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Inertial waves and small-scale turbulence are inevitable consequences of rapid rotation and low viscosity
in the Earth’s core. We use numerical simulations and experiments to investigate the influence of waves
and turbulence on the large-scale flow of an electrically conducting fluid in a spherical annulus. The
large-scale flow is driven by shear between the inner-core and outer-core boundaries in the presence
of a vertical magnetic field. The rotation rates of the inner and outer boundaries are denoted by Xi and
Xo, respectively, which define a Rossby number Ro = (Xi �Xo)/Xo. We focus on small negative values
(�1 < Ro < 0), where inertial modes have been previously reported in the experiments. Inertial modes
are also identified in the simulations at sufficiently low Ekman number. Good agreement with the experi-
ments is obtained for both the spatial structure and frequency of the inertial modes. The experimental
results provide an important benchmark for the simulations, while the simulations provide detailed
information about the flow, assisting in the interpretation of the experiments. We find that the magnetic
field suppresses small-scale flow that would otherwise be present if the sole source of dissipation was
due to fluid viscosity.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Experiments in fluid dynamics have long contributed to our
understanding of the Earth’s interior. Laboratory models are
capable of producing complex, turbulent flows that are well be-
yond the reach of current numerical simulations (e.g., Sumita and
Olson, 2003; Schmitt et al., 2008; Monchaux et al., 2007). Insights
from experiments provide both qualitative descriptions of physical
processes and quantitative estimates of specific properties of the
flow. Laboratory models can also be used to test numerical simula-
tions where other means of verification are not available. In the
present study we use laboratory models of the spherical Couette
flow (Kelley et al., 2007) to test a numerical simulation of rapidly
rotating flow. The numerical simulation is limited in the choice
of experimental conditions by the need to resolve the flow at the
smallest scales. However, a wider range of experimental conditions
can be explored using large-eddy simulations (LES), provided
suitable models are available for the effects of subgrid-scale turbu-
lence (Matsushima, 2005; Matsui and Buffett, 2005, 2007; Chen
and Jones, 2008). We present the results of a resolved numerical
simulation of the spherical Couette flow, which successfully repro-
duces observations from the experiments. We also obtain good
ll rights reserved.
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numerical results using a LES on a coarser grid, although the
subgrid-scale model does not appear to dissipate enough kinetic
energy at small scales. By combining experiments and simulations
we gain insight into the role of small-scale turbulence and improve
the subgrid-scale models.

Both the experiments and the numerical simulations reveal a
broad range of temporal fluctuations in the flow. Discrete periodic-
ities due to inertial oscillations are superimposed on a mean back-
ground flow and random fluctuations. Inertial oscillations in the
experiments are primarily antisymmetric about the equator, based
on measurements of the external magnetic field induced by
interactions between the waves and an imposed (vertical) mag-
netic field. This interpretation is confirmed using the numerical
simulations. The inertial waves are thought to be generated by
fluctuations in the mean flow and selectively amplified by reflec-
tions from shear layers in the fluid through a process known as
over-reflection (Ribner, 1957). Kelley and Lathrop (2010) show that
the selection of inertial waves by over-reflection provides a good
description of the experimental results; interaction between shear
layers and boundary layer eruptions may provide an alternate
explanation (Rieutord and Valdettaro, 2010). Differences in the
damping of the inertial oscillations may also play a role in wave
selection. The numerical simulations presented here reproduce
the selection of inertial waves in the spherical Couette flow and
provide additional insights into the underlying dynamics. In
investigation of shear-driven inertial oscillations in an Earth-like geometry.
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particular, the simulations reveal the structure of zonal flow and
indicate that inertial oscillations are largely confined to the region
outside the tangent cylinder.

We begin with a brief discussion of the experimental setup and
the identification of inertial oscillations using measurements of
magnetic field perturbations outside the fluid shell. The numerical
model is adapted from the finite-element dynamo model of Matsui
and Okuda (2005). Numerical results for the frequency and spatial
structure of the external magnetic field are compared with the
results of the experiments to assess the validity of the numerical
solution. The LES model provides similar results for the frequency
and spatial structure of the external magnetic field, although there
are differences in the kinetic energy spectra between the resolved
and LES solutions. We attribute the difference to the SGS model; it
appears that SGS model fails to dissipate enough kinetic energy at
the smallest scales.
2. Experimental setup

