analysis presented
here are specific to this model, they illustrate the importance of
performing rigorous uncertainty analysis on any model.

We can use the value sensitivity to consider how temporal
changes in model parameters, such as those that occur with
changes in arousal state or pathological conditions, affect C.
Glymphatic clearance is known to change with arousal and
anaesthetic state [11,15,18,39,63]. Xie et al. [18] showed that
the parenchymal permeability changes with arousal state,
but it has been hypothesized that other parameters may
also change. From figure 2c, we can see how changes in
these parameters would affect glymphatic flow and speculate
about their potential for driving the changes observed
between sleep and wake. It has been shown that the gaps
in the astrocytic endfeet may change in space and hypoth-
esized that the gaps may also change in time as a means of
regulating glymphatic flow [64], and indeed, the endfoot
cavity fraction Fc, which is related to the endfoot gap size,
is very sensitive for scenarios where the gap size is very
small. In these cases, the endfoot gap conductance is very
small and dominates the total conductance, precisely control-
ling glymphatic flow. However, this level of sensitivity occurs
only for relatively small gaps in the endfeet; if the gap size is
large, as estimated by Korogod et al. [49] (who fixed their
samples by snap freezing rather than by chemical fixation),
the endfoot gap conductance is large and C is relatively
insensitive to changes in Fc. Another intriguing possibility
is that Γpen changes with arousal state. For most scenarios
modelled, C is considerably more sensitive to changes in
Γpen than κpar. In contrast to measuring changes in endfoot
gap size T, which is challenging to image in vivo because
the gaps are so small, measuring how Γpen changes with
arousal state is relatively straightforward and can be
accomplished with two-photon imaging.

It is noteworthy that even when 80% of the fluid is exiting
at the pial level, there are many simulations where Pe > 0.1 in
the penetrating PVS, indicating flow is sufficiently fast such
that advection plays a significant role in transport, and
there are some simulations where Pe > 10, indicating that
advection dominates transport. The presence of significant
pial efflux does not eliminate the possibility that flow in the
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penetrating PVSs plays an important role in transport. Ray
et al. also find that advection plays a role in transport of gado-
teridol (which has a similar diffusivity to monomeric
amyloid-β [16]) in brain tissue, which includes the penetrat-
ing PVSs. We report Pe for monomeric amyloid-β, but Pe
for other substances will scale linearly with the diffusivity.
Pe will be reduced for smaller solvents (e.g. sucrose) and
increased for larger solvents (e.g. tau). The diffusion coeffi-
cient for the 1 μm tracer particles often used to measure
CSF speeds is D = 6.55 × 10−13 m2 s−1 [9], which would
result in Pe values 200 times larger than in figure 5.

In this work, we focus on the sensitivity of the total model
conductance, C, to the various input parameters because C
provides a single number related to overall glymphatic flow
and is directly related to the total driving pressure. However,
the sensitivity of other output variables could also be con-
sidered. We calculated the sensitivity of penetrating PVS
flow fraction that exits in the first 90 μm of the cortex (ϕ90).
Since ϕ is the penetrating PVS flow fraction, the parameters
related to flow in pial spaces, Epial and Γpial have no impact
on ϕ90. The relative sensitivities to the other parameters are
similar to that for C.

In our analysis, the range over which we vary the par-
ameters in some cases, like κpen, represents the large
uncertainty in the value of the parameter, while in other
cases, like Γpial, the average value of the parameter is rela-
tively well quantified and the range represents the degree
of natural variation expected. Our different simulations
characterize the impact of changing the average value of
each parameter, not the effect of different distributions of
each parameter throughout space. Indeed, in our model, the
segment types (pial, penetrating, capillary and parenchymal)
are homogeneous throughout the network. In reality, many
parameters likely vary throughout the cortex, such as the
penetrating vessel diameter (which narrows with cortical
depth). Including variation in the model by assigning the par-
ameters according to a statistical distribution, for example, is
not expected to significantly change total model quantities
like pressure or conductance, but the variation in pressure,
flow, velocity and Pe between different segments of the
model would be larger. Exploring the impact of spatially
varying parameter values throughout the model, particularly
for parameters for which we show conductance is especially
sensitive, would be valuable future work. Wang et al. [64]
show that astrocyte endfeet vary with vessel diameter, and
they suggest, based on their modelling, that the variation in
endfoot size leads to uniform perivascular–interstitial flux,
as mentioned above. It would also be interesting to explore
how varying the astrocyte size affects flows in this model.

