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Abstract

In advection-reaction-diffusion (ARD) systems, the spreading of a reactive

scalar can be significantly influenced by the flow field in which it grows. These

systems, which range from chemical reactions to ocean plankton populations, be-

come very difficult to understand, predict, and control, because of the complex

interaction between fluid flow and nonlinear chemical reactions. Greater under-

standing of these systems can be obtained through models that isolate the most

important behaviors. I present results which model ARD systems as reaction

fronts, or stretched filaments carried by the flow. I perform experiments and

analysis on the excitable BelousovZhabotinsky (BZ) reaction in a nearly two-

dimensional system with flows both steady and unsteady in time. I create and

utilize a reaction front tracking tool, and use Lagrangian methods to understand

the importance of the flow gradient to reaction growth.

To start, I consider the motion of the reaction fronts that lie at boundaries be-

tween reacted and unreacted which can quantify spreading. I present an algorithm

to measure local speed and thickness of reaction fronts. These quantities can in

turn measure diffusivity and reaction rate. The algorithm is then expanded to

measure front speed in the presence of flow, and test reaction front models. After

identifying that the chemical speed appears to depend on flow, I show that this is

due to depth shear through the thin experiment layer, and I suggest improvements

to make future experiments more two dimensional.
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After that I investigate how BZ tends to gather at the same value of the La-

grangian stretching in both laminar and chaotic, time-varying flows. I hypothesize

that the optimal stretching is due to moderate stretching promoting reaction, but

large stretching causing blowout. This optimal stretching value is dependent on

the reaction, but not fluid flow. I investigate the causes of this by considering

three effects of the flow gradient: perimeter change, thickness change, and fila-

ment stretching.

My results offer new avenues to research ARD systems, and new insights to

allow models to more closely match ARD systems, especially in time dependent

flows.
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1 Introduction

1.1 Motivation

A small amount of one chemical reactant is dropped into a pool of another. The

first reactant diffuses into the bulk of the second, and they begin to react and cre-

ate a product. If this was the end of the story, the reaction could take a very long

time to complete: introductory chemistry classes would get tedious, cooking with

more than two ingredients would be impossible, and the world’s chemical industry

would grind to a halt. Fortunately, mixing due to fluid flow can cause all of these

processes to happen an order of magnitude faster than diffusion alone would allow.

Intuitively it is easy to see why mixing should matter: chemical reaction cannot

happen until the two reactant molecules can collide, and that cannot happen if the

reactants are not mixed together, say by stirring them together. Mixing through

fluid flow is so common that it can be easy to take for granted. Yet despite its

intuitive and fundamental nature, mixing — especially mixing of substances that

grow over time — has proven to be a challenging problem to analyze. Questions

about predicting or controlling a reaction’s growth are difficult to handle in even

the simplest situations.

Mixing is such a difficult subject for a number of reasons. Reactions occur
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when the reactants are within a molecular distance apart, but fluid flows are

usually forced at a much higher length scale. Vigorous stirring is usually more

effective for mixing reactants, so mixing situations of interest often involve all the

complexities of modeling turbulence. For a reaction the turbulent cascade must

reduce the reaction length scale all the way from a forcing length scale, down to

the Batchelor scale, n, where diffusion can take over the mixing [1]. In aqueous

reactions typically material diffusivity D ∼ 10−9 m2/s, while kinematic viscosity

ν ∼ 10−6 m2/s, meaning that this Batchelor scale is often even smaller than the

Kolmogorov scale, where viscosity dominates flow eddies. This poses an incredible

challenge to simulating these mixing problems. On top of this, chemical reactions

are nonlinear most of the time [2]. This causes unusual behavior where the same

stirring of a different reaction does not have the same effect. Changing the stirring

can cause the reaction to transition between stable, periodic, and chaotic states

or change the final reaction product’s chirality from left to right handed [3]. It’s

even possible for increased stirring to result in a longer reaction time [4] or for

fast stirring to reverse a reaction [5].

In spite of these complexities, the problems of understanding chemical reac-

tions in fluid flows are common to many systems. Any system in which some

scalar quantity is carried by a fluid flow, spreads out over time, and can grow has

these same fundamental problems: scale separation, turbulence, nonlinear growth,

and the interaction between reaction growth and flow. Systems that fall into this

category are considered advection-reaction-diffusion (ARD) systems. They are

made of scalar fields (typically material concentration fields) which change dy-

namically due to the combined effects of advection (the motion of the domain the

field is in), reaction (the growth of the scalar), and diffusion (the spreading of

the concentration field from high concentration to low). Mathematically the time

evolution of these scalars is then written according to the ARD equation,

dci
dt

= −∇ · (uci) +Di∇2ci + kiFi(c1, . . . , cn) (1.1)
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where each ci is a field that provides the concentration of a species at each x,y, and

z position over time, t. In general, there can be multiple species which all interact

with each other. Here each species may have a different diffusion coefficient Di,

reaction rate constant ki, and reaction term Fi, which is a function of the local

concentration of all the species. All species experience the same flow u. For

simplicity, I have assumed Di is truly constant and therefore diffusion can be

written this way. I have also assumed that the reaction term Fi depends only on

the other concentration fields.

This equation is relevant to a variety of applications, each of which has im-

portant unanswered questions which require more general results and tools to

solve. In industrial mixing [6], misunderstanding mixing results in inefficient mix-

ing which wastes energy and can cause a failure to scale up new processes. In 1989

estimates of the cost of bad mixing to the chemical process industry were on the

order of $ 1 Billion [7]. For applications like the manufacturing of pharmaceuti-

cals, complex chemistry can cause unusual behavior when stirred [8]. Microfluidic

reactors also perform mixing of chemicals, so an understanding of interaction be-

tween reaction dynamics and flow dynamics is necessary to improve them [9]. In

packed bed reactors, flows can be very complex and very important to reaction

growth [10, 11]. Yet research in industrial reactive mixing is often restricted to

detailed empirical studies which measure how well a given reactor design mixed

the reaction [12, 13]. These studies cannot identify the cause of good or bad mix-

ing. The field has developed a number of techniques to help measure mixing time

after the reactor or simulation has been built [14], but general results about what

flow mixing does to reaction growth are not rigorous. Related to these problems,

Ascanio [14] says “A question rarely put forward by researchers and processors

involves whether the method of mixing operation is optimum”. Working towards

better understanding of mixing, and simplified modeling could help reduce waste,

increase energy efficiency, and enable new industrial processes in the future.
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Another area where the ARD equation applies is the study of combustion reac-

tions. From gas flames [15] to the dynamics of wildfires [16, 17], the development of

combustion can have strong dependence on the surrounding fluid flow, in this case

the flow of air containing oxygen or fuel. This dependence can be very complex, as

anyone who has ever tried to start a campfire knows. In starting a campfire, light

fanning will help a spark catch and grow, but fast fanning will extinguish a small

flame. To control wildfires or optimize combustion reactions in engines and other

industrial processes, understanding the complex interaction between reaction and

flow is necessary. Combustion reactions also have the added complexity that the

ongoing reaction in combustion drives fluid flow, because combustion is strongly

exothermic. I will be experimenting entirely with reactions that have little or no

effect on the surrounding flow, but it may be possible for future researchers to

generalize some or all the results of this thesis to combustion. There are an enor-

mous variety of different possible flame configurations, but applications of many

of them would benefit from a simplified way to model their growth, and ways to

predict or control their dynamics over time.

Finally, a variety of research has gone into understanding plankton and algae

species as ARD systems [18–25]. Plankton are carried by turbulent currents, they

consume nutrients to grow and reproduce, and they spread out over time. It may

seem odd that plankton can be thought of this way, because a single plankton

is much larger than a single molecule. Approximating it as a continuum field

may seem questionable. However, the separation in length scales between the

flow forcing in lakes and oceans (> 10 km in the ocean) and the size of plankton

(< 1 mm) is actually the same as the length scale separation between lab scale

experiments (∼ 10 cm) and the smallest molecules(0.1 nm), both separated by a

factor of ∼ 107. Due to the similarities between plankton growth and reactions,

I will refer to the growth of plankton as a “reaction” even though the growth is

biological in nature. Algae and phytoplankton are the biggest producers in the
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ocean ecosystem, so the health of the oceans is dependent on how they grow.

Phytoplankton in particular also make up the world’s largest carbon sink [26].

Algae can sometimes have negative effects on marine environments through the

growth of harmful algae blooms. Despite their importance, big open questions

remain in this field such as the so called “Paradox of the plankton”, which refers

to the fact that many plankton species fill the same niche as other plankton

species, and yet they coexist in the same ocean [27, 28]. Biological systems can

be very complex, but flow structures do seem to have an important impact on

growth [19–21], and further understanding of the interaction between flow and

growth is needed to make more predictions possible.

While each of these systems have their own unique elements, the ARD equation

will be similar for each. When the math is the same, the physics is also the

same. In this thesis, I aim to test or develop simplified models of ARD systems

and to thereby construct a more general understanding of ARD phenomena. I

will do this by developing new experimental tools and analyses, characterizing

the accuracy of the tools, and then comparing the results of my experiments to

existing general models of ARD. To begin this introduction I will cover past results

in ARD research, especially pertaining to the dynamical systems understanding

of ARD systems, in section 1.2. Next in section 1.3 I will cover the basics of the

flow field, u, that are needed for the rest of the thesis. Similarly in section 1.4 I

will cover the basics of chemical kinetics, and introduce excitable reaction kinetics

which I will be using in experiments and focusing on. Excitable reactions are

analogous to plankton growth [22] and combustion [2]. Then in section 1.5 I will

cover basics of ARD experiments that I will use in all the chapters. Finally the

introduction will conclude by outlining the remainder of the thesis, and stating

the goals of the work.
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1.2 Context

To understand why simplified modeling of ARD systems is important to these ap-

plications, consider the difficulty in directly simulating an ARD system. Without

any simplifying assumptions, this means simulating at least two 3D fields over

time (flow, u, and reaction state, c). In real world situations, because the time

it takes a reaction to proceed is often of interest, or because many ARD systems

exist in turbulence which is dynamically changing, many questions about these

3D fields are about their transient dynamics. Chaotic advection and nonlinear

reaction means these systems can be sensitive to initial condition, and this can

make it hard to find general results. Numeric errors can also quickly lead to qual-

itatively different results, especially since we are interested in transient dynamics

instead of characterizing final states. To obtain results which keep numeric errors

small, a fine spatial grid is required, since diffusion is also very small (at least

in aqueous environments). This in turn results in a very fine time-stepping for

stability. The result of all these complications is that directly simulating eq. 1.1

in real environments is usually either computationally expensive, inaccurate in

quantities such as reaction growth rate, or difficult to generalize. For this reason,

many simulation [8, 29–32] and experiments [11, 33, 34] have to do with steady

state behavior and critical transitions from one steady state to another in specially

conceived situations that admit steady solutions. Some studies have investigated

transient growth in simple flows in detail [35–37], and in more complex flows [38],

but overall the study of transient dynamics of ARD has been restricted by the

difficulty of finding the most important aspects.

The first step I will take to simplify the ARD system is to narrow my scope.

I will focus my attention on just the behavior of the reaction given the fluid flow.

This means ignoring any effect of the reaction which drives fluid flow, such as

releasing heat to drive convection. I will also focus on two-dimensional (2D) sys-
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tems, where chaotic advection is still possible, but measurements and simulations

are easier to perform. This simplifying assumption is reasonable if I am modeling

phytoplankton in the ocean, because flow on the ocean surface is roughly two-

dimensional. Unlike plankton however, my reaction will not have any capability

to move on its own, it only moves according to diffusion. While these are some

significant assumptions, I still allow any laminar or turbulent flow, nonlinear re-

actions, and include the effects of diffusion. This niche still needs exploration, so

it serves as a starting point upon which further complications can be added to

reach the applications I mentioned above.