Our experimental device, sketched in Fig. 1, is a spherical
Couette cell with independently rotating inner and outer spheres,
as described previously (Kelley et al., 2007; Kelley and Lathrop,
2010). The outer, titanium sphere has inner radius ro = 30.5 cm,
wall thickness 2.54 cm, and magnetic diffusivity 0.044 m2 s�1.
The inner, solid copper sphere has radius ri = 10 cm and magnetic
diffusivity 0.014 m2 s�1. The gap between them is filled with about
110 L of liquid sodium, kept between 100 and 110 �C by an array of
20 incandescent heaters, each 0.5 kW, mounted near the lower
hemisphere of the experiment. Each sphere is coupled to an AC
induction motor controlled by a variable frequency drive, so that
the rotation rates and directions of the spheres can be controlled
independently. We have previously rotated the inner sphere as fast
as jXij = 283 s�1 and the outer sphere as fast as jXoj = 220 s�1; the
data discussed below were recorded with the outer sphere rotating
at 113 s�1 and the inner sphere rotating at 45.2 s�1. The inner
sphere is supported by a 25 mm stainless steel shaft that rotates
at Xi. That shaft, in turn, is supported by bearings housed in
cylindrical chambers, 8.89 cm in diameter, that extend from the
outer sphere and rotate at Xo. The necessity of support shafts in
a laboratory device causes the shape of our apparatus to deviate
slightly from the true spherical Couette geometry used in the
simulations described below. Nonetheless we find that many
behaviors match closely, as will be described.

We apply a steady magnetic field B0 = 12 mT parallel to the
rotation axis using a pair of external electromagnets. The sodium
test fluid is an excellent electrical conductor, with magnetic
Fig. 1. Schematic illustration of the spherical Couette experiment. Fluid motion is
driven by differential rotation between the inner and outer boundaries of the fluid
shell. A vertical magnetic field B0 is imposed and magnetic perturbations are
recorded by an array of Hall probes, each oriented along the direction of a
cylindrical radius.
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diffusivity 0.084 m2 s�1, which allows for electromagnetic induc-
tion by the fluid motion in the presence of the applied field B0.
We characterize the flow by measuring that induction with an
array of 30 Hall probes (Honeywell SS94A1F) mounted around
the fluid cell. Each probe records the local cylindrical radial
component of the magnetic field (horizontal and toward the axis
of rotation) as a function of time, sampled 1024 times per second.
This rate is substantially faster than the flow timescales, even after
translation from the rotating frame to the laboratory frame. The
probes are mounted at distances 35.6 6 r 6 40.6 cm from the
center of the sphere (1.16ro 6 r 6 1.33ro) in an arrangement chosen
to be well-suited for projection onto the vector spherical harmon-
ics, yielding Gauss coefficients up to degree and order four. We
perform that projection using a standard linear least-squares cal-
culation. The accuracy of the calculation is optimized by making
measurements at locations where the vector spherical harmonic
modes are most readily distinguished from each other. To state
the same fact in mathematical terms, the accuracy of the least-
squares fit depends on the condition number of the matrix of the
normal equations (Press et al., 2007), based on the three-dimen-
sional location of each probe. The array used here, closely following
a previous design (Sisan, 2004), yields a condition number C = 22,
superior to any of more than 106 alternate arrangements
constructed in a Monte Carlo analysis. Below we show spatially
resolved magnetic fields using measurements made with this
probe array. We also show time histories of the induced field,
based on a single (more sensitive) probe mounted on the equator
(Ohio Semitronics HR72).
3. Numerical model

We simulate the flow of an electrically conducting fluid in a
spherical shell using the dynamo model of Matsui and Okuda
(2005). Buoyancy forces are replaced with mechanical forcing
due to differential rotation between the inner and outer bound-
aries. Both the inner sphere and the solid outer shell have finite
electrical conductivity, which permits magnetic shear stresses at
the boundaries of the fluid. For simplicity we use the same conduc-
tivity for the solid inner sphere, fluid region and solid outer shell
that contains the fluid. The region outside the solid outer shell is
assumed to be an insulator. A potential field is calculated in the
insulating region on a grid that extends to a radius rm, which is
17� larger than the outer radius of the fluid shell (denoted by ro).

A total of 48 radial levels are used in the fluid with finer resolu-
tion near the boundaries to resolve thin viscous boundary layers
(see Fig. 2). The mesh is based on a cubed sphere with a total of
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Fig. 2. Narrow grid spacing in spherical radius, Dr, is used near the fluid
boundaries, r = ri and r = ro, to resolve the viscous boundary layer. A courser grid
is used in the insulating region to describe the potential field. The insulating region
extends from r = rs to r = rm. The outer radius of the solid shell is rs = 1.08ro and the
outer radius of the insulating region is rm = 17 � ro.

investigation of shear-driven inertial oscillations in an Earth-like geometry.
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340,000 nodes; there are 96 nodes distributed around the equator,
yielding an average horizontal resolution of 0.01 m. A constant
time step of 6 � 10�5 s is used in all calculations and a typical
run has 2 � 105 time steps, corresponding to an integration time
of 12 s or about 60 revolutions. The initial condition is taken from
a prior simulation in which the fluid is spun up in the absence of an
imposed magnetic field.

