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Spatiotemporal persistence of spectral fluxes in two-dimensional
weak turbulence
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Using a recently developed filtering technique, we study the spatiotemporal properties of the scale-

to-scale fluxes of energy and enstrophy in a weakly turbulent experimental quasi-two-dimensional

flow. Although these spectral properties vary in time and space, we show that they persist along the

Lagrangian trajectories of fluid elements for times that can be nearly as long as the correlation time

of the velocity field itself. Additionally, we show that at small scales, the spectral energy flux persists

longest for fluid elements in strongly hyperbolic regions of the flow, whereas at large scales it

persists in strongly elliptic regions. VC 2011 American Institute of Physics. [doi:10.1063/1.3657086]

I. INTRODUCTION

One of the hallmarks of nonlinear systems is coupling

and interaction among different length scales. Nonlinearities

in real space lead to nonlocalities in Fourier space, which mix

contributions from different wavenumbers. In fluid flows, the

nonlinear advective term in the Navier–Stokes equations intro-

duces interactions between wavenumber triads that transfer

energy and momentum between scales. In three-dimensional

turbulent flow, these triad interactions self-organize to drive

the classic Richardson–Kolmogorov energy cascade and pro-

duce a net spectral flux of energy from large to small scales.

In two-dimensional flow, the situation is qualitatively similar

but with a key distinction. In two dimensions and in the limit

of vanishing viscosity, enstrophy (that is, the square of the vor-

ticity x, where vorticity is the curl of the velocity) is con-

served in addition to energy. This property of two-dimensional

flow leads to the Kraichnan–Leith–Batchelor theory of two-

dimensional turbulence,1–3 which predicts a double-cascade

scenario: energy flows via an inverse cascade from the injec-

tion scale to larger length scales (where it is dissipated by

large-scale friction), and enstrophy flows via a direct cascade

to smaller scales (where it is dissipated by viscosity).

Experimental4–7 and numerical8,9 studies have long sought to

confirm this scenario with measurements of power spectra and

the other standard tools of statistical fluid mechanics.

Though power spectra and related quantities do give

insight into the spectral transport of energy and enstrophy,

recently developed filter-space techniques (FSTs)6,10–14 can

give much more. Adapted from large-eddy simulation,15

FSTs allow the direct calculation of the spatiotemporally

resolved spectral flux.11 One pioneering study showed that

FSTs indicate a double cascade even when fully developed

inertial ranges are not apparent in the energy spectrum.6

Other work linked the instantaneous spectral transport to the

relative orientation of the small-scale stress and large-scale

strain-rate tensors12,13,16 or to vortices and filaments.17 These

observations were made in the Eulerian framework, in a

coordinate system pinned to the laboratory frame of refer-

ence. Significant recent progress in turbulence18–20 and sca-

lar mixing21–23 has come, however, by focusing on dynamics

in the Lagrangian framework and considering individual

fluid elements as they move through space and time. As the

fluid elements move, they may sample the spatiotemporally

varying spectral flux field, which has its own dynamics, non-

uniformly. Fluid elements feel the local spectral flux at their

position in space and time along their Lagrangian paths, and

Eulerian observations alone often give little intuition about

the Lagrangian dynamics.

Here, we study the evolution of energy and enstrophy flux

along Lagrangian trajectories in experimentally generated

quasi-two-dimensional weak turbulence. We calculate spectral-

flux fields from experimental measurements using an FST

(Refs. 6 and 12–14) and find that, as expected, the spectral

properties are smooth in time, space, and scale. We study the

Lagrangian dynamics of the spectral flux with autocorrelation

functions of the energy (and enstrophy) flux history along the

paths of virtual tracer particles. We find that the correlation

times for both energy and enstrophy flux are in some cases as

long as the correlation time of the velocity field itself, showing

that the spectral properties persist for fluid elements. These cor-

relation times, however, vary with length scale in a way that

differs strikingly from their Eulerian counterparts and that sug-

gests that advective influences on spectral flux are a function of

scale. Measurements of the spatially resolved correlation times

indicate that small-scale flux persists longest for fluid elements

that explore strongly hyperbolic regions, whereas large-scale

flux persists longest for fluid elements in strongly elliptic

regions. Our results indicate strong links between spatial trans-

port and spectral flux, and suggest new ways of defining

“coherent structures” in turbulent flow that have simultane-

ously well-defined spatial, temporal, and spectral properties.