Ray et al. [16] analysed the in vivo spread of contrast in a
murine brain based on DCE-MRI and estimated a velocity of
3.3 μm s−1 for regions of tissue that include both the parench-
yma and microvessels, which correspond to the penetrating
and capillary PVSs and brain parenchyma in our model. In
their analysis, they lumped parenchymal tissue and small
PVSs together because the spatial resolution did not enable
differentiation. Across the wide parameter space, none of
the simulations in our analysis have parenchymal velocities
as large as the 3.3 μm s−1, while many of the simulations
have penetrating PVS speeds around 3.3 μm s−1, supporting
their inference that the rapid transport they observed comes
from flow in penetrating PVSs. The parenchymal flow
speeds agree well with estimates from both a separate
study by Ray et al. [17] and one by Holter et al. [47] (see
velocity estimates near the PVS wall in their figure 3).

The parameter values in the hydraulic network model are
based on the murine brain, for which measurements of anat-
omy and material properties are more readily available, but
the parameter values, including the number of pial gener-
ations, could be adjusted to model flow in a human brain.
Adjusting the model would be challenging because it is
unclear how the parameters scale between species. Even with-
out knowing how the parameters scale, one conclusion from
the sensitivity analysis still applies: it is critical to determine
the nature of penetrating PVSs (open or porous, and if
porous, the permeability) in order to accurately model glym-
phatic flow. A model for flow in the human brain could offer
valuable insight into important clinical applications, such as
drug delivery, and how glymphatic transport is affected by
changes in the brain, whether normal (e.g. sleep, ageing) or
pathological (e.g. Alzheimer’s disease, traumatic brain injury).
5. Conclusion
Based on a Monte Carlo sensitivity analysis for 11 of the 23
parameters in a network model of glymphatic flow, we ident-
ify the parameters that have the greatest influence on total
model conductance, C. From the proportional reduction of
error (PRE), we show that across the large parameter space
we explore, C is most sensitive to the penetrating PVS per-
meability, κpen. We also calculate the local sensitivity for
each parameter and show that not only is penetrating PVS
permeability the most sensitive overall, it is sensitive across
the entire parameter space, indicating that it is important
regardless of the value of the uncertain parameters. The
high sensitivity of C to κpen is due to the large uncertainty
associated with κpen and indicates that κpen is the most impor-
tant parameter to measure experimentally in order to
improve the accuracy of the glymphatic network model.
Without more accurate measurements of κpen, the uncertainty
of model predictions is so large that absolute numbers have
little meaning, limiting the practical utility of this and any
model that includes flow in penetrating PVSs.

We also calculate the local value sensitivity, which is inde-
pendent of the parameter range. Calculating the sensitivity in
this way shows how much changing each parameter value
changes the total conductance. When defining the sensitivity
in this way, κpen is still important, but the penetrating PVS
area ratio Γpen also has a large influence, and for some
instances of the model (those with large pial efflux), the
pial efflux fraction also has a large influence. Regardless of
how the sensitivity is calculated, variables related to capillary
flow have very little influence on the conductance because
the capillary PVS flow is parallel to the parenchymal flow,
and the latter route almost always dominates. Ranking the
local value sensitivity for each variable shows that the pial
efflux fraction and Γpen are each the most sensitive parameter
in about one-third of the cases.

We calculate the median Péclet number in the penetrating
and capillary PVSs and parenchyma, and show that advec-
tion likely dominates transport of monomeric amyloid-β in
penetrating PVSs, but advection plays a much smaller role
in transport in the parenchyma since Péclet numbers in the
parenchyma are more generally at least two orders of magni-
tude lower than Péclet numbers in the penetrating PVSs. We
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show that approximately half of the simulated cases require
driving pressures that are unrealistically large or do not
permit perfusion of tissue deep in the cortex. Penetrating
PVS permeability κpen < 1 × 10−14 m2 and the combination
of small κpen and low Epial are unlikely because they would
require unrealistically large pressure drops and would not
permit good perfusion, thereby narrowing the large par-
ameter space. Other (or more restrictive) exclusion criteria
could be used to reduce the parameter space even more.
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