The Navier–Stokes equation for the fluid velocity u is expressed
in a reference frame that rotates with the angular velocity of the
outer shell Xoẑ. We adopt ro as a length scale, X�1

o as a timescale
and use the amplitude of the imposed magnetic field B0 ¼ B0ẑ as
the scale for the magnetic field. The non-dimensional equations
for the fluid velocity are

@u
@t
þ u � ruþ 2ẑ� u ¼ �rP þ Er2uþKðr � bÞ � ðẑþ bÞ ð1Þ

and

r � u ¼ 0 ð2Þ

where P is the modified pressure (including centrifugal forces) and
b is the magnetic perturbation due to fluid motion. Two dimension-
less parameters appear in Eq. (1); one is the Ekman number,
E ¼ m=Xor2

o and the other is a modified Elsasser number,
K ¼ u2

a=u2
o , where uo = Xoro is the velocity scale and Ua ¼ B0=

ffiffiffiffiffiffiffiqlp

is the speed of Alfven waves. Here q is the fluid density and l is
the magnetic permeability.

The magnetic perturbation is expressed in terms of a vector
potential A to more easily accommodate continuity conditions at
jumps in electrical conductivity (see below). The vector potential
is defined by

b ¼ r� A ð3Þ

and obeys

@A
@t
¼ �r/þ ðu� bÞ þ Rm�1r2A ð4Þ

and

r � A ¼ 0 ð5Þ

where Rm = uoro/g is the magnetic Reynolds number and / is a
scalar electric potential that enforces the Coulomb gauge in (5).
The physical properties and dimensionless parameters for the
experiments and numerical simulations are listed in Table 1.

We note two differences between the experimental and simula-
tion conditions. First, the rotation rate of the outer and inner
spheres is slower in the simulation, although the relative rotation
is the same. A higher rotation in the experiments yields a low
Ekman number (E = 7 � 10�8) which is too small to handle in the
simulations. However, we can achieve an Ekman number of
Table 1
Parameters and physical properties in experiment and numerical simulation.

Parameter Symbol Experiment Simulation

Rotation rate (outer) Xo 113 s�1 31.4 s�1

Rotation rate (inner) Xi 45.2 s�1 12.6 s�1

Radius (outer) ro 0.305 m 0.305 m
Radius (inner) ri 0.102 m 0.102 m
Magnetic field B0 12 mT 14 mT
Fluid density q 927 kg m�3 927 kg m�3

Viscosity m 7.4 � 10�7 m2 s�1 7.4 � 10�7 m2 s�1

Magnetic diffusivity g 0.084 m2 s�1 0.084 m2 s�1

Radius ratio Ri/Ro 0.33 0.33
Rotation ratio Xi/Xo 0.40 0.40
Rossby number Ro �0.6 �0.6
Ekman number E 7.0 � 10�8 2.6 � 10�7

Elsasser number K 1.0 � 10�4 1.8 � 10�3

Magnetic Prandtl Pm 8.8 � 10�6 8.8 � 10�6
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E = 2.6 � 10�7, ensuring that the effects of viscosity are small. Thin
viscous boundary layers in the numerical simulation require very
high radial resolution near the boundaries. Second, we impose a
magnetic field in the simulation that is slightly larger than that
in the experiments. A higher field increases the Elsasser number
relative to the experiments, although the value is still small (i.e.
K� 1). However the higher field causes greater ohmic losses at
small length scales in the simulations and suppresses the ampli-
tude of flow at these small scales.

No-slip boundary conditions are imposed on the velocity at the
inner and outer boundaries of the fluid shell (denoted by radius ri

and ro, respectively). The inner shell rotates with angular velocity
Xi, so the velocity of the inner boundary in the rotating frame is

u ¼ Xi

Xo
� 1

� �
ẑ� x � Roẑ� x ð6Þ

where x is the position vector and the Rossby number Ro = Xi/
Xo � 1 is a non-dimensional measure of the fluid forcing. The same
velocity is used inside the conducting solid sphere (r < ri) to solve
the induction equation in (4). The velocity vanishes at r = ro and
through the solid outer shell (ro < r < rs) in the solution of the
induction equation. Boundary conditions for the induction equation
require continuity of the vector potential A, the radial gradient @A/
@r and the electric potential / at the inner and outer boundaries of
the fluid. At the outer radius of the insulating region (i.e. rm), we
require

A ¼ @/
@r
¼ 0 ð7Þ

We evaluate the potential field at r = 1.21ro, based on the average
location of the Hall probes in the experiment.