Within ARD systems with these assumptions, diffusion and advection both

act through the gradient of c to change concentration. Meanwhile, reaction terms

terms usually take a chemical state from an unreacted state towards a reacted

state. The unreacted state can be linearly stable or unstable, and the reacted

state is linearly stable or is a state that the system spends a long period of time

near. All three terms tend to be near zero in areas that are completely reacted or

unreacted. Most of the interesting behavior takes place at the interface between

these two states, which is called the reaction front. Modeling the evolution of the

field c as the motion of a reaction front surface drastically reduces the system

complexity, and matches intuition. Reaction fronts specify that the reaction state

inside them is approximately all reacted, and outside is approximately unreacted.

To be valid, front modeling assumes that the reaction changes from unreacted to

reacted in a distance much smaller than the curvature of the front, or the domain

size. Complexity is reduced because the complex partial differential equation on

an abstract field is reduced to a ordinary differential equation based on geometry.

The combined effects of reaction and diffusion are modeled as a “front speed”

which moves the front outwards. Intuition is improved, because while it is difficult

to talk about how a flame’s temperature, reactants, and products vary over space,

it is much easier to say “just the lab is on fire”. The statement “just the lab is on
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fire” is implicitly a statement using reaction front modeling, because it identifies

where the edge of a reacted region is located. Thinking of reactions this way

allows me to identify a position for a reaction field, and also to observe how that

position changes over time, which gives rise to a velocity. The reaction field near

a front along a perpendicular profile can also be characterized to regain a little

more of the reaction field’s details.

The modeling of reaction fields as fronts goes back to the studies of front

propagation without flow. In the 1930s, two papers [39, 40] laid the groundwork by

studying how reaction-diffusion fronts advanced in a simple one-dimensional (1D)

situation. Fisher [39] was able to show that the solution for second order reactions

was a traveling sigmoid wave of constant shape which moved at a constant speed,

while Kolmogoroff et al. [40] showed that these fronts converged to a constant

speed in many reaction types. From these results, the field of front modeling was

born, and these fronts were named FKPP fronts. The solutions showed that only

a few parameters were needed to give the overall behavior of a reaction-diffusion

system: front position, front speed, and front profile width. Figure 1.1 shows an

example front profile, which Fisher calculated. These results can then be expanded

to higher dimensions, by noticing that in 3D ARD systems any point will be part

of a level surface. Along that level surface, concentration is constant, so all the

interesting front propagation occurs on a 1D line perpendicular to this surface.

Along with a curvature correction [41, 42], this created the Eikonal equation for

stagnant reaction front growth

w = v0n̂ +Dκ. (1.2)

Here I use the shorthand w = ∂x/∂t where x is the position of the front. The

stagnant front speed derived by Fisher is v0, n̂ is the front normal, and the

curvature is κ. In the experiments I will be doing, D ≈ 0.001 mm2/s, so the

curvature correction is negligible. However, it is worth mentioning that it tends

to smooth out cusps in the reaction very quickly.
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Figure 1.1: Reaction-diffusion front in 1D. The vertical axis is concentration, and the horizontal

is position. The front advances over time in the direction indicated by the arrow. Work of Fisher

[39].
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When advection is added, other dynamics must be added to eq. 1.2, because

the flow carries the reaction along. For example, if a reaction propagates in a

spatially uniform flow it must be identical to a reaction in a stagnant medium

observed from a moving reference frame, according to Galilean invariance. To

account for this, the easiest adjustment is to simply add the advection velocity at

the front position on top,

w = v0n̂ +Dκ+ u. (1.3)

This step is surprisingly subtle, and involves a large number of assumptions, such

as that v0 be independent of flow, that the spatial gradient of u be small near

the front, and that v0 and κ don’t change much across the front. For a derivation

of this see Spangler and Edwards [43]. This is the Eikonal equation in flow, and

represents and extremely simple way to model an ARD system.

To perform a simulation using the Eikonal equation it is useful to rewrite

the equation in terms of differential equations for the position of a set of front

elements, and their orientations. In a 2D ARD system this creates a 3D phase

space (2 position, 1 angle), and in 3D the phase space is 5-dimensional (3 position,

2 angles). The methodology for doing this is outlined in Mitchell and Mahoney

[44], Mahoney et al. [45], and Mahoney and Mitchell [46], in which they obtain

the equations for a front in a 2D system as

ẋ = ux + v0 sin θ (1.4)

ẏ = uy − v0 cos θ (1.5)

θ̇ = −∂ux
∂x

sin θ cos θ − ∂ux
∂y

sin2 θ +
∂uy
∂x

cos2 θ +
∂uy
∂y

sin θ cos θ. (1.6)

Here, θ gives the angle that the front tangent makes with the x axis. Specifically

the tangent is such that it is a 90o counterclockwise rotation from the front normal,

n̂, which points down the gradient. These equations can be extended to three-

dimensions (3D) [47], but I will be using them only in two-dimensional systems.
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These equations turn the ARD partial differential equation into a model system

of ordinary differential equations.

Now for this model to be useful it should do three things, (1) be simpler than

the original system, (2) provide insight into questions surrounding ARD dynamics,

and (3) be an accurate representation of the real physics. By virtue of being an

equation for dynamic motion, it is much simpler than the original ARD equation.

Furthermore, since it provides easily digestible information about how a reaction

“moves”, it meets the insight requirement. All that remains is to determine its

validity. With regard to validity, there has already been a large body of work

which uses the Eikonal equation to explain experimental results.

The first type of these experiments has to do with an implication of equa-

tions 1.4-1.6. With these Mitchell and collaborators were able to simply predict

points in steady and time periodic flows where fronts tended to accumulate. From

these burning fixed points, they observed the surfaces in the x, y, θ phase space

where fronts would tend to move along the surface. This meant these surfaces

were invariant manifolds of the system, and thus they got the name “Burning In-

variant Manifolds” (BIMs). One can think of these manifolds as being where flow

opposes a front in one direction such that the front cannot penetrate the mani-

fold, but can slide along it. This barrier only works in one direction in the x, y

plane, because in the other direction flow supports the front. BIMs are elegantly

simple, and they have been observed to accurately predict barriers to fronts in

disordered flows[34], flows with a headwind[48, 49], and periodic flows [50]. A

series of experiments have also used the Eikonal equation to explain the freezing

of reaction fronts in a packed granular bed with flow through it [10, 11], and past

an obstacle [33].

All of these tests have three limitations in common. First, the flows are steady

or time periodic, but never completely time dependent. Some work has been done

to expand BIMs to time dependent systems [48, 51], but it has yet to face serious
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experimental testing. Second, the tests all deal with where the front stops, and

not its behavior during the transient time while it converges to a BIM. As such

they do not truly test the accuracy of the Eikonal equation, but instead only deal

in its ability to predict the BIMs. In order to use the Eikonal equation as a model

for ARD systems, evidence that it can be used to predict transient behavior is

also needed. BIMs can be useful for prediction of qualitative behavior, but lack

the ability to make quantitative predictions, such as mixing time, or time to fully

react. Third, flows in these experiments had low flow speeds, incapable of creating

large flow gradients. As a result, the flow often does not significantly interact

with the reaction, making constant v0 a reasonable assumption. I will show in

chapter 5 that this should not in general be the case. Interactions between flow

gradient and reaction kinetics can supersede BIMs in importance to qualitative

behavior in turbulent flows. Nonetheless, it may be that the Eikonal equation

does match transient motion of a front, including fronts in turbulence, or that a

small modification to the front speed could account for the biggest interactions

with flow.

The Eikonal equation will be studied in detail in chapters 2 through 4. This

will be done by creating a “front tracking” tool to measure reaction front speed

and behavior in nearly 2D flows which can be either time dependent or indepen-

dent. Front tracking makes these measurements at all points in space and time of

a growing reaction, so it can test transient dynamics of the reaction. Front track-

ing can be directly compared to the Eikonal equation to test its applicability as

flow speed increases, or flow becomes time dependent. Through this analysis we

discover important new experimental considerations in chapter 4, and can analyze

the cause of difference with the Eikonal equation when it appears.

Another important simplified model of front dynamics aims at understanding

ARD specifically in more complex flows. The “filament model” also has created

general results through a simplification of the ARD equation, but in this case the
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simplifying assumption is that a reaction is pulled and stretched by a chaotic fluid

flow, and therefore it quickly becomes long and skinny [52]. If one considers a

reference frame moving with the filament, then the equation is symmetric along

the length of the filament. The dynamics can be replicated by assuming that the

results for a perpendicular cross section of the filament are the same all along it.

The filament model can be traced back to the work of Kierstead and Slobodkin [24]

and Skellam [25] which predicted the minimum viable habitat size for a reaction

that diffuses into an inhospitable environment. No reaction can survive in a

habitat smaller than the KiSS length lc = π
√
D/α, where α is a normalized

reaction rate, because diffusion will cause the reaction to leave the safe zone faster

than reaction growth. In my experiments there will be no locations that prohibit

growth, but there will be fluid flow to carry diffusing reaction product away from

the filament. It has been shown that diffusion could also cause a reaction to go

extinct if there is sufficient strain rate to carry reaction away faster than reaction

can replace it [18], and that this may impact phytoplankton populations [19].

This model has important predictive power, relevant to ARD systems in tur-

bulence. Importantly, this allows the inclusion of chemical kinetics, which front

dynamics lacks. Predictions from the model are easier to gather than in the full

system, and are easier to understand. In particular, a number of papers using the

filament model show that chaotic mixing induces a transition from a filament of

constant width growing exponentially to a filament which decays in concentration

until it goes extinct as the stirring strength is increased. This pattern appears for

a variety of chemical reaction types including excitable reactions [53], oscillatory

reactions [54], plankton population models [23] and autocatalytic or bistable re-

actions [30]. Its predictions are more independent of details than BIM modeling,

as the pattern persists independent of initial conditions [30], and independent of

whether the flow is open or closed [29]. Therefore, the filament model could po-

tentially be very powerful in predicting optimal stirring parameters, because it is
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the rare general result in ARD. However, this model suffers from not being utilized

in explaining experiments. Part of the reason for this is that as a very simple 1D

model it seems too approximate to be useful, but more importantly, prior to the

work in this thesis there were no experiments providing the simultaneous mea-

surement of reaction state and flow needed to study the filaments. There is also

some question as to how best to parameterize the stirring rate used by Neufeld

and collaborators, such that it is the most relevant for reaction dynamics.

In chapter 5, I present an experimental study relevant to the filament model.

My experimental flow is physically generated with complex flow structure, and

the results cannot be explained by front dynamics. Yet the results agree well with

predictions from the filament model for excitable reactions [53]. By comparison

to the front interpretation, I use the filament model to investigate the interactions

between nonlinear reactions and flow gradient. These results point to adjustments

to make to front modeling to expand its validity, and suggest the relevant stirring

parameter for the filament model to be related to the Lagrangian stretching [55].

1.3 Fluid Dynamics

While I will take the fluid flow as given in most of my analysis, it is important

to understand where the fluid flow comes from, and what properties it has. First

of all, my experiments will be conducted in liquid phase, and the flow speeds

involved are far less than the speed of sound in water. Therefore the fluid flow

incompressible,

∇ · u = 0. (1.7)

This fluid flow is driven by Lorentz forces, and the reacting fluid is a Newtonian

fluid. Therefore the Navier-Stokes equation which governs the flow field along
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with eq. 1.7 is

∂u

∂t
+ (u ·∇)u = −1

ρ
∇P + ν∇2u +

1

ρ
J ×B (1.8)

where P is the pressure field, ρ is density, ν is the kinematic viscosity, J is a current

density passed through the fluid, and B is the magnetic field. The experimental

fluid is contained in a vessel with a free surface at the top, and no-slip boundaries

on the sides and bottom.