II. METHODS

A. Experimental apparatus and flow measurement

We generate quasi-two-dimensional flow in an electro-

magnetically driven thin-layer apparatus that has beena)Electronic mail: nicholas.ouellette@yale.edu.
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described in detail elsewhere.24 A layer of salt water (4 mm

� 86 cm � 86 cm, 14% NaCl by mass) lies below a layer of

fresh water and above a square lattice of permanent magnets

with polarity that alternates in a checkerboard pattern. The lat-

tice length is L¼ 2.54 cm, which sets our energy injection

scale. Each magnet is 1.27 cm in diameter and produces a

magnetic field of roughly 0.3 T at its surface. Imposing a lat-

eral steady electric current produces Lorentz forces that drive

fluid motion. When the forcing is weak, the flow is steady and

regular; when the forcing is strong, however, the flow field

becomes time-dependent, disordered, and weakly turbulent.

We define the Reynolds number of the flow as Re¼UL/�,

where U is the measured root-mean-square velocity and � is

the kinematic viscosity. Here, we show data for Re¼ 185,

above the transition to weak turbulence but in the range where

the flow field is still reliably two-dimensional.24

To measure the flow field, we seed the flow with 51 lm

fluorescent tracer particles that accurately track the fluid

flow. The particles lie on the interface between the saltwater

layer and the less-dense freshwater layer. We image the par-

ticles with a 4 megapixel digital camera at 60 frames per sec-

ond, avoiding boundary effects by limiting the field of view

to a central 32 cm� 24 cm region. In the resulting movies we

track about 35 000 particles per frame with a multi-frame

predictive tracking algorithm;25 particles are typically sepa-

rated by at least 15 diameters. From the resulting tracks, we

calculate Lagrangian particle velocities by convolving the

trajectories with a Gaussian smoothing and differentiating

kernel.26 Because particles are seeded densely, we can also

use them to calculate Eulerian velocity fields. To reduce

noise and ensure that the fields are two-dimensional, we pro-

ject the measured velocities onto a basis of numerically con-

structed stream function eigenmodes.24

In order to measure Lagrangian statistics, we construct

virtual tracer trajectories by numerically solving the equa-

tions of motion for fluid elements using the measured veloc-

ity fields and a second-order Runge-Kutta integrator.27–29

Data from these virtual particles are similar to but smoother

than data from actual measured particle tracks, and avoid

potential finite-volume biases.30

B. Spatially resolved spectral fluxes

From our measured velocity fields, we obtain energy and

enstrophy flux fields with an FST.6 The key to this technique

is the application of a low-pass spatial filter to the measured

fields. Let us define u
ðrÞ
i as the ith component of the velocity

field filtered at a scale r. The equation of motion for the fil-

tered kinetic energy E(r)¼ (1/2)[u(r)]2 can then be written as11

@EðrÞ

@t
¼ � @J

ðrÞ
i

@xi
� � @u

ðrÞ
i

@xj

@u
ðrÞ
i

@xj
�PðrÞ; (1)

where summation is implied over repeated indices. The first

term on the right-hand side of this equation, as a total diver-

gence, does not modify the total energy in the resolved scales

(that is, the scales larger than r), but rather acts as a spatial

transport term. The current J
ðrÞ
i includes contributions from

pressure, advection, and diffusion by molecular and eddy

viscosity.11 The second term is non-positive and represents

the direct viscous dissipation of energy at scales larger than

r. Since molecular viscosity primarily acts at small scales,

this term is typically very small. Both of these terms are

analogous with terms that appear in the equation of motion

for the full (unfiltered) kinetic energy. The final term, how-

ever, is new, and is given by

PðrÞ ¼ � uiuj

� �ðrÞ�u
ðrÞ
i u
ðrÞ
j

h i @u
ðrÞ
i

@xj
: (2)

In analogy with the new terms that appear after a Reynolds

decomposition in the analysis of turbulent flow,31 this term

can be interpreted as the inner product of the resolved rate of

strain and a stress tensor that arises from the coupling

between the filtered small scales and the resolved large

scales. Since P(r) is not a total divergence, it acts as a source

or sink of energy between scales larger than r and those

smaller than r, and so its value is a direct measure of the

spectral energy flux through the filter scale r. As we have

defined it, P(r)> 0 denotes transfer to smaller scales (larger

wavenumbers), and P(r)< 0 denotes transfer to larger scales

(smaller wavenumbers). In a similar fashion, we can define a

spectral enstrophy flux as

ZðrÞ ¼ � xuið ÞðrÞ�u
ðrÞ
i xðrÞ

h i @xðrÞ
@xi

; (3)

since the vorticity x is a scalar in two dimensions.