4. Direct numerical simulations

Fig. 3 shows a snapshot of the azimuthal component of flow on
a vertical cross section through the fluid shell in the frame rotating
with the outer boundary. Slower rotation of the inner sphere
(Xi = 0.4Xo or Ro = �0.6) drives an eastward (negative) velocity
in the rotating frame. The eastward flow near the inner sphere
Fig. 3. A snapshot of azimuthal flow in the numerical simulation. Strong shear
layers (Stewartson layers) develop at the tangent cylinder in response to differential
rotation of the inner and outer boundaries. The mean flow outside the tangent
cylinder is weak with small-scale fluctuations due to turbulence.

investigation of shear-driven inertial oscillations in an Earth-like geometry.

http://dx.doi.org/10.1016/j.pepi.2011.07.012


−6

4 H. Matsui et al. / Physics of the Earth and Planetary Interiors xxx (2011) xxx–xxx
extends in the direction of the rotation axis due to the effect of
rapid rotation, forming a cylinder that is approximately tangent
to the equator of the inner sphere. (We subsequently refer to this
surface as the tangent cylinder.) The mean zonal flow inside the
tangent cylinder is approximated by solid body rotation, although
there are large fluctuations about the mean.

Small-scale flow is evident throughout the fluid shell.
Deviations from the mean zonal flow represent about 15% of the
total kinetic energy, or about 38% of the amplitude of the velocity
field. The mean azimuthal flow outside the tangent cylinder is
relatively weak, indicating that the fluid is nearly stationary with
respect to the outer shell. A strong shear flow develops near the
tangent cylinder in a region commonly called the Stewartson layer
(Stewartson, 1966). The Stewartson layer is axisymmetric in the
simplest case, but high shear can cause instabilities of the
Stewartson layer, producing non-axisymmetric flow (Hollerbach,
2003). It is likely that these shear instabilities contribute to
deviations from the mean zonal flow in the simulation.

Fig. 4 shows time-averaged spectra of kinetic and magnetic
energy from the simulation as a function of angular order m.
(The spectra are computed by interpolating the velocity and mag-
netic fields onto a spherical grid; the resulting fields are decom-
posed into vector spherical harmonics and the energies are
determined using the orthogonality of the spherical harmonics.)
The large toroidal component of velocity at m = 0 represents the
azimuthal flow (as shown in Fig. 3), whereas the poloidal compo-
nent represents a meridional circulation, probably due to Ekman
pumping and flow within the Stewartson layers. The kinetic energy
at m = 1 and 2 is large relative to the trend at higher m. The energy
at m = 1 is consistent with predictions for shear instabilities, which
draw energy from the zonal flow (Hollerbach, 2003). Large-
amplitude waves at m = 2 (described below) probably contribute
to the anomalous energy observed at this angular wavenumber.
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Fig. 4. Spatial spectrum of (a) kinetic energy and (b) magnetic energy as a function
of angular order m. Strong zonal flow (m = 0) is unstable to non-zonal perturbations.
The large energy at m = 1 is attributed to a shear instability described by Hollerbach
(2003), while the energy at m = 2 is associated with an inertial model. A
combination of ohmic and viscous losses damps the fluid motion at small scales.

Please cite this article in press as: Matsui, H., et al. Numerical and experimental
Phys. Earth Planet. In. (2011), doi:10.1016/j.pepi.2011.07.012
Nonlinear interactions are responsible for transferring energy to
higher m, where a combination of viscous and ohmic friction
dissipates the flow.

The absence of a strong mean flow outside the tangent cylinder
means that fluctuations in the flow are well described by motion in
a uniformly rotating fluid. As a consequence the region outside the
tangent cylinder is expected to support inertial waves. Discrete
inertial modes are likely to have frequencies that are well
approximated by the frequencies of inertial modes in a sphere,
particularly if the wave motion is confined to the region outside
the tangent cylinder. The dominant waves observed in both the
experiment and the numerical simulation appear to satisfy this
condition, justifying quantitative comparisons with theoretical
frequencies of inertial modes in a full fluid sphere.