The Navier-Stokes equation emerges from conservation of momentum, and

the requirement that the physics be invariant to whether we fix our reference

frame to be stationary or if we follow an infinitesimal fluid element as it is forced

around by the flow. Watching the flow in the stationary reference frame is known

as an Eulerian viewpoint, and following the flow itself is called a Lagrangian

viewpoint. The left side of eq. 1.8 is known as a material derivative, and it

ensures that the two perspectives are equivalent. In the case of chemical reactions

in flow, the reaction is also carried along so the material derivative can be seen in

eq. 1.1. Lagrangian perspectives will prove particularly useful for understanding

my results, and indeed both the front dynamics and filament models are developed

in a Lagrangian framework. The reason for this is that in attempting to find any

general results about ARD, it is more relevant to consider how the same patch of

reaction, not the same spot in space evolves in time.

The components of eq. 1.8 cause some complex dynamics, and tend to re-

sist easy analysis. In particular this is due to the advective, or inertial, term

(u ·∇)u, which provides a nonlinear forcing. This nonlinear forcing can lead to

solutions that are neither steady nor periodic. In fact, as flow speed is increased,

fluid flows usually change from a steady solution to an unsteady solution and

eventually to fully turbulent flow. In his legendary paper, Reynolds [56] showed

that these transitions occurred for a critical nondimensional number in pipe flow.

This number would later be renamed the Reynolds number, Re = UL/ν, where
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U is a characteristic velocity, and L is a flow length scale. Other authors have

characterized these critical transitions in flow configurations like the ones I will

use, both theoretically [57, 58], and experimentally [59]. In these transitions, the

steady flow gives way to increasingly complex periodic orbits, until it transitions

to a chaotic system. As flow speed is further increased, the system can be called

truly turbulent.

Turbulent systems are notoriously difficult to analyze. Within scalar mixing

it is known that the length scale of variation of a scalar quantity is reduced by

the turbulence, because the turbulent flow eddies are themselves cascading to

smaller length scales. This cascade continues down to the Kolmogorov scale, η,

after which the length scale may need to be further reduced before it reaches the

Batchelor scale, n, where diffusion can mix the scalar [1]. This picture of turbulent

mixing is very qualitative, and is not particularly useful for identifying where any

particular reactive scalar is likely to be in the future, because the underlying fluid

is itself difficult to predict. Yet for all the unpredictability of turbulent flows, many

physical flows contain structures that persist for a long period of time, and are

carried by the surrounding flows. For example Jupiter’s Great Red Spot [60], or

the Agulhas Rings in the ocean [61]. Recent work has identified flow structures like

these as Lagrangian coherent structures (LCS) [62–64]. These structures can be

measured in real flows [65], and possibly used to forecast sudden changes in scalar

mixing situations like oil spills [66]. The LCS are a Lagrangian way to classify the

parts of a turbulent flow, and are considered the most important barriers to non-

reactive scalar mixing. These structures can be calculated through a variety of

ways, but for practical considerations the finite time Lyapunov exponent (FTLE)

is often used [67, 68].

Whereas the LCS provide a way to classify regions of the flow, FTLE’s are

scalar values for all points in space and time. Depending on the finite time interval,

T chosen, these FTLE values quantify how much a given spot in the flow will be
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stretched or deformed during that time interval. The math to calculate this is

λ = T−1 logS (1.9)

where S is the stretching field [55]. The stretching field is calculated from a

Lagrangian representation of fluid flow known as the flow map, φ. φ maps each

point x0 at time t to its location x at time t + T . T can be positive or negative

(meaning backwards in time). Distortion as experienced by the fluid element then

can be described using the Cauchy-Green strain tensor [69],

(CT (x0))ij = (∇φT )ki (∇φT )kj , where

(∇φT )ij =
∂xi
∂x0,j

.

With this definition, stretching is then defined as the square root of the maximum

eigenvalue of the Cauchy-Green strain tensor. The resulting value gives a way to

quantify whether the point in the fluid will in the future (for positive T ) remain

close to its neighbors or diverge from them. T can also be negative to run the

stretching time in reverse and examine whether the point recently diverged from

its old neighbors. Since FTLEs can help make sense of nonreactive scalars in tur-

bulent flows, their relevance along with LCS to reactive scalars is very interesting,

and already they show signs of being important [8, 31, 32, 70].

1.4 Reaction Dynamics

The last term of eq. 1.1 that requires more explanation is the reaction term. Fi is

the dimensional reaction function which can usually be written down based on the

chemical equations. Reactions occur at a rate proportional to some dimensional

reaction rate constant, k, and the concentration of all the constituent molecules

that must interact. The more molecules are available, the faster the reaction.

Multiple terms often appear in the reaction function due to multiple ways a single
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chemical species may be made, and each chemical species involved has its own

reaction function. For example consider the chemical reaction which happens at

rate k,

aX + bY → cZ

then a reaction function exists for each chemical species X, Y, Z. In this case,

these functions would be

∂X

∂t
= −kaXaY b

∂Y

∂t
= −kbXaY b

∂Z

∂t
= kcXaY b.

so the coefficients on each species serve to both multiply how much that species

changes for each reaction, and also to raise the order of the reaction function. The

only example of a linear system in chemical kinetics is if all the reactant species

except one are in a large enough excess to be considered constant. Nonlinearity

is the default behavior for chemical kinetics [2]. I will usually simplify the system

by writing one chemical species in terms of the concentration of another, so I only

consider one or two chemical species. To make this nondimensional, the reaction

coefficient and the magnitude of the reaction will usually be factored out into a

constant called α which has units of 1/s. This also means that concentrations

range from 0 to 1. I call this nondimensionalized reaction function Gi.

There are numerous ways for chemical reactions to feed-back on themselves.

The growth of the reaction may reduce the remaining concentration of reactants,

the reaction could drive an increase in temperature which changes α, or a side

reaction could produce a catalyst. In this thesis, my chemical reaction will be an

excitable, autocatalytic reaction. Autocatalytic means that the reaction product

is a catalyst for more reaction, and excitable means that the reaction does not
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proceed until it experiences a perturbation above some finite threshold, at which

point it goes on a long deviation from the unreacted state. The excitable reaction

I am using is the Belousov-Zhabotinsky (BZ) reaction, for which a simple model

of the kinetics [2, 71, 72] is

∂c1

∂t
= α

[
c1(1− c1)− c1 − q

q + c1

fc2

]
(1.10)

∂c1

∂t
= αε [c1 − c2] (1.11)

where f , ε, and q are nondimensional constants. Once a threshold is passed, c1

grows rapidly, so it is the catalyst. As c1 increases, c2 rises, but since ε ≈ 0.01

this rise happens more slowly. Once c2 is large enough it begins to inhibit the

reaction, causing it to reset back to the original state. A phase space plot of this

reaction is shown in fig. 1.2, which can be used to gain intuition about how this

reaction behaves.

This reaction is fairly complicated, but the rewards for focusing on an excitable

system are large. Many other systems experience the combination of a finite

threshold for perturbations, a rapid growth, and then resetting to the original

state. For instance, population modeling of phytoplankton in the ocean can be

described as excitable with population of phytoplankton as the activator, and the

predatory zooplankton as inhibitor [19]. Combustion reactions also share a lot of

commonalities with excitable systems, because they also posses reaction thresholds

(often called ignition points), and wildfires can be considered as refractory because

the fuel grows back [17]. Other systems with excitable dynamics range from

fibrillating hearts [73] to “The Wave” performed at sporting events [74].

1.5 Experimental Methods

Linking all the results in this thesis, are the unique experimental tools that I used

to gather data and perform analysis. In every chapter there are two fields which
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Figure 1.2: (a) Phase diagram for excitable systems. The lines represent nullclines along

which the rate of change of one of the chemical species is zero. (b) The actual phase plot for

the Oregonator shows that the threshold is very small, and the shape is closer to a quadratic

than a cubic like in (a). Unpublished work of the author.
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must be quantified in experiments: reaction and flow. To do this, I gather data

from thin layer flow experiments using two hardware synchronized cameras. One

camera gathers flow data by tracking fluorescent particles that float atop the layer,

the other watches the reaction. Since I always have the fluid flow that the reaction

actually experienced, I do not have to model the fluid flow from eq. 1.8, and I

can analyze flows which are time dependent. The later of these benefits is a huge

advantage, because beyond the transition from periodic flows to chaotic flows it

is impossible to generate the same flow repeatably. If data is taken on a reaction

growing in chaotic or turbulent flows, a second experiment in the same flow cannot

be conducted to then measure the flow field. The synchronized cameras record

high speed, high resolution data that is from the exact same flow. By applying a

blue color filter to the reaction camera, and a color filter matching the fluorescence

of floating tracer particles which track the flow to the other, I obtain two videos

which contain either only particles or only reaction.

The flow tracking methodology is well established, and roughly the same in

all my experiments. Flow is quantified by tracking fluorescent tracer particles in

the images from the flow camera according to the Lagrangian Particle Tracking

Velocimetry (PTV) method [75]. Particle tracking code originally comes from Dr.

Nicholas Ouellette. Tracer particles fluoresce under the blue light we illuminate

the apparatus with. They follow the flow closely, as can be shown by considering

the ratio of the characteristic settling time of the particle to the characteristic time

of the flow, which is the Stokes number St . For my experiments St < 0.1 which

ensures that the particles always change to match the surrounding flow faster than

the flow changes speed. In the thin layer system we also do not reach the flow

speeds at which three-dimensional up-welling or down-welling occur [76, 77].

Due to all these aspects I am able to accurately reproduce the fluid flow and

reaction at all times and places, even if the flow is unsteady. This setup was con-

ceived by Dr. Doug Kelley, and I made continual improvements to the system over
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several years, so each chapter in this thesis has some slightly different parameters.

1.6 Thesis Overview

The goal of this thesis is to perform some tests on modeling of ARD systems to

better understand and predict their dynamics. Specifically, I will be focusing on

experiments using the excitable BZ reaction, and thin layer flows (known as quasi-

2D). To do this, in chapters 2-4, I develop a novel algorithm for tracking reaction

fronts at all locations and all times. Tracking reaction fronts allows me and future

researchers to obtain data on reaction front position and speed from ARD systems

that is exactly analogous to the Eikonal approximation. In chapter 2, I start by

introducing this algorithm without flow, and observe that front speed and front

thickness can both be measured simultaneously, and they can be used to obtain

accurate measurements of diffusion and reaction rate constants. In chapter 3, I

enable the algorithm to handle fronts moved around by advection, and show it

gathers accurate data in simulation. I also observe an apparent dependence of

chemical speed on flow speed, but in chapter 4 I am able to explain much of this

dependency on experimental considerations. I suggest the use of a lubrication layer

for future ARD experiments. Finally in chapter 5 I discuss the observation of an

optimal Lagrangian stretching for excitable chemical reactions. We observe that

this optimal range makes a good predictor of reaction behavior in both laminar

and unsteady flows, but cannot be explained by the Eikonal approximation. I show

that the filament model helps to understand the optimal stretching behavior, and

I use numerical and analytical methods to investigate other effects of strain-rate

(which gives rise to Lagrangian stretching) on ARD systems.
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2 Front Tracking Method for

Quantifying

Reaction-Diffusion

This chapter is based on Reference [78] and the author’s qualifying exam sub-

mission. It has been reformatted and edited to fit within the thesis. The thesis

author was the primary author on this work.

2.1 Introduction

The three physical processes advection (fluid flow), reaction, and molecular dif-

fusion govern the dynamics of concentrations in many common systems. Because

underlying fluid flow is often chaotic or turbulent, and because reaction often in-

volves nonlinear chemical kinetics, complicated concentration dynamics are typical

in advection-reaction-diffusion systems. When a reaction grows in the presence

of a flowing fluid, the flow itself is different from one location to another at each

instant. As a direct result of spatial complexity of flows, the reaction grows in

different directions from one location to another, and can even grow at different

rates from place to place (See Chapter 5). Studies on the interaction between re-

action and advection have shown frozen reaction fronts in porous media [10, 11],
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and reactions growing at different rates in Poiseuille flow based on the front shape

of the reaction [35–37]. Significant global effects of fluid flow on enhanced reaction

growth in the bulk are also well known [8, 53, 79]. Still other studies have found

pattern formation among advection driven reactions [80].