To implement the FST, we convolve the velocity fields

with a spectral low-pass filter. For example, the filtered hori-

zontal velocity is given by

uðrÞx ðx; yÞ ¼
ð

uxðx0; y0ÞGðrÞðx� x0; y� y0Þdx0dy0; (4)

other filtered quantities are defined similarly. G(r) is the filter

kernel. Following previous work,6,11 we use a Gaussian fil-

ter; the results for other filter shapes are similar. We exclude

a margin at the edge of each flux field to avoid artifacts due

to filter ringing at the data boundary, and we do not filter at

scales that would exceed the Nyquist limit.

III. RESULTS

Example energy and enstrophy flux fields computed as

described above are shown in Fig. 1. As expected, both are

smooth in space and exhibit an irregular pattern because of

the underlying irregular flow. The flux fields also vary

smoothly in time and in scale r. Spatial Fourier transforms of

the flux fields confirm that all length scales at least as large

as the cutoff scale r are present in each field, as expected. In

Fig. 1, we also show the mean (averaged over space and

time) energy and enstrophy fluxes as a function of r. Both

energy and enstrophy flow away from the injection scale;

energy moves primarily toward large scales and enstrophy

moves primarily toward small scales, as expected. Both

fluxes are strongest near the input scale, and both display

some flux in the opposite spectral direction. This oppositely

directed flux is stronger for energy, consistent with previous

115101-2 D. H. Kelley and N. T. Ouellette Phys. Fluids 23, 115101 (2011)
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observations in other systems.6,8 The energy and enstrophy

cascades can (and do) both act even though energy spectra

for our flow do not show well-developed power-law

scaling.6

The Eulerian fields shown in Fig. 1 are snapshots. But

these fields vary in time as well as in space, and so as fluid

elements are advected by the flow along their Lagrangian

paths, they sample a fluctuating spectral-flux landscape. To

understand the Lagrangian nature of the spectral fluxes, we

advect virtual tracer particles through the flow fields recon-

structed from our experimental measurements28,29 and study

the spectral fluxes along the resulting trajectories by record-

ing P(r) and Z(r) for different r at each step. Using these

Lagrangian histories, we measure the autocorrelation func-

tion of the spectral energy flux, defined as31

qPðrÞPðrÞ ðsÞ ¼
hPðrÞðtþ sÞPðrÞðtÞi
hPðrÞðtÞ2i

; (5)

where h�i denotes an average over the ensemble of Lagran-

gian trajectories, and the analogously defined autocorrelation

function of the spectral enstrophy flux qZ(r)Z(r). These autocor-

relations are plotted in Fig. 2. As expected, they fall off as a

function of time, indicating that the spectral properties

decorrelate as the fluid elements evolve. For filter scales

smaller than or comparable to the energy injection scale, we

observe a brief period of anti-correlation, which we attribute

to the close proximity of regions of strong negative and posi-

tive flux, as shown in Fig. 1.

In order to quantify the persistence of the spectral fluxes

along the Lagrangian trajectories, we also calculate the mean

integral timescale, given by31

hsLi ¼ lim
T!1

ðT

0

qðsÞds; (6)

for each of the various correlation functions q(s). These inte-

gral timescales are also shown in Fig. 2, normalized by TL,

FIG. 1. (Color online) Energy and enstrophy

fluxes. (a–c), Spatial variation of energy flux

P(r) through scales r¼ 0.55L, L, and 2L, respec-

tively. Color indicates flux. All panels show the

same region and time. (d) Mean energy flux

hP(r)i (thick line) and enstrophy flux hZ(r)i (thin

line) as a function of length scale r; note the dif-

fering vertical axes. Energy moves away from L
and primarily toward large scales, whereas ens-

trophy moves away from L and primarily to-

ward small scales. (e–g), Spatial variation of

enstrophy flux Z(r) through the same scales as in

(a–c).
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the Lagrangian integral timescale of the velocity field. To

calculate these integral timescales, we choose values of T
(ranging from 2 to 12 TL) large enough to capture the shape

of q(s) but small enough to maintain converged statistics.

hsLi gives us a measure of how long the spectral-flux proper-

ties remain coherent along the trajectories of fluid elements,

while TL tells us how long the velocity field itself remains

correlated.32 Surprisingly, the integral timescales of the

energy and enstrophy flux vary similarly as a function of r
even though their spectral dynamics are very different. For

both quantities, the integral timescales at small filter scales

(r<L) are much smaller than TL, and are roughly constant.