The motion of the electrically conducting fluid distorts the
imposed vertical magnetic field, producing fluctuations inside the
fluid and a time-dependent potential field outside the apparatus.
Fig. 5 shows the spectrum of time variations in the Bs component
of the field, measured by a single Hall probe mounted at the
equator in the experiments. The dimensionless frequency xlab/Xo

refers to the non-rotating (laboratory) frame of the Hall probes.
The corresponding spectrum from the numerical simulation is
shown for comparison in the lower panel of Fig. 5. A dominant
frequency in both the experiments and simulations occurs at
xlab/Xo = 1.5. Smaller peaks at xlab/Xo = 0.6 and 2.5 are also
evident in the experiments and the simulations. A peak at xlab/
Xo = 1 in the experiments may reflect electrical noise from the
AC motors.

Insights into the origin of the frequencies in the experiments
and simulations are inferred from the spatial structure of the
10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

86420

olab Ω

olab Ω
0 1 2 3 4 5 6 7

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10

po
w

er
 s

pe
ct

ra
l d

en
si

ty
 o

f 
b/

B
0

B(
s

B/ 
0)

2
po

w
er

 s
pe

ct
ra

l d
en

si
ty

 o
f 

b/
B

0
B(

s
B/ 

0)
2
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time variations in the laboratory (non-rotating) frame. Narrow peaks in the spectra
are attributed to inertial oscillations, which are excited by differential rotation.
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potential field. The magnetic potential in the insulating region is
represented by Gauss coefficients ðgm

l ;h
m
l Þ in a spherical harmonic

expansion (Bullard and Gellman, 1954). A single spherical
harmonic with degree l and order m is denoted by Ym

l ðh;/Þ, where
h is the colatitude and / is the longitude. Fig. 6 shows the temporal
evolution of ðg2

2;h
2
2Þ and ðg2

4;h
2
4Þ in the rotating frame from the

numerical simulation. The corresponding spectra are also shown
in Fig. 6, where the frequency x/Xo also refers to the rotating
frame. These two sets of Gauss coefficients share a common
frequency, x/Xo = �0.49, where the negative sign indicates
westward traveling waves in the rotating frame (i.e. opposite to
the direction of rotation).

Frequencies of waves in the laboratory frame are related to
frequencies in the rotating frame by

xlab

Xo
¼ mþ x

Xo
ð8Þ

where m is the azimuthal wavenumber of the spherical harmonics
that characterize the waves. For the wave associated with m = 2 in
Fig. 6 we obtain a frequency of xlab/Xo = 1.5, which is the dominant
frequency in the experiments. A similar treatment of the other
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Gauss coefficients can be used to identify other spectral peaks in
the experiments. For example, the Gauss coefficients ðg3

3;h
3
3Þ from

the numerical simulation are shown in Fig. 7. These coefficients
exhibit a more complicated time dependence and produce a
broader spectrum around a peak at x/Xo = �0.46. The correspond-
ing frequency in the laboratory frame appears to explain the
observed frequency at xlab/Xo = 2.5. We also find time variations
in ðg1

3; h
1
3Þ and ðg1

5;h
1
5Þ in the simulation with a dominant frequency

of x/Xo = �0.37. This particular wave can explain the spectral peak
at xlab/Xo = 0.62 in both the experiments and the numerical
simulation. In summary, the dominant peaks in the spectrum of
potential field variations are associated with specific spatial
patterns. A connection between the frequencies and spatial patterns
is established by the theory of inertial oscillations in a sphere. We
conclude this section by showing that the experiments and
simulations exhibit the same correspondence between frequency
and spatial structure.

The spatial structure of the potential field in the experiments is
reconstructed using measurements from the array of Hall probes
(see Kelley and Lathrop (2010) for details). Fig. 8 shows the spatial
structure of the Bs field, after bandpass filtering the measurements
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Fig. 8. Spatial pattern of the Bs component of the field constructed from the Hall probe measurements in the experiments. (Top) Applying a bandpass filter to the
measurements (1.25 < xlab/Xo < 1.75) reveals a dominant Y2

4 pattern. (Bottom) A bandpass filter at 2.25 < xlab/Xo < 2.75 isolates a wave with a strong Y3
3 component, although

other spherical harmonic components are also present.
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to a narrow range of frequencies around the two dominant
frequencies, xlab/Xo = 1.5 and 2.5. The measured field at xlab/
Xo = 1.5 represents a wave with m = 2. Both Y2

2 and Y2
4 components

are present in the spatial pattern, although the Y2
4 component is

most prominent in Fig. 8. The measured field at xlab/Xo = 2.5
(bottom panel in Fig. 8) corresponds to a wave with m = 3. The
principal spherical harmonic component is Y3

3, although a simple
Y3

3 pattern cannot explain the change in sign along the meridians
of longitude. This means that the observed field includes other
spherical harmonic components. However, the dominant Y3

3

pattern for the wave at xlab/Xo = 2.5 is consistent with the
frequency of the ðg3

3;h
3
3Þ coefficients in the numerical simulations.