However, in order to provide insight for the numerous applications in advection-

reaction-diffusion (ARD), a simplified representation is needed. This model of

ARD must then be sensitive to all the complexity listed above. One technique

used for making a simplified representation is to choose a concentration threshold

and identify the reaction fronts separating high-concentration reacted regions from

low-concentration unreacted regions. The complex dynamics of ARD systems can

then be thought of as the movement of these reaction fronts, which must be able

to vary from point to point along the front. One application of fronts are the

recently-developed theories of burning invariant manifolds (BIMs) and burning

Lagrangian Coherent Structures (BLCS) [34, 44, 46, 48, 50, 51]. These identify

barriers to propagation of fronts caused by opposing advection, enabling some

prediction of reaction growth. BIMs and BLCS predict where fronts will advance

and where they will not. Calculating those barriers requires knowing the speed

at which fronts advance when only reaction and diffusion are present. The front

tracking algorithm I will describe is a data analysis method to measure that front

speed locally at many locations, providing a statistically robust measurement.

Prior studies have measured front speed only along a single line [81, 82]. Instead,

this algorithm works from time series of concentration fields, which can be gath-

ered from either simulations or experiments. Also, since the algorithm gathers

local data, I will be able to study how reaction growth changes with local flow

behavior to cause the complex behaviors that have been observed.

The algorithm also determines the front thickness at many locations, that is,

a specific distance which characterizes the distance over which product concentra-

tion varies from small (near zero) to large (near saturation). Through well-known
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solutions to reaction-diffusion equation, front thickness along with front speed

can be used to determine the diffusivity and reaction rate of the reacting species

in reactions without flow. By determining front speed and thickness at many

locations, the algorithm provides statistically robust measurements of those mi-

croscopic quantities as well. Prior studies have typically measured diffusivity and

reaction rate at just one location [83, 84].

Though I am interested in modeling advection-reaction-diffusion systems, the

discussion below centers on the theory of reaction-diffusion systems, in which ad-

vection is absent. Similarly, the validation and simulation data we use to test

the algorithm involve no advection, and the experiments described below involve

no advection. Instead in this chapter I focus on validating and verifying a front

tracking method, and demonstrating that it has physical relevance. I have cho-

sen reaction-diffusion systems because of their relative simplicity. Their physics

is well understood, and that creates better intuition about what results to ex-

pect from the algorithm. Generalizing front tracking from reaction-diffusion to

advection-reaction-diffusion requires only that front displacements due to advec-

tion be subtracted off before implementing the algorithm described below, then

restored later. That this can be done will be shown in Chapter 3. In prior litera-

ture, the phrase “front tracking” sometimes refers to a simulation method, where

the simulation works differently near a reaction front [85, 86]. Throughout this

chapter, however, “front tracking” is specifically an algorithm for measuring a

reaction front in data produced either in simulation or experiment.

This chapter proceeds as follows: In §2.2 we explain the theory of reaction-

diffusion equations, and how diffusion and reaction rate determine front speed

and thickness. In §2.3 we detail the algorithm and its parameters. Section 2.4

shows that the algorithm measures correct front speed and thickness, working from

validation data in which those quantities are prescribed. Section 2.4 also shows

the algorithm to be robust to random noise and insensitive to parameter choices of
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the user. In §2.5, we apply the algorithm to simulation results, showing that the

algorithm measures correct diffusivity and reaction rate, working from simulation

results in which those quantities are prescribed. Section 2.6 shows the results of

applying the algorithm to laboratory experiments with the Belousov-Zhabotinsky

(BZ) reaction, in which front speed, front width, diffusivity, and reaction rate are

all measured. Finally, §2.7 summarizes our results and considers implications for

future work.

2.2 Relating Thickness and Speed to Diffusivity

and Reaction Rate

The growth of a reacted region is governed by its initial condition and the ma-

terial diffusivity and reaction rates. That is, the physical constants describing

microscopic processes (diffusivity and reaction rate) must determine the macro-

scopic behavior (front speed and thickness). Conversely, measuring macroscopic

behavior can reveal microscopic quantities, often through simple algebraic rela-

tionships. The differential equations allow us to understand chemistry through

measuring the physics. Though this insight has been published before [2, 11], to

my knowledge it has not been utilized before, because front thickness in the sense

we describe has not been measured. However, local reaction profile length scales

have been measured using maximum gradient methods in combustion [87, 88],

and reaction profiles of the BZ reaction have been photographed [89]. This sec-

tion will describe the mathematical connections between diffusivity, reaction rate,

front speed, and front thickness.

Starting from the advection-reaction-diffusion equation,

dc

dt
= −(u · ∇)c+D∇2c+ kF (c), (2.1)
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where c is the concentration of the reaction product, u is the underlying flow, D

is the diffusion coefficient, k is a reaction rate constant, and F (c) specifies the

reaction kinetics. If the advection term is zero (or we consider a reference frame

moving with the flow: a Lagrangian frame), eq. (2.1) simplifies to the reaction-

diffusion equation,
dc

dt
= D∇2c+ kF (c). (2.2)

Since diffusion spreads scalars down the gradient of their own concentration fields,

it spreads reacted regions perpendicular to their concentration level curves. Since

the reaction term F (c) is local, it only serves to raise or lower concentration. Based

on this intuition, a front is defined as a line (or in three-dimensional reactions,

a surface), which separates reacted and unreacted regions. In particular, a front

is a particular level curve or surface of the concentration field c. Therefore, if a

reaction-diffusion front is defined to be a characteristic level curve of the reaction,

it will appear to “move” down the concentration gradient, locally perpendicular

to the front itself. Systems can be prepared such that fronts do not appear to

move perpendicularly, but if we assume the reaction is fast enough that the front

advancement is limited by diffusion (kc0 >> D/l2 where c0 is an equilibrium

concentration, and l is the length scale of interest) then its level curves quickly

become close together, and the front becomes “sharp”. Perfectly sharp fronts

must evolve perpendicular to themselves, because the reaction term is zero except

at the front and therefore it cannot create apparent front advancement by causing

a far off region to increase to above the characteristic front level.

For suitably fast reactions, the changes from the unreacted to the reacted state

occur in a very short spatial distance, so a change in the choice of which level

curve is used results in only a small change in curve position. If the concentration

profile is constant over time, this position shift does not lead to a shift in front

velocity. Far from a front, whether it be thin or thick, very little change occurs

in c, so the front is the dominant feature of a reaction. By understanding the
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motion of these surfaces, I obtain a simple picture of what happens in an entire

reaction volume, but retain many of the important features. Since he reaction

causes growth by boosting an existing concentration above the threshold, front

motion is an “apparent motion”, which emerges from the dynamics without being

specified. As a result even simulations need a method to obtain front speed or

thickness after a simulation is complete. The novelty of the algorithm lies not

in locating fronts, which can be done by simple thresholding, but in quantifying

their properties: velocity and thickness.

Moreover, because a reaction front is a level curve the spatial variation of

concentration along it is zero, the diffusion term D∇2c is dominated by gradients

locally perpendicular to the front. Eq. (2.2) can then be written in terms of one

spatial coordinate, x, locally perpendicular to the front. If the reaction term has

second-order dynamics, the result is the Fisher Equation,

dc

dt
= D

∂2c

∂x2
+ kc0c(1− c), (2.3)

where now c is dimensionless, having been normalized by c0, an equilibrium con-

centration. Considering the boundary conditions c = 0 at x = x0 and c = 1 at

x = −x0, and choosing x0 → ∞, the solution to the Fisher Equation [39, 90, 91]

is

c(x, y, t) =
1

(1 + e(x−vt)/L)2
, (2.4)

where the front thickness and speed are

L =

√
6D

α
, (2.5)

v =
5

6

√
6Dα, (2.6)

respectively. Here D is the diffusion coefficient and α = kc0 is the reaction rate

normalized by equilibrium concentration. This result is slightly different than the

commonly used Kolmogoroff result [40], which says v = −2
√
Dα. This is because

the Kolmogoroff result is based on numerous approximations and does not provide
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us with the nice results with regard to diffusion and reaction rate that the Fisher

solution does. Furthermore, the constant 5
6

√
6 ≈ 2.04, making the Kolmogoroff

result still very close. Equations (2.5) and (2.6) can be solved for D and α:

D =
|v|L

5
, (2.7)

α =
6|v|
5L

. (2.8)

where I use the speed, |v|, to emphasize that this also works for eq. (2.3) under

the opposite boundary conditions.

Specifying boundary conditions at infinity is an idealization, but the resulting

solution closely approximates the true situation as long as x0 � L. Also, though

curvature of a front is known to alter its speed [42], solutions of Eqs. (2.3) and

(2.1) match as long as the radius of curvature of the front is much larger than

the length scale of spatial gradients. While under these assumptions the front is

approximately planar, which means the solution to the 1-dimensional case is the

solution.

Equations (2.7) and (2.8) make it possible to determine the microscopic phys-

ical constants D and α by measuring the macroscopic properties L and v — if the

chemical kinetics are second order. Similarly, for third order kinetics,

dc

dt
= D∇2c+ kc2

0c
2(1− c), (2.9)

which is solved by [2, 11]

c(x, y, t) =
1

(1 + e−(x−vt)/L)
, (2.10)

where the front thickness and speed are

L =

√
2D

α
, (2.11)

|v| =
√
Dα

2
, (2.12)

(2.13)
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respectively. Again it is straightforward to write D and α in terms of L and v:

D = L|v|, (2.14)

α =
2|v|
L
. (2.15)

It seems likely that the diffusivity and reaction rate can be written in terms of

macroscopic quantities for chemical kinetics of any order for which the appropriate

one-dimensional reaction-diffusion equation can be solved analytically. In this

chapter I consider experiments and simulations where the reactants are dissolved

in water and the reaction is second-order. I suspect the method works even

better for third-order reactions, because the form of the solution for third-order

dynamics makes fits to measurements more straightforward. I have not attempted

the method on any other reaction types, but I see no reason that it would not

work on different chemistries, even solid- or gas-phase reactions.

In the experimental section, I consider the BZ reaction. For my purposes,

the reaction kinetics of BZ can be simplified via the Oregonator model to two

differential equations [2, 72]:

ε
da

dτ
= D1∇2a+ a(1− a)− a− q

q + a
fb (2.16)

db

dτ
= D2∇2b+ a− b. (2.17)

Where a is a nondimensional value for concentration of Hydrogen-Bromate

(HBrO2), and b is a nondimensional concentration of oxidized ferroin (Mox for

short). The quantity q is a nondimensional ratio of reaction rates, and f is

a constant from the reaction kinetics. In this reaction, HBrO2 generates itself

autocatalytically, and is eventually removed by growing Mox. This creates an

oscillating chemical reaction that can be tested many times without having to

remix chemicals. Also, since ε is a small nondimensional number, changes in a
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are much faster than b. Thus when a reaction first starts, b is nearly zero, and

a grows quickly. This means the last term of eq. (2.16) is negligible, and a is a

second-order reaction-diffusion system at the front when it first reacts.

Therefore L and |v| are henceforth defined as in Eqs. (2.5 and 2.6). Through-

out this paper I also consider the simplified case of reaction in a thin layer that can

be approximately two-dimensional, in which reaction fronts are one-dimensional

curves, not two-dimensional surfaces. This matches the type of data I will be

collecting. However, the algorithm should readily generalize to three-dimensional

systems if a suitable technique is found for gathering three-dimensional concen-

tration fields.

2.3 Front Tracking

In this section I describe the algorithm to locally measure front thickness and

speed in reaction-diffusion systems, using a series of concentration fields measured

at regular intervals and on a regular spatial grid. The algorithm will be generalized

to advection-reaction-diffusion systems as long as the velocity field u is known in

Chapter 3. Written in MATLAB, the open-source algorithm is freely available1.

An example of the end result is shown in Fig. 2.1.