For L. r. 2L, the integral timescales grow suddenly and

rapidly. For larger scales, they grow more slowly (and, for

the energy flux at large scales where one might expect an

inverse cascade, show a range that is nearly constant), reach-

ing values of hsLi� TL. Thus, particularly for larger scales,

the spectral properties of the flow persist for individual fluid

elements for times that can be as long as the timescale of the

flow itself.

The behavior of the temporal Eulerian autocorrelation

functions (that is, temporal autocorrelations taken at station-

ary locations) of the spectral fluxes is quite different. In

Fig. 3, we show the Eulerian integral timescales of the

energy and enstrophy fluxes as a function of filter scale r,

normalized by the Eulerian velocity integral timescale TE.

Unsurprisingly, these correlation times show a strong peak at

r¼L, the scale at which energy is injected into the flow.

Though it is not fully stationary, the flow at length scales

near the injection scale tends to lock onto the forcing lattice,

leading to this peak in the correlation time. At other scales,

where the flow evolves more dynamically, the spectral prop-

erties are correlated for a much shorter fraction of the rele-

vant flow timescale, in sharp contrast to the Lagrangian

behavior. The scale-to-scale fluxes thus appear to be more

strongly coupled to the Lagrangian dynamics of the flow

field than they are to the Eulerian dynamics.

To gain further insight into the physics responsible for

the differences between the Lagrangian and Eulerian dynam-

ics of spectral transfer, we followed virtual particles along

Lagrangian paths in the P(r) field from 5� 105 initial loca-

tions on a regular grid, calculating the integral timescale sL

of each Lagrangian trajectory individually. We can thus

make spatial maps of sL, as shown in Fig. 4. (We drop the h�i
notation to emphasize that these integral timescales are not

ensemble averages.) The resulting fields have spatial struc-

ture strikingly different from the flux fields shown in Fig. 1,

emphasizing the distinction between the Eulerian and

Lagrangian dynamics. Mean integral timescales like those

plotted in Figs. 2 and 3 are strongly influenced by small

regions with very long correlation, given that the tails of the

probability density functions (PDFs) of sL (also plotted in

Fig. 4) are nearly exponential. The regions of long correla-

tion are elongated for P(r) at small scales, as shown in Fig.

4(a). At larger scales, we see larger regions of long correla-

tion with more compact shapes, as shown in Fig. 4(c). At

scales r where these larger regions appear, the PDF of sL

decays more slowly (Fig. 4(d)) and hsLi increases (Fig. 2).

Thus, a qualitative change in the spatial characteristics

accounts for the statistical differences.

This change can be elucidated by comparison with the

stretching field of the flow. Stretching, defined as the square

FIG. 2. (Color online) Autocorrelation functions q and integral timescales

hsLi along Lagrangian trajectories for (a,b) spectral energy flux and (c,d)

spectral enstrophy flux, for different filter scales r. Times are normalized by

TL, the Lagrangian integral timescale of the velocity field, and lengths by L,

the energy injection scale. Correlation functions are plotted in different

shades for different scales r; the corresponding integral timescales are plot-

ted as a function of r. Integral timescales for both energy and enstrophy flux

grow rapidly at r�L, and then slower for r> 2 L. The error bars show the

statistical variation in the mean integral timescales.