The amplitudes of coefficients ðg3
3;h

3
3Þ are small compared with

the contributions from ðg2
2; h

2
2Þ and ðg2

4;h
2
4Þ in both the experiment

and numerical simulation. Consequently, a snapshot of the poten-
tial field from the numerical simulation (Fig. 9) reflects the largest
wave at xlab/Xo = 1.5. The strong Y2

4 pattern in the numerical
simulation is in excellent agreement with the experiment. Indeed
the numerical simulations reproduce both the frequency and the
principal spatial pattern of the two dominant waves in the
experiments.

5. Large-eddy simulations

Numerical calculations at the exact conditions of the experi-
ments require impractical improvements in spatial resolution to
adequately represent the small-scale flow and magnetic field.
Alternatively, we could attempt to resolve only the large-scale
motions and model the influence of the small-scale flow and
magnetic field. A large-eddy simulation relies on spatial filtering
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to eliminate the scales that cannot be resolved on the grid
(Meneveau and Katz, 2000). Applying a spatial filter to the
governing equations introduces additional terms to account for
the influence of small-scale interactions between the flow and
the magnetic field. One subgrid-scale term is required for each
nonlinear term in the governing equations. A total of three
subgrid-scale terms are needed for the problem of the spherical
Couette flow in an electrically conducting fluid. The relevant terms
include the Reynolds stress

sij ¼ uiuj � uiuj ð9Þ

the SGS Maxwell stress

Mij ¼ Kðbibj � bibjÞ ð10Þ

and the SGS induction term

ai ¼ �ijkðujbk � ujbkÞ ð11Þ

where ui; bi, etc. denote the filtered fields implicit in representing u
and b on a coarse grid; summation convention is assumed over re-
peated indices and �ijk is the alternating tensor. We model the SGS
terms using the scale-similarity method of Germano (1986). For
example, the model for the Reynolds stress is

ssim
ij ¼ Csimðguiuj � eui

eujÞ ð12Þ

where eui , etc. represent the effect of a second spatial filter on ui that
eliminates a larger fraction of the small scales (analogous to an even
coarser grid) and Csim is a model constant that adjusts the overall
amplitude of the stress tensor. The other SGS terms are handled
in a similar way. Matsui and Buffett (2007) developed a dynamic,
investigation of shear-driven inertial oscillations in an Earth-like geometry.
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Fig. 9. Snapshot of the Bs component of the field from the numerical simulation. The field is evaluated at the position of the Hall probes (r = 1.2ro). A strong Y2
4 component in Bs

is associated with the largest wave at xlab/Xo = 1.5. Comparison with the experimental results in Fig. 7 (left) reveals good agreement.
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scale-similarity SGS model, which uses the large-scale fields, u and
b, to evaluate a model coefficient for each SGS term. This scheme
was tested by Matsui and Buffett (2011) in simulations of a convec-
tion-driven dynamo in a rotating plane layer. Good agreement with
the results of higher resolution calculations demonstrate the utility
of the approach. In that particular application the model coefficients
were averaged over a horizontal surface to reduce the spatial and
temporal variability in the estimate of Csim. In the present study
we apply the same SGS model, but average the model coefficients
over longitude. As a result, the model coefficients vary with radius
and latitude.

We repeat the numerical calculations of the spherical Couette
flow using a large eddy simulation on a grid with 1.5� coarser
resolution in each dimension (roughly 3� fewer grid points). We
retain the same fine radial resolution in the viscous boundary layers,
eliminating the need for the SGS models in the boundary where the
models often perform poorly. The initial condition is the same
non-magnetic solution used in the direct numerical simulation,
but interpolated onto the coarser grid. As before, the simulation is
run for 2 � 105 time steps or about 12 s. Fig. 10 shows the time
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Fig. 10. Time dependence of Gauss coefficient h2
4 from the large-eddy simulation

(LES). The results are compared with the predictions of direct numerical simula-
tions (DNS) on two different grids (coarse and fine). Individual points represent the
result of the numerical calculations, whereas the solid line gives the best fitting
sinusoid. The frequency of fluctuations in all three calculations are nearly identical,
whereas the amplitude of the LES and DNS on the coarser grid have somewhat
smaller amplitude.
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Fig. 11. Spatial spectrum of (a) kinetic energy and (b) magnetic energy as a function
of angular order m for two solutions on the coarser grid (LES and DNS). Both coarse-
grid solutions have higher energy at small scales compared with the resolved (fine)
DNS.
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evolution of the dominant Y2
4 component of the external magnetic

field (specifically the h2
4ðtÞ Gauss coefficient) for the final 2 s of the

run. We also obtain a direct numerical solution on the coarser grid
with no SGS terms. Both of the numerical solutions on the coarser
grid yield similar time variations in h2

4. While the frequency of these
variations is consistent with the resolved calculation, the
amplitudes are somewhat smaller and may be still adjusting to a
investigation of shear-driven inertial oscillations in an Earth-like geometry.
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new equilibrium. Overall, the modest change in numerical resolu-
tion does not have a large effect on the structure of the mean flow
or the dominant inertial waves that are excited by this flow.