The algorithm begins by locating reaction fronts, which are defined as the

surfaces that separate regions of high product concentration c > cthresh from low

product concentration c < cthresh, where cthresh is a user-defined concentration

threshold. This corresponds to a concentration level curve at cthresh. In our

experiments and simulations these fronts are suitably thin so front position is

weakly dependent on cthresh.

After finding the edges of regions where c > cthresh, the algorithm smooths

those edges, because measuring concentration on a discrete grid makes them rough

1http://www.me.rochester.edu/projects/dhkelley-lab/
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Figure 2.1: Example results of front tracking. Front location is indicated in green and thickness

by the green area; front velocity is indicated by red arrows in reaction-diffusion experiments with

the Belousov-Zhabotinsky reaction, described below. Work of the author published in [78].
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Parameter Description

cthresh Concentration threshold.

S Span of sliding fit for smoothing

fronts.

Amin Minimum area of reacted regions.

M Size of excluded margin.

dmax Maximum front displacement.

nskip Number of concentration fields

skipped when measuring speeds.

Lfit Half profile fit length for determining

front thickness.

Table 2.1: Parameters chosen by the algorithm’s user.

at grid scale and does not accurately represent the front shape. This smoothing

is done using a sliding line fit spanning S points along the boundary. In this

process S neighbors are fit to a line which is then used to adjust the central

point’s location. Line smoothing is always necessary for accurate reconstruction

of perpendiculars, since boundaries from a thresholded image always follow pixel

boundaries. To further reduce noise effects and in anticipation of the presence of

small tracer particles in future advection-reaction-diffusion experiments, the algo-

rithm removes regions where c > cthresh whose area is smaller than Amin, another

user-defined parameter. Finally the algorithm imposes margins by ignoring all

front elements within a distance M of the edges of the field of view. This prevents

field borders from being incorrectly identified as front boundaries. All algorithm

parameters, including cthresh, S, Amin, and M , are listed in Table 2.1.

Once the user has located fronts, they can measure their speed, and Fig. 2.2

illustrates the algorithm for doing so. First, the algorithm considers the fronts in

two subsequent concentration fields. Then, it draws a perpendicular line extend-
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Current Front

Next Front

Front Velocity

Figure 2.2: Algorithm described for measuring front velocity. First, the edges of regions where

c > cthresh are, after smoothing, identified as fronts. The process is repeated for a subsequent

concentration field. The perpendicular distance between the first and subsequent location of a

front, along with the delay time between concentration fields, provides the local velocity. Work

of the author published in [78].

ing a distance dmax in each direction from each point on the earlier front; dmax is

specified by the user. The algorithm then finds the locations where the perpen-

dicular intersects fronts in the subsequent field. The displacement between the

original point and each intersection is calculated, and the smallest displacement is

divided by the delay time between concentration fields, yielding the front speed at

that one point. If the perpendicular intersects no front, a “not-a-number” value

is recorded. The process is repeated for every point on the fronts in the earlier

concentration field. To eliminate noise caused by high-frequency changes in the

concentration field, the algorithm can implement a simple low-pass temporal filter

by skipping nskip subsequent concentration fields, as specified by the user. Assum-

ing the grid spacing and interval between concentration fields are known, front

speed can be expressed in physical units.

Algorithm users can also measure their thickness, and Fig. 2.3 depicts the
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Figure 2.3: Algorithm for measuring front thickness, shown using validation data. First, the

edges of regions where the local concentration c exceeds the chosen threshold cthresh are, after

smoothing, identified as fronts. Then the concentration profile along a line perpendicular to the

front is fit to eq. (2.4), yielding the local thickness L. Work of the author published in [78].

algorithm for doing so. Only one concentration field need be considered. The

algorithm again draws a perpendicular at each point along each front, as in ve-

locity measurement, but with length Lfit, specified by the user. The algorithm

interpolates the concentration on the regular grid to a set of points along the

perpendicular to obtain a concentration profile as shown. That profile is fit to

the corresponding one-dimensional solution to the reaction diffusion equation,

eq. (2.4), yielding the local thickness L. Fitting allows the algorithm to determine

L with sub-pixel accuracy, since more than one pixel is used in its determination.

Assuming the grid spacing is known, front thickness can be expressed in real units.

To ensure accurate fitting Lfit should be small enough not to overlap with a nearby

front, and no smaller. To see the dependence on Lfit and other parameters see

Fig. 2.6.
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2.4 Tracking Fronts in Validation Data

To test the algorithm, I first verified that it could reproduce front speed and

thickness, given validation data in which speed and thickness had been specified.

I created a series of concentration fields in which were constructed fronts of varying

shape, speed, and thickness. Each front had a reaction profile specified by eq. (2.4),

with 0 ≤ c ≤ 255. I also added in uniformly-distributed noise of magnitude 20

to each concentration field. All validation data are measured in units of pixels

and frames. Figure 2.4 compares the true speeds and thicknesses to the speeds

and thicknesses measured using the algorithm. The match is close. The greatest

errors occur for a square front and are due to curve smoothing at the sharp corners.

These corners move faster than the “true speed”. In any physical front, however,

diffusion eliminates sharp corners. Measured thicknesses are accurate over a wide

range of possible thicknesses. Certain extreme cases can disrupt this accuracy.

In particular, as the thickness approaches the size of Lfit, errors increase. To

improve these errors Lfit can be increased; here I chose a large fit, Lfit = 20 pixels,

to reduce the errors. For annuli, as the fronts get thicker, the concentration profiles

of the inner and outer boundaries overlap, so that x0 → ∞ is no longer a good

approximation (see Sec. 2.2). In this case accuracy can be improved by decreasing

Lfit. Increased resolution reduces error in both speed and thickness.

Next I quantified the robustness of the algorithm to noise in concentration

fields. Starting with a circular front as shown in Fig. 2.4a, I added uniformly-

distributed noise of varying magnitude, then used the algorithm to measure front

speed and thickness. True values were chosen based on preliminary experimental

values. Figure 2.5 shows the results. Speed measurements are essentially unaf-

fected by noise, and errors in thickness measurements grow to just ∼ 3% when

the noise is almost 50% the size of the signal. One reason these results are ro-

bust to uncorrelated noise is that the average speed and thickness are calculated
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Figure 2.4: Comparison of true and measured front speed and thickness. (a–b) Measured

median speed vm (a) and median thickness Lm of a circular front propagating outward, compared

to the input values. Analogous comparisons are shown in (c–f) for square and annular fronts,

all propagating outward. Work of the author published in [78].
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from many local measurements along the entire length of the front; local measure-

ments provide a major advantage. Curve smoothing also helps to remove sudden,

incorrect protrusions caused by noise.

Next I quantified the sensitivity of errors to user choices of the input parame-

ters. Figure 2.6 shows how front speed and thickness vary with threshold cthresh,

profile fit length Lfit, and smoothing span S. Errors in speed were typically less

than 1%. The only significant error occurs for extremely large smoothing span.

Errors in thickness were less than 1% except for Lfit < 7L, in which case it seems

there were too few point measurements for a good fit. Default parameter values

were cthresh = 50% = 128, Lfit = 40 pixels, S = 20 pixels, nskip = 5 frames,

and dmax = 20 pixels, when each parameter wasn’t the one being changed. The

algorithm achieves high accuracy despite the fact that all data sets have a noise

signal with a peak-to-peak amplitude of 8% of the dynamic range. For very small

smoothing span there is no error in thickness, indicating that smoothing slightly

biases thickness measurements. The algorithm has little sensitivity to the concen-

tration threshold, staying accurate to about 1% for thresholds ranging from 10%

to 90% of the maximum concentration.

I found that dmax, the maximum front displacement, matters only that it has

to be long enough to intersect the next frame’s front. Once it is long enough to

cross, the accuracy is no longer effected by dmax. Likewise there is insignificant

error sensitivity to user choices of Amin and nskip.

2.5 Tracking Fronts in Simulation Data

Having found the algorithm successful is reproducing front speed and thickness

from validation data, I set out to verify that the algorithm could reproduce reac-

tion rate and diffusivity from the results of reaction-diffusion simulations.

I wrote a simple two-dimensional simulation that calculates concentration c
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Figure 2.5: Robustness of front tracking to noise. (a–c) Example validation data with vary-

ing noise magnitude. (d) Noise changes front speed measurements negligibly. (e) Noise with

magnitude up to half the dynamic range changes front thickness measurements by about 3%.

Triangles indicate noise magnitudes corresponding to (a–c). Measurements were made using the

same default values as in Fig. 2.6. Work of the author published in [78].
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length Lfit (c–d) and concentration threshold cthresh (e–f). Work of the author published in [78].
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as it evolves through time according to eq. (2.3), using central differences for

spatial gradients, first-order time integration, and periodic boundary conditions.

I simulated concentration in a two-dimensional domain −3π ≤ x < 3π, −π ≤ y <

π, where x and y are now Cartesian coordinates measured in mm and discretized

on a 2400 × 30 rectangular grid (7.85 mm grid spacing in the x-direction). The

initial condition was a straight front of the form

c(x, y, 0) =
1

(1 + e−(x−µ)/L)2
, (2.18)

invariant in y, with D and α specified. The y direction was only included to make

the final result a field which could be processed cleanly by the algorithm, which is

written for two-dimensional concentration fields. Invariance in y also eliminates

curvature effects. To ensure convergence the time step was 9.25 × 10−6 s. Each

simulation was run for 4,800,000 time steps, giving 44.4 s of effective data. That

duration provided ample data and prevented the front from wrapping around the

periodic domain. I then applied the front tracking algorithm to the concentration

fields produced by the simulation, obtaining speeds and thicknesses. For each

simulation, I recorded the average speed and thickness, then used them to calculate

D and α according to equations (2.7,2.8).

Figure 2.7 compares input reaction rates and diffusivities to the values mea-

sured using the algorithm. Only one combination D and α gives greater than 5%

error, and it is for a case with a low D. Errors in diffusivity are larger than in

reaction rate, and diffusivity is consistently over-estimated. I attribute this sys-

tematic error not to a problem with the tracking algorithm but to the presence of

numerical diffusion in the simulation, caused by estimating continuous derivatives

as discrete differences. Percentages are then higher for low D, because the same

numeric error becomes a bigger percentage of the measurement. In fact, when we

increased the number of grid points to make numerical gradients more accurate,

the error in diffusivity dropped. Larger reaction rate also tends to exacerbate er-
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Figure 2.7: Accuracy of diffusivity and reaction rate measurements made by tracking fronts in

simulation results. The true diffusivity is Dtrue, and the true reaction rate is αtrue. Errors are

small and primarily due to numerical diffusion in the simulation, not errors in front tracking.

Work of the author published in [78].

rors produced by numerical diffusion. Errors in reaction rate are small, and may

also be due to numeric diffusion.

2.6 Tracking Fronts in Experimental Data

Having found the algorithm successful with both validation data and simulation

results, it was applied to laboratory experiments using the Belousov-Zhabotinsky

(BZ) reaction [2, 91–94]. BZ is a complicated oscillating chemical reaction, often
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parameterized with the Oregonator model [72]. BZ oscillates between states by

passing electrons back and forth with a catalyst. In our case the catalyst is ferroin

indicator, so the BZ oscillates between blue and red. The reactions that turn BZ

blue are well-modeled as second-order because higher-order reaction terms are

negligible, as discussed in §. 2.2 and the book by Scott [2]. However, the reactions

that turn BZ back from blue to red are not second-order. Thus we would expect

“fronts” and “backs” to show measurably different macroscopic behavior when

tracked.

I prepared a 2-mm deep layer of BZ solution using the same chemical con-

centrations as Gowen & Solomon[48], then immersed a silver wire for ∼ 20 s to

initiate reaction. I measured the temperature to be 20◦C with a thermocouple,

and found the temperature to be constant over the course of each experiment.