FIG. 3. (Color online) Fixed-point, Eulerian integral timescales hsEi of the

(a) energy and (b) enstrophy flux, normalized by the single-point Eulerian

velocity integral timescale TE.
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root of the maximum eigenvalue of the right Cauchy–Green

strain tensor,27 is closely related to the finite-time Lyapunov

exponents and Lagrangian Coherent Structures.22 Stretching

gives a local, Lagrangian measure of hyperbolicity: strong

stretching indicates strongly hyperbolic regions, whereas

elliptic regions exhibit nearly zero stretching. Eulerian

hyperbolicity has previously been associated with strong ens-

trophy flux.12 Comparing maps of the integral timescale of

P(r) to the stretching field (also in Fig. 4, with integration

time T¼ 10TL), we find that the elongated regions of long

correlation that dominate at small scales correspond to

regions of strong Lagrangian stretching. Hyperbolicity is

coupled not only to strong flux but also to persistent flux,

especially for scales where an enstrophy cascade is operat-

ing. At larger scales, however, the correlation statistics are

dominated by regions of long sL that correspond not to

hyperbolic but rather to elliptic regions of the flow.

IV. DISCUSSION AND CONCLUSIONS

Turbulent fluid flows are characterized by multiscale

interactions and spectral cascades. Purely spectral descrip-

tions of the flow, however, neglect the strong spatiotemporal

variation of the spectral properties. As we have shown here

and as has been demonstrated previously,6,12–14,17 the inter-

action among various length scales is complex, and the

energy and enstrophy cascades do not operate uniformly in

space. From the viewpoint of a fluid element, what matters

is how these spatiotemporally varying spectral fluxes

are sampled: how coherent are the spectral dynamics as

experienced by fluid elements? In Fig. 2, we showed that,

particularly for fluxes through larger scales in the inverse

energy cascade, the spectral dynamics can remain correlated

along Lagrangian trajectories for times nearly as long as the

fluid velocity field itself. It appears, then, that the spectral

dynamics of the flow field persist for fluid elements. When

we instead study the correlation time of the spectral flux field

at a point, as shown in Fig. 3, we find that the correlation

times are shorter relative to the relevant flow timescale, with

the spectral fluxes exhibiting some pinning to the forcing

structure of the flow. Taken together, these results suggest

that the spectral fluxes are at least approximately advected

with the flow field in the inverse cascade. The situation is

somewhat different in the range of scales in the direct enstro-

phy cascade; at these smaller scales, the persistence of the

spectral fluxes along trajectories is weaker.

It is perhaps surprising that the behavior of the integral

timescales for energy and enstrophy are so similar to each

other even though the spectral dynamics of these two quanti-

ties are so different, as energy is primarily transported

upscale and enstrophy is primarily transported downscale.

This result suggests that it is not the magnitude of the fluxes

that determines their spatiotemporal persistence, but rather

the scale. Further evidence for this effect can be seen in

Fig. 5, where we show the integral timescales for the energy

flux conditioned on the flux magnitude. The persistence

times appear to be independent of the magnitude of the flux.

Thus, even though the energy and enstrophy fluxes behave

differently as a function of scale, their persistence times

along Lagrangian trajectories are very similar.

Much of this effect is likely due to the strong spatial

organization of the Lagrangian dynamics of the flow as

FIG. 4. (Color online) Spatial variation of the

Lagrangian persistence of energy flux. (a–c), Inte-

gral timescale sL of energy flux through scales

r¼ 0.55L, L, and 2L, respectively, in the same

region shown in Fig. 1. Shading indicates the local

integral timescale, normalized by TL. (d) Probability

density functions of integral timescales sL of energy

flux through different scales r. For small (large)

scales, hsLi is dominated by hyperbolic (elliptic)

regions. (e) Stretching field in the same region of

the flow at the same instant. Darker regions are

more hyperbolic.
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revealed by the stretching fields in Fig. 4(e). This “skeleton”

of strongly attracting material lines has been shown to have

an enormous impact on the transport of fluid elements and

scalar fields,27,33,34 and so it is not surprising that it plays a

similar role here. Both the advection of fluid elements and

the spectral fluxes are controlled by the underlying Lagran-

gian dynamics.

By exploring the Lagrangian structure of the spectral

flux in quasi-two-dimensional weak turbulence, we have

found that the persistence times of energy and enstrophy are

markedly different in the inverse energy cascade as compared

to the direct enstrophy cascade. Comparisons with the

stretching fields suggest that this difference may be explained

in terms of hyperbolic and elliptic regions of the flow. In

future work, we hope to develop a quantitative measure of

the link between hyperbolicity and persistent spectral flux.

These results point to new ways of thinking about dynamical

structures in fluid flows as regions that are coherent not only

in space and time but also in their spectral properties.
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