A close agreement between the two solutions of the coarse grid
(with and without the SGS terms) indicates that the SGS terms
have only a small influence on the flow. The relative importance
of these terms can be judged on the basis of their contribution to
the global kinetic and magnetic energies. For example, the rate of
work done by the Reynolds stress is about two orders of magnitude
larger than that due to the SGS Maxwell stress. The Reynolds stress
also exhibits large time variations. On average, the Reynolds stress
transfers energy from the large-scale flow into the unresolved
scales, but there are instances in which energy is transferred back
into the large scales. These fluctuations have an unexpected effect
on the large-scale flow. Fig. 11 shows time-averaged kinetic and
magnetic energy spectra as a function of angular order m for both
the coarse- and fine-grid results. The kinetic energies from all three
calculations are in good agreement at the lowest angular orders
(m = 0 and 1), but differences emerge at the smallest resolved
scales. Both of the solutions on the coarse grid have more kinetic
energy at high m than the resolved calculation. In fact, the kinetic
energy in the LES is higher than that in the unresolved DNS, even
though the time-averaged Reynolds stress transfers kinetic energy
from the resolved scales into the unresolved scales. It appears that
the fluctuations in the Reynolds stress inhibit the dissipation of
kinetic energy at small scales, leading to a higher amplitude flow
at these scales. The higher amplitude flow in the LES accounts for
the larger magnetic spectra at small scales.
6. Discussion

Kelley et al. (2007) find close correspondence between the
frequencies measured in the experiments and the frequencies of
inertial oscillations in a sphere. Each inertial mode is specified by
three indices (l,m,k), which reflect the spatial structure of the
mode (e.g. Greenspan, 1968). The degree l and order m are symme-
try numbers with the same meaning as in spherical harmonics,
whereas k is loosely analogous to a radial wavenumber (k = 1
usually identifies the lowest frequency mode). Analytical expres-
sions for the frequency and fluid velocity of each mode (e.g. Zhang
et al., 2001) were used by Kelley et al. (2007) to match the
magnetic perturbation outside the sphere. Modes that are antisym-
metric about the equator (l �m odd) produce symmetric magnetic
perturbations (l �m even), like those observed in the experiments.
By matching the frequency and spatial structure of the observed
magnetic perturbations, Kelley et al. (2007) identified peaks in
the measured spectrum (Fig. 5) with specific inertial modes. Three
modes are evident in both the experiments and simulations under
the conditions considered in this study. A list of these inertial
modes is given in Table 2, along with a comparison of frequencies
from theory, simulations and experiments, all expressed in the
laboratory frame.
Table 2
Identification of inertial modes based on spatial structure and frequency of waves in
the laboratory frame. Indices (l,m, k) identify the mode and x/Xo is the theoretical
frequency in the rotating frame. Negative frequencies represent westward (retro-
grade) waves. A comparison of wave frequencies in the laboratory frame includes
estimates from theory, the numerical simulation and the experiment.

Mode x/Xo xlab/Xo

Theory Simulation Experiment

(4,3,1) �0.500 2.500 2.543 2.485
(5,2,1) �0.467 1.533 1.509 1.462
(6,1,1) �0.440 0.560 0.627 0.568
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Inertial oscillations in a fluid sphere give a good description of
the frequency and spatial structure of the waves in the experi-
ments. In some ways the agreement is surprisingly good because
the theory neglects the influence of a solid inner sphere and the
experiments generate waves in a fluid that is not uniformly
rotating. Our numerical simulations show that the mean fluid
motion outside the tangent cylinder is roughly in solid-body
rotation with the outer solid shell. In this region the dynamics is
well approximated by a rotating fluid (albeit a turbulent fluid).
However, the fluid inside the tangent cylinder departs from
uniform rotation with strong shear across Stewartson layers at
the tangent cylinder.