I illuminated experiments with blue light-emitting diodes and filmed BZ using a

gray-scale, high-speed camera (Emergent HS-4000M) behind a blue band-pass fil-

ter. The higher the concentration of blue ferroin, the more light is passed through

the BZ and reflected by a white background. The filter blocks red light from

unreacted regions, making reacted regions appear bright and unreacted regions

appear dark. The transmittance is related to concentration [92], so the brightness

measured by the camera provides an idea of the local concentration of the reacted

state. I recorded image sequences for 1 to 5 minutes, until spurious fronts from

the boundaries of our vessel invaded the field of view. The value of nskip is set to

take measurements every 1 s; frame rates were 3 - 5 Hz. The spatial resolution

was 0.1218 mm/px for experiments with circular fronts, and 0.0726mm/px for ex-

periments with planar fronts. The front-tracking algorithm is finally used on the

image sequences to measure front speed, front thickness, diffusivity, and reaction

rate from these experiments.

Figure 2.8 shows distributions of speed and thickness obtained from an exper-

iment with a clear front and back, both growing out from a point trigger. The
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Figure 2.8: Histograms of front speeds (a) and thicknesses (b) gathered from an outward-

propagating front. Backs have a much wider distribution of thicknesses. Work of the author

published in [78].

front and back have nearly the same mean speed, though the back has a broader

speed distribution. Measuring identical speeds for fronts and backs is consistent

with physical expectations. Because BZ oscillates with a fixed duration, each back

must have a speed matching the front that came before it. However, the front

and the back differ starkly in their thickness. Nearly every measurement of front

thickness is close to 168 µm, whereas measurements of back thickness vary from

0.5 mm to to 2.5 mm. As expected, the different chemical kinetics of fronts and

backs yield different macroscopic behavior.

Considering just the front, which is well-modeled by second-order kinetics,

I can extract well-defined values of v and L from histograms like those shown

in Fig. 2.8, then calculate D and α from v and L. Because BZ is actually a

complex chain reaction, the values measured correspond to rate-limiting steps. I
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used the modal value for v and L (at the peak of each distribution), because the

distributions are not symmetric; their large skew cause mean and median to be

poor indicators of typical front dynamics.

In practice, ferroin concentration is often varied during laboratory experiments

with BZ, because its colors fade slowly over time, and adding more ferroin restores

the contrast. Prior studies found that BZ front speed varies little with ferroin

concentration [71, 92], but to my knowledge thickness, diffusivity, and reaction rate

have not been considered. I performed two sets of experiments with varying ferroin

concentrations, one with circular fronts and one with planar fronts, then extracted

v and L, and calculated D and α. For all sets, at least 1,500 data points are taken,

however for circular most data sets contain over 8000 points, and for planar all data

sets have at least 20,000 points, and most have over 70,000. The results are shown

in Fig. 2.9. In both cases, and especially with linear fronts, we see essentially no

variation of v with ferroin concentration. In six of seven experiments, 71 µm/s ≤

v ≤ 73µm/s. For comparison, prior studies found v = 95µm/s at 25◦C [71], 65

µm/s at 18◦C [92], and 70 µm/s at 20◦C [34], all using slightly different recipes

for BZ. Our recipe matches Bargteil & Solomon [34] and is similar to Field &

Noyes [71]. Considering the reaction’s strong temperature sensitivity [92] the

agreement is good, and variations are probably related to temperature not recipe.

And though front speed is known to depend on curvature [42], we measure no

obvious variation with curvature in these experiments. However, we measure the

mode of the speed and thickness, which is insensitive to large curvature areas

which occupy little of any data set. Therefore it is clear that the algorithm has

accurately reproduced prior results.

To my knowledge, neither front thickness nor back thickness has been measured

before in BZ (though profiles have been imaged before [89]). We find that front

thickness increases with ferroin concentration, as shown in Fig. 2.9. However, since

ferroin concentration can be increased between experiments, but never decreased
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except by mixing a new batch of BZ solution, ferroin concentration necessarily

correlates with the age of the reaction. When the data points shown in Fig. 2.9

are arranged in chronological order instead, the trend is maintained even if several

data points were taken with the same ferroin concentration. I found thickness

to depend on ferroin concentration (or age) for both planar and circular fronts.

In both cases thickness is steady around 70 µm, until the BZ has aged or gotten

enough ferroin. At this point its thickness jumps to around 170 µm. Further work

would be needed to understand what causes the jump from the “low-thickness”

data to the “high-thickness” data.

I measured diffusivity and reaction rate to be of the same order of magni-

tude found in prior studies, which measured D = 2 × 10−3 mm2/s [2], D =

1.8×10−3 mm2/s[71], and D = 1.3×10−3 mm2/s[95]. The average “low-thickness”

diffusivity we measured is D = 1.0×10−3 mm2/s, matching Kuhnert et al[95] most

closely. For the “high-thickness” data sets this average is D = 2.5× 10−3 mm2/s.

The measured α = 1.0s−1 and for BZ, α = k[BrO−3 ][H+]. Using our measurements

of α and taking [BrO−3 ] = 0.06M and [H+] = 0.8 from the literature [2], we esti-

mate the reaction rate constant in our experiments to be k = 27 M−2/s for low

thickness, and k = 11 M−2/s for large thickness. The first value resolves a contra-

diction in the literature. Field and Noyes[71] developed a theoretical relationship

for front speed which involves the coefficient (4Dk)1/2. They measured it to be

24.75 M−1 mm min−1, but predicted 509 M−1 mm min−1 based on available values

of D and k. We repeat the calculation using our measurements and arrive at the

value 22 M−1 mm min−1, closely matching their experimental value and showing

that their estimates of D and k may have been mistaken. The “high-thickness”

results come out to a value of 20 M−1 mm min−1. Further confirmation for our

reaction rate comes from a measurement by [95], who found k = 30 ± 4 M−2s at

30◦C.

Beyond measuring coefficients, local front tracking also allows quantitative
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comparison of the concentration profiles of BZ fronts and BZ backs. While backs

are not second-order fronts, the shape of the solution for second order roughly

approximates their shape. Distributions of our thickness measurements, like the

one shown in Fig. 2.8, always show two peaks, exactly corresponding to fronts and

backs. At fixed time, the thickness is the only parameter for a reaction profile.

Figure 2.10 shows profile curves of BZ fronts and backs, using the form given

by eq. (2.4), with thicknesses corresponding to the most likely values for fronts

and backs, taken from Fig. 2.10. Considering the middle 50% of thickness values

for either of the peaks, we can predict that the true profile shape (with fixed µ)

has a 50% chance of lying in the range, which is shaded in Fig. 2.10. The range

is much wider for backs, probably because second-order reaction kinetics are a

poorer approximation than for fronts. Regardless, whereas similar curves were

hypothesized and qualitatively sketched in prior publications [2], with local front

tracking we have been able to provide a quantitative, statistical characterization

of the concentration profile of chemical waves in BZ. To our knowledge, ours is

the first such quantitative characterization.

2.7 Summary and Future Work

This chapter presented a new algorithm for tracking the fronts that separate

reacted regions from unreacted regions in reaction-diffusion systems, and for mea-

suring the speed and thickness of those fronts. By repeating the process at many

points along fronts, the algorithm can measure spatial variations in front speed

and thickness, as well as providing large numbers of measurements appropriate

for statistical analysis. Further, the algorithm also provides measurements of dif-

fusivity and reaction rate. We demonstrated that the algorithm made accurate

measurements when applied to validation data (where macroscopic quantities of

front speed and thickness were specified) and simulation results (where micro-
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Figure 2.10: Measured concentration profile of chemical waves in the BZ reaction. The curve

shows the most likely profile, and the shaded region represents the interquartile (middle 50%)

of possible profiles. Front and back are shown farther apart than their actual separation, which

depends on the reaction’s oscillation time and is not indicated here. Work of the author published

in [78].

scopic quantities of diffusivity and reaction rate were specified). Results varied

less than 1% over a wide range of the user-defined parameters the algorithm re-

quires. Finally I applied the algorithm to laboratory experiments with BZ and

obtained statistics with measurements similar to published values.

With this algorithm I am able to simplify reaction-diffusion in terms of the

dynamics governing the motion of reaction fronts. Since it can detect local varia-

tion, it also shows promise for studying the complexities inherent in ARD systems,

while being a great simplification. In addition, this new algorithm offers practi-

cal advantages over existing methods for microscopic properties. Reaction rate

and diffusion are regularly measured with in situ chemical tests, but specialized

equipment like spectroscopes and magnetic resonance imaging machines are typ-

ically required. Front tracking measures diffusivity and reaction rate with just a

camera, making it less expensive and less invasive. However, it is also compatible
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with concentration fields produced with more complicated instruments and simu-

lations. The method is independent of length scale and timescale; it requires only

that camera speed and magnification be sufficient to capture the front dynamics.

Front tracking also enables future investigations that were not possible before.

We have measured the front speed and thickness in one chemical system, the BZ

reaction; speed and thickness can immediately be measured in many other chemi-

cal systems as well. Diffusivity and reaction rate may also be measurable in other

chemical systems, as can the concentration profiles of fronts in those reactions (as

in Fig. 2.10).

Having built confidence that the algorithm accurately tracks fronts in reaction-

diffusion systems, I next apply it to advection-reaction-diffusion by simultaneously

measuring the flow field and accounting for its affect on fronts in Chapter 3.

Local measurements of front speed and flow velocity can then be used to develop

or test simplified models of advection-reaction-diffusion in terms of the fronts.

In fact, separating reacted from unreacted with a front allowed me to make the

observations which comprise the remainder of this thesis. Without the definition of

a front, its speed, its thickness and the machinery to measure it, the determination

that anything abnormal is occurring with a reaction’s growth in a flow is difficult

to notice and impossible to define.
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3 Front Tracking Including

Advection

This chapter is based on Reference [96]. It has been reformatted and edited to fit

within the thesis. The thesis author was the primary author on this work.

3.1 Introduction

In Chapter 2, I showed an algorithm for locating concentration fronts in a reaction-

diffusion system and measuring their dynamics. Chapter 2 also established the

physical relevance of reaction fronts as a way to understand a changing concentra-

tion field in a simplified way. This chapter will discuss an extension of the front

tracking algorithm to full advection-reaction-diffusion (ARD) systems in two di-

mensions. The algorithm enables local measurement of front growth dynamics

in the presence of flow. It is our hope that by making this analysis technique

possible, future researchers will be able to make observations necessary to develop

models of front growth that accurately replicate real ARD behavior. For instance,

front tracking allows investigation of: What flow characteristics alter the reaction

front speed? How could we optimize or control the growth of a reactive scalar?

When can ARD simulations be avoided in favor of front simulations, which are

much less computationally intense?
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Adding a flow to the dynamics of reaction-diffusion significantly complicates

the motion of reacted regions because variation of the flow in space and time

makes the usual solutions [39, 43] to the reaction-diffusion equation incorrect.

With flow, reacted regions grow in different directions and at different speeds from

place to place. For instance, frozen fronts are known to persist despite headwinds

exceeding the front speed, in contexts including porous media [10, 11], flow past

a bluff body [33, 97], and vortex flows [51, 98]. Poiseuille flow has been shown

to alter front speed through a change in the front shape [35–37]. In some cases,

gentle flow enhances reaction and violent flow inhibits reaction [5, 29, 99]. Being

able to identify the spatial dependence of front speed, and the cause of that front

speed, is essential to determining the root cause of each of these phenomena.

The dynamics of ARD, which depend on a partial differential equation (PDE),

can be approximated with a simpler dynamics that depends only on ordinary dif-

ferential equations (ODEs), by considering instead the motion of reaction fronts.

These fronts are still defined as concentration level curves at a characteristic level

separating reacted from unreacted. The ODE which gives these simplified dy-

namics is known as the Eikonal equation [43]. The Eikonal equation relies on the

local front velocity being a superposition of the flow velocity, u, and the velocity

of a front in a stagnant fluid, v, which is the “chemical velocity”. In Chapter 2,

the chemical velocity was what was measuring, and I showed that front dynamics

provided a great deal of information about reaction diffusion systems. Burning

invariant manifolds (BIMs) and burning Lagrangian Coherent Structures (bLCS),

are developed from such an approximation, and predict when and where a front

will advance [34, 44–46, 48, 50, 51].

The Eikonal approximation and BIM/bLCS theory traditionally assume that

the chemical velocity of a front is unaffected by flow. That is to say |v| is constant.

This assumption serves as a starting point for analyzing ARD systems using front

dynamics. By measuring chemical velocity in real experiments, we wanted to test
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this assumption and determine its limits and possible models for its improvement.

Since the ODEs of the Eikonal equation are much simpler than the PDE, deter-

mining when ODEs are accurate would indicate when full ARD simulations can be

avoided in favor of simpler front advection simulations. If ODEs are found to be

inaccurate in some flow regimes, front tracking observations suggest corrections.

For example, the Eikonal assumption can include a front curvature correction [42]

that has previously been measured. While front behavior changing as a function

of local flow properties is expected, the front dynamics required to account for it

have not been tested.

Tracking chemical velocity separately should also inform existing experimental

observations of reaction front growth. In recent studies of a reaction pinned to a

flow obstacle [33], it was found that the Eikonal approximation could explain the

selection of frozen fronts but failed to predict front shape. A deeper understanding

of chemical front velocity is needed to understand what caused this difference.

In this chapter, I generalize our earlier front tracking algorithm in order to

quantify the growth of reacted regions in flowing fluid. I put special emphasis

on separating the advection of the front from motion of the front relative to the

fluid. The algorithm can measure front dynamics in data from experiments or sim-

ulations. Throughout this chapter, “front tracking” is specifically an algorithm

for measuring a reaction front in data produced either in simulation or experi-

ment. This is contrary to prior literature where the phrase “front tracking” has

sometimes referred to a simulation method [85, 86].

I begin the explanation of front tracking with flow in §3.2, where I will explain

how front velocities can be separated into flow velocities and chemical velocities,

and the physical arguments that justify that separation. In §3.3 I outline the

front tracking algorithm. In §3.4 I validate that front tracking provides accurate

measurements of total front velocity and chemical front velocity in two simulations:

uniform flow and hyperbolic flow. In §3.5 I describe the experimental apparatus for
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measuring reaction and flow simultaneously, thereby enabling front tracking with

flow in time-dependent ARD experiments. I also describe experiments using the

excitable Belousov-Zhabotinsky reaction in time-independent and time-dependent

flows. In §3.6 I show results of front tracking in experiments, demonstrating

that front tracking self-consistently maps fronts to the following time step. I

also demonstrate the algorithm’s resilience to user parameter choice. My results

suggest an unexpected correlation between flow and chemical speed, which we will

investigate in Chapter 4. Finally, in §3.7 I describe strengths and weaknesses of

the algorithm, opportunities for improvement, and future research questions that

may be answered by this algorithm.

3.2 Separating Flow Velocity from Chemical

Velocity

The goal in developing this algorithm is to extend the study of reaction front

dynamics in ARD systems. Specifically, when a reacted region is subject to simul-

taneous local reaction, diffusion, and advection by a flow, its edge — the reaction

front — moves. Mathematically, the front is a characteristic concentration level

curve, for which the motion is determined by the changes of the underlying con-

centration field of the chemical species, c, given by the ARD equation,

∂c

∂t
+ (u · ∇)c = D∇2c+ kF (c). (3.1)

Here u is the advection velocity, D is the diffusion coefficient of the chemical

species, k is the reaction rate, and F (c) specifies the reaction kinetics. Note that

this is identical to Eq. 2.1). The F (c) term ensures the global integral of any

specific c is not conserved over time. In reacting systems this is generally because

the reactant is converted into a different species. In Chapter 2 I covered the

algorithm for capturing the front dynamics in a system with u = 0. By measuring
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normal displacement of the front at a large number of points I replicated known

front speed, and via known solutions to the reaction-diffusion equation [39, 90, 91],

we replicated the diffusion coefficient and reaction rate as well.

Here we present a method for obtaining a front velocity for ARD systems,

in which u 6= 0. This change represents a significant complication. Fluid flows

relevant to reactive mixing could be anything from laminar to turbulent, and

reaction terms are typically nonlinear. What this means is, even if the reaction

has no feedback to the flow (as I will assume in all experiments for this thesis) the

flow effect on concentration is not separable from the reaction term. While this

means there are numerous possible interactions to consider, I will start with the

most obvious. I will assume that flow only serves to displace a reaction front.

Even focusing on only flow displacement is a suitable challenge, because it can

move material in an arbitrary direction. The velocity of a front element, w, can

then be approximated as

w = u + v (3.2)

where v is chemical velocity. The direction of v is always locally normal to the

front because fronts are concentration level curves, and diffusion moves material

down the concentration gradient, normal to the level curves. An example of the

result of front tracking, in which u, v, and w have been measured, is shown in

Fig. 3.1. Equation 3.2 is the Eikonal approximation minus the curvature correc-

tion, which underlies BIM theory [50, 51] and bLCS theory [45]. (For a derivation,

see Spangler and Edwards, 2003 [43].) BIM theory with constant chemical speed

has previously been used successfully to understand front propagation in time

independent and periodic flows [34, 48, 49], and the Eikonal approximation has

proven useful for understanding frozen fronts in adverse flows [10, 33]. Measuring

chemical velocity locally could allow quantification of the range of applicability of

the Eikonal approximation.

This approach will allow me to measure the chemical front speed as it is
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t = 35 s d

Figure 3.1: Example results of front tracking with flow, showing experimental product concen-

tration snapshots (gray-scale). The flow (green), measured total velocity (yellow), and measured

chemical velocity (red) are overlaid (and down-sampled). Flow was initiated after t = 5 s and

was fully developed by t = 25 s. Work of the author published in [96].
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typically used in the Eikonal approximation. There are additional benefits to

this approach though. It effectively removes front displacement from the overall

motion of the front, leaving only the ordinary reaction growth and any interactions

between the reaction and the flow. For instance, if turbulence in some area is

leading to apparent increased front speed, a front tracking user will get a higher

chemical front speed in that area. Furthermore, this separates all the front motion

that does not lead to overall reaction growth. If a front is adequately sharp, then

the total reacted quantity is determined by the volume within the reaction front.

This volume changes according to the flux equation

dV

dt
=

‹
w · n̂dS (3.3)

which can be written,

dV

dt
=

‹
(u + vn̂) · n̂dS (3.4)

=

˚
∇ · udV +

‹
vn̂ · n̂dS (3.5)

=

‹
vdS (3.6)

where I have used Eq. 1.7 to eliminate u. Thus the v defined and the front

surface are the only thing that needs to be measured in order to understand the

time evolution of the total reaction volume.

3.3 Front Tracking Algorithm

To track fronts, we must first locate them. As in Chapter 2, first I find the edges

of binary field c > cthresh at a time t, choosing a threshold cthresh that separates

reacted regions from unreacted regions. For ARD systems in which characteristic

reaction times are much smaller than characteristic diffusion times (that is, the

second Damköhler number DaII = klD/D � 1, where lD = 1 mm is a length scale

and k is reaction rate), fronts are sharp and results are insensitive to the choice
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of cthresh. For the experiments and simulations discussed below, DaII = 1300.

Typically the concentration field c is measured at discrete locations on a grid

(pixels), so the edges of the binary field c > cthresh are piecewise-linear curves

which follow pixel boundaries and have sharp corners. The true concentration field

has no corners because diffusion smooths singularities, so I smooth the piecewise-

linear curves using a sliding line fit. Smoothing also uses data from adjacent

pixels to achieve sub-pixel accuracy in locating the fronts. To correct small-area

fluctuating noise in the concentration field, we eliminate c > cthresh regions that

are smaller than a minimum area, which is set by the user. I advise choosing

a minimum area that is larger than the data resolution δx but smaller than the

smallest structures of interest. The smoothed boundaries of the remaining regions

are taken to be the original fronts. The process repeats at a time dt later to locate

the subsequent set of fronts, keeping the same value for cthresh. Thickness of both

sets of fronts can be obtained using the same algorithm described previously [5].

The fronts at time t+ dt differ from the original fronts at time t by a displace-

ment dxw that varies in space and time. Eq. 3.2 indicates that the instantaneous

displacement is due to a combination of flow velocity and chemical velocity:

dxw = dxu + dxv, (3.7)

where dxu is the displacement due to flow and dxv is the chemical velocity.

Assuming u is known, either from simulation or from measurements, then for a

fluid element at location x at time t,

dxu =

ˆ t+dt

t

u(x) dt′, (3.8)

where t′ is an integration variable and the integration is performed in a Lagrangian

sense, tracking the fluid element as it moves. By integrating all points on the origi-

nal fronts forward in time according to Eq. 3.8, I calculate the shapes and positions

those fronts would take at time t+dt if they marked high-concentration regions of
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a passive scalar with zero diffusivity. I refer to the result as the “advected original

fronts”.

The displacement between the advected original fronts and the subsequent

fronts is dxv and can result only from the chemical velocity, which acts in a

direction normal to the original fronts, as discussed above. To calculate dxv

locally, front tracking draws a normal line at a point on the advected original

fronts, and locates the nearest location where it intersects one of the subsequent

fronts; the distance to the intersection is dxv. I then estimate the local chemical

velocity as

v =
dxv

dt
; (3.9)

I emphasize that velocity is approximated by the quotient of the displacement

and the time step, both of which are discrete. Finally, I calculate the total dis-

placement dxw at each point using Eq. 3.7 and estimate the total velocity as

w = dxw/dt. The intersection is unlikely to occur at one of the discrete points

identified as being on the subsequent front; intersections typically occur between

points. Sometimes, fronts fade or change shape such that the nearest intersection

lies on a different front. To eliminate those non-physical measurements, front

tracking discards all displacements larger than a user-defined maximum. Usually

I choose a maximum displacement many times larger than the chemical velocity in

stagnant fluid. Figure 3.2 shows an example in which the original front, advected

original front, subsequent front, flow velocity, chemical velocity, and total velocity

are all sketched.

I estimate the integral in Eq. 3.8 using an integration scheme that is first-order

in time, and I choose delay time dt which need not match the shortest timescale

dtmin at which an experiment is imaged or simulation results are calculated. In the

results described below, I often choose dt 6= dtmin because |u| > |v|. Accurately

measuring flow velocity requires a higher frame rate (smaller time step) than

measuring chemical velocity. In fact, chemical velocity usually causes fronts to
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Figure 3.2: Cartoon of a single step of front tracking. Front tracking advects points on the

original front by Lagrangian integration of flow data to determine flow displacement. Where the

advected original front differs from the next front (measured one time step later), the difference

is attributed to a chemical velocity locally normal to the advected original front. Thus the

total front velocity is the vector sum of flow velocity and chemical velocity. Work of the author

published in [96].



62

advance only a fraction of a pixel in the time dtmin: |v| � δx/dtmin, where δx

is the size of a pixel (the grid size). Minor noise fluctuations in pixel brightness

can therefore appear to cause rapid front motion that is not physical. Choosing

dt > dtmin reduces the noise. There is a tradeoff however, dt must be kept small

enough that the flow does not alter front perimeters too drastically within a

time step. Choosing dtmin small makes the integration in Eq. 3.8 more accurate,

as I will discuss further below. In my experiments, typically dt ≈ 0.5 s while

0.1 s > dtmin > 0.025 s.

The algorithm then is equivalent to assuming that during each delay time

dt, the front advances first by the local flow velocity, then by the local chemical

velocity. In reality, both processes act simultaneously. Similar approximations

are common in simulations, which often calculate different dynamical terms in

sequence. In the limit dt→ 0, the results of the algorithm converge to match the

results of both processes acting simultaneously, since diffusion is instantaneously

perpendicular to the front. Still, when dt is finite, advancing the front first by flow

velocity and then by chemical velocity introduces small errors to front tracking,

due in part to the continuous reorientation of local front elements. The algorithm

might also be written to assess the effects of advection and reaction in the op-

posite order, by advecting the current front backwards in time, then attributing

the offset between that advected front and the previous front to chemical veloc-

ity. Evaluating the effects in the opposite order would change the sign of some

inaccuracies of numerical integration and differentiation, but the precision would

otherwise be similar, and measurements would still converge as dt→ 0.