The largest wave in both the experiments and simulations is
associated with the (5,2,1) inertial mode. The structure of this
particular mode is illustrated in Fig. 12 using the theoretical
pressure field (Greenspan, 1968). A comparison of the pressure
field from the direct numerical simulation (specifically at m = 2)
reveals broad similarities (see Fig. 12). This agreement suggests
that a large part of the pressure variation (and hence flow) at
Fig. 12. A comparison of fluid pressure from theory and numerical simulation.
(Top) A vertical cross section of the pressure perturbation due to the (5,2,1) inertial
mode. (Bottom) A snapshot of pressure variations about the volume average from
the numerical simulation. Only the m = 2 component of pressure is plotted to
facilitate comparison with theory. A large part of the pressure variation from the
numerical solution can be attributed to the (5,2,1) inertial mode.

investigation of shear-driven inertial oscillations in an Earth-like geometry.
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m = 2 can be explained by the (5,2,1) mode. In both theory and
simulation the pressure field is antisymmetric about the equator
with relatively little variation inside the tangent cylinder. The
numerical simulation indicates an abrupt change in pressure at
the tangent cylinder, whereas the theoretical mode exhibits a more
gradual decrease. However, the similarities in the pressure fields
help to explain why the wave frequency in the simulation is well
approximated by an inertial wave in a sphere.

Excitation of inertial waves appears to be weakly dependent on
the structure of flow at small scales because the LES and the
unresolved DNS yield similar results for the dominant waves, even
though these solutions have different levels of kinetic energy at
small scales. In both cases, flow is driven at the largest scale
(m = 0) by differential motion of the boundaries; kinetic energy
cascades to smaller scales through instabilities and nonlinearities
in the governing equations. Details of this cascade appear to have
little influence on the zonal flow (m = 0) or even the flow at
m = 1. A very different situation is expected in convectively driven
dynamo models because buoyancy drives flow across a broad
range of scales. In this case a better estimate for the small-scale
flow may be needed to make reliable predictions about the largest
(observable) features of the flow or field.

Comparisons of the fine- and coarse-grid numerical results
indicate that the scale-similarity model does not dissipate enough
energy at the smallest scales. A similar conclusion was drawn by
Winckelmanns et al. (2001), based on the simulations of homoge-
neous turbulence. Addition of an eddy viscosity to the SGS model
(sometimes called a composite model) enhances dissipation and
can give better results. The questionable performance of the
scale-similarity model in the problem of the spherical Couette flow
is not entirely surprising because the flow has some features in
common with homogeneous turbulence. In particular, inertia has
an important role in dynamics. Even though the spherical Couette
flow exhibits aspects of rapid rotation (like the columnar structure
at the tangent cylinder), the magnitude of the Rossby number is
not much smaller than 1 (see Table 1). Consequently, inertia is a
key nonlinearity in the governing equations. By comparison, the
Rossby number in the Earth’s core is nominally 10�6, which makes
inertia much less important. Small-scale turbulence in the core is
more likely a result of small-scale buoyancy (Braginsky and
Meytlis, 1990) than a result of inertial cascade. On the other hand,
large-scale inertial waves are expected to be pervasive throughout
the core (Aldridge and Lumb, 1987; Buffett, 2010).

7. Conclusions

The simulations and experiments reported here examine the
excitation of inertial waves in flow driven by differential rotation
of the boundaries. Despite the low Ekman number (and high
Reynolds number) of the experimental flow, the simulations
reproduce the dominant inertial modes observed in the experi-
ments. Both the frequency and spatial structure of the modes are
captured in the simulations. Moreover, the simulations reveal that
the inertial modes are similar in structure to the theoretical
predictions for a fluid sphere, although the modes appear to be
distorted to fit within the region outside the tangential cylinder.
Successful simulations required very fine radial grid spacing to
resolve viscous boundaries. Less resolution was required in the
interior of the fluid because the presence of a vertical magnetic
field suppressed small-scale flow.

Benchmarking the numerical simulations with the results of the
experiments is a first step in developing more sophisticated
numerical models. Subgrid-scale models for the effects of
unresolved flow and magnetic field variations are needed to
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achieve more demanding experimental conditions (notably faster
rotation rates and weaker imposed magnetic fields). Because the
small-scale flow is affected by rotation and magnetic field, we have
an opportunity to test and refine subgrid-scale models. The scale-
similarity SGS model is flexible enough to describe all SGS terms in
the spherical Couette flow, although preliminary tests suggest that
the Reynolds stress is most important for the range of conditions
considered here. Fluctuations in the Reynolds stress had the unex-
pected effect of increasing the kinetic energy at small scales, even
though the time-averaged rate of work by the Reynolds stress dis-
sipated kinetic energy in the resolved scales. Supplementing the
scale-similarity model with a dynamic eddy viscosity may be a
simple remedy for dealing with strong turbulence.
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