Written in MATLAB, the open-source algorithm is freely available1.

1http://www.me.rochester.edu/projects/dhkelley-lab/
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3.4 Tracking Fronts in Simulation Data

I used two series of simulations to test the front tracking algorithm in the presence

of flow. First, I performed direct numerical simulations of an ARD system on a

second-order chemical reaction in the presence of a uniform flow. This system is

simple enough that I have clear, a priori expectations for the front velocity. The

reaction term is given by

F (c) = c(1− c), (3.10)

where c is made dimensionless such that it varies between 0 and 1, so its scaled

reaction rate constant becomes α = kc0. In the special case of reaction-diffusion

(u = 0) we have the equation covered in Chapter 2.

∂c

∂t
= D

∂2c

∂x2
+ αc(1− c). (3.11)

Equation 3.11 has an analytic solution [39, 90, 91] in which an initial band of high

concentration grows in both directions at a constant speed given by

vf =
5

6

√
6Dα. (3.12)

In Chapter 2 I showed that front tracking accurately reproduced this front speed

in simulation and experiment in the u = 0 case. Including a uniform flow u = U x̂

(where U is a constant speed and x̂ is a unit vector in the direction normal to

the front) and keeping all other conditions the same, I would expect to observe a

propagating band whose edges have fronts with total speeds w = U + vf and w =

U − vf . This new situation is a Galilean transformation, and it is mathematically

identical to filming with a camera moving at −U x̂.

I simulated Eq. 2.1 in a two-dimensional periodic domain, using Adams-Bashforth

time stepping and central differences for spatial gradients. Initially, the concen-

tration was zero everywhere except in a band where c varied with x according to
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the analytic solution [39] of Eq. 3.11,

c(x, 0) =


1(

1+e−(x+1)/L
)2 x ≤ 0

1(
1+e(x−1)/L

)2 x > 0,

(3.13)

where

L =
√

6D/α (3.14)

is the front thickness. The initial concentration did not vary with y, making the

problem one-dimensional, consistent with Eq. 3.12. I chose values of D and k near

those of the Belousov-Zhabotinsky reaction used in the experiments described in

§3.6. The grid size was 5 µm, and for stability, I used a 4.11 µs time step, saving

one concentration field every 0.16 s. I used those concentration fields, along with

flow fields u = U x̂, as inputs for the front tracking algorithm.

Figure 3.3 shows the results of simulation and subsequent front tracking. In

snapshots from one simulation, the reacted region widens and moves to the right

as expected. I repeated the simulation, first varying the flow speed over the

range 0 < U < 2 mm/s, then varying D to adjust the chemical speed 0.05 ≤

vf < 0.2 mm/s according to Eq. 3.12. In all cases, the flow speeds and chemical

speeds measured via front tracking closely match the true values. Measurement

errors in chemical speed are usually less than δx/dt = 0.03 mm/s, and caused by

uncertainty when tracking fronts at sub-pixel accuracy; errors do not grow with

true flow speed or with true chemical speed. To confirm, I repeated the tracking,

setting dt to be three times as large, and found that the error in chemical speed

dropped by a factor of three as expected. Reducing the grid spacing δx would

also reduce measurement errors. Though the chemical speed is measured at many

locations, only a few distinct values appear in Fig. 3.3. As mentioned above, the

algorithm typically locates fronts with sub-pixel accuracy via spatial smoothing,

but in this unusual case of strictly straight fronts, smoothing has no effect, and
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fronts remain on (discrete) pixel boundaries, so the calculated chemical speeds are

discretized.

Considering a one-dimensional front in a uniform flow proved helpful for val-

idating the algorithm, because I could form a priori expectations of front speed

in true advection-reaction-diffusion dynamics governed by Eq. 2.1. Such a simple

case, however, captures no effects caused by complexities in the flow field, such

as flow velocity gradients or front turning. To further validate the algorithm, I

considered another example for which we have a priori expectations, but in which

there are nonzero velocity gradients and curved fronts, though the fronts are no

longer governed by Eq. 2.1. The example is described in §IIIB1 of the paper by

Mitchell and Mahoney [44]: a reaction front propagates with constant chemical

speed v0 in flow around a hyperbolic critical point at the origin, such that the

front dynamics is reduced to a set of ordinary differential equations,

wx =
∂x

∂t
= −Ax+ v0 sin θ, (3.15)

wy =
∂y

∂t
= Ay − v0 cos θ,

∂θ

∂t
= 2A cos θ sin θ.

Here x and y specify the location of a front element in two dimensions, θ specifies

front tangent orientation with respect to the x axis, and A is a positive constant

with units of inverse time that sets the speed of the hyperbolic flow.

The front dynamics can be calculated from Eq. 3.15 and are described in

the paper [44]: a front propagating from the left is blocked by a BIM at x =

v0/A, while the reacted region continues to spread vertically. Furthermore, the

dynamics of a front element with orientation θ = π/2 can be solved analytically

via separation of variables, yielding

x =
v0

A
+
(
x0 −

v0

A

)
e−At,
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Figure 3.3: Validation of front tracking by simulating the advection-reaction-diffusion equa-

tions in uniform flow. (a-c) Snapshots of a reacted region, showing fronts and chemical velocities

determined by the front tracking. (d) Flow speed and chemical front speed measurements, for a

range of true flow speeds, as simulated. (e) Measurements for a range of true chemical speeds,

as simulated. Agreement between measurements and specified values are within 1 pixel/frame

for front speed. Work of the author published in [96].
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where x0 gives one component of the position of the front element at t = 0. The

front element approaches x = v0/A at long times, as expected. Front elements

with other orientations approach θ = π/2 or θ = 3π/2 over time because those

are the stable values of θ in Eq. 3.15, such that their long term behavior is the

same. Differentiating, we find that in the θ = π/2 case, the total front speed

decays exponentially over time:

wx =
∂x

∂t
= −A

(
x0 −

v0

A

)
e−At. (3.16)

The results of simulating Eq. 3.15 with v0 = 1 mm/s and A = 1 s−1 are shown

in Fig. 3.4. A front that is initially circular and positioned left of the hyperbolic

point approaches the BIM and stretches laterally, as expected. After simulating

with Eq. 3.15, concentration fields are assembled which have high intensity inside

front boundaries and low intensity outside. Applying the front tracking algorithm,

I measure 〈wx〉 as it varies in time, finding close agreement with Eq. 3.16. Mea-

surements of chemical speed v are more complicated, and illustrate the balance

required in choosing input parameters, because of the finite resolution of the data.

As Fig. 3.4 shows, when I choose dt = dtmin, the distribution of chemical speed

measurements has a sharp peak at 1 mm/s, matching the true value. However, the

distribution also has long tails: at some locations, the measured chemical speed

differs substantially from the true value. As discussed above, choosing dt > dtmin

can reduce noise in the chemical speed measurements. Choosing dt = 10dtmin

shortens the tails as expected, but also moves the peak of the distribution away

from the true chemical speed by a few percent.

Choosing dt > dtmin also moves the mean value 〈v〉 away from the true value

by a few percent, as shown. That discrepancy is caused by the nonzero velocity

gradient of this flow, and by using discrete approximations for derivatives. In this

example, most measurements occur near the BIM, where the total front speed is

zero, so the true chemical velocity is equal and opposite to the true flow velocity.
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Figure 3.4: Validation of front tracking by simulating an advancing front near a hyperbolic

critical point. (a) Flow field (blue streamlines), hyperbolic point (green square), BIMs (red

lines), and initially-reacted region (gray). (b) Simulated front at four subsequent times. (c)

Corresponding concentration fields at the same times. (d) Measured mean total front speed

〈wx〉 closely matches Eq. 3.16, as expected. (e) When dt is small, the distribution of local

chemical speeds is very near the true value, but (f) the distribution has long tails. Increasing dt

shifts the peak but shortens the tails. Work of the author published in [96].
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To measure chemical velocity, the algorithm first uses Eq. 3.8 to calculate dxu, the

displacement of the front over time dt by flow alone. Since dxw = 0 at the BIM,

dxv = −dxu, according to Eq. 3.7. Finally, the algorithm calculates the chemical

speed using Eq. 3.9, which estimates a derivative by division. If dt = dtmin then

Eq. 3.8 reduces to dxu = u(x) dt (an integral estimated by simple multiplication)

and the algorithm measures the true chemical speed exactly. Similarly, if the ve-

locity gradient is zero, the velocity remains constant over the integral in Eq. 3.8,

which again yields dxu = u(x) dt, so the true chemical speed is again measured

exactly. However, if dt > dtmin and the velocity gradient is nonzero, a small sys-

tematic error occurs. In this case, the front is advected in the −x̂ direction, where

flow speed is slightly slower. Then the front is advected at this slower speed, and

the process is repeated for dt seconds. Thus it works out that v = −〈u〉, where

the average is over the integration time steps. This is systematically lower magni-

tude than the u located at the BIM. Therefore, estimating the integral in Eq. 3.8

by summing over multiple steps of size dtmin produces a higher-precision result

than Eq. 3.9. However front speed measurements can deviate from expectations

by a few percent in this example as a tradeoff, as shown in Fig. 3.4.

Setting dt = dtmin eliminates the discrepancy illustrated in Fig. 3.4 but in-

creases measurement noise caused when the chemical speed is less than δx/dt, as

discussed above. Thus I leave dt as a user-specified parameter instead of setting

dt = dtmin everywhere, and allow users to make their own decisions about the

trade-off. The best solution is to minimize δx by increasing the spatial resolution

of the simulations or experiments to which the front tracking algorithm is applied.

Moreover, the simulation shown in Fig. 3.4 represents an extreme case, since the

front aligns with the BIM, where this error is maximized. In experiments, I ob-

serve much smaller errors of this type, as described in §3.6.
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3.5 Experimental Advection-Reaction-Diffusion

Devices

Having verified that the results of tracking fronts in a simple, simulated ARD

system closely match expectations, I set out to track fronts in ARD experiments.

Below I show results from three different devices that drive three different flow

patterns, but use the same chemistry and imaging apparatus, similar to what I

will use in Chapter 5. We track fronts produced by the Belousov-Zhabotinsky

(BZ) reaction [2, 91–94]. BZ is an excitable redox reaction catalyzed by ferroin

indicator. We prepare BZ using the recipe of Bargteil and Solomon [34], adding

ferroin throughout the experiment to maintain contrast. Ferroin is known to have

a negligible effect on front speed [92]. I initiate reaction at a chosen location by

immersing a silver wire for ∼ 20 s. A large number of inert 98 µm fluorescent

green tracer particles (Cospheric UVPMS-BG-1.025) float on the surface of the

fluid layer and make its motion visible. These particles are small enough to follow

the flow accurately, as indicated by their small Stokes number St ≤ 0.5.

Experiments are illuminated with blue LEDs, which excite the tracer particles,

causing them to fluoresce green. The BZ solution is blue in its reacted state and

red in its unreacted state. I used a magenta background beneath the fluid layer

which reflects blue LED light only in reacted regions so they appear bright. I image

BZ experiments with two hardware-synchronized cameras (Emergent HS-4000M),

as sketched in Fig. 3.5. One camera images the concentration field and is equipped

with an optical filter that passes blue light but blocks green, to accentuate the

blue reacted regions while minimizing visibility of the green tracer particles. The

brightness of its images measure BZ product concentration. The other camera

images particle positions and is equipped with an optical filter that passes green

light but blocks blue, to accentuate particles while minimizing visibility of the

reaction state. The magenta background helps dim the brightness of the blue
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reaction in the green camera. Particle tracking [75] provides the flow field. Though

the cameras are mounted close together, their fields of view are not identical.

Before taking data I photograph a calibration grid with both cameras, which allows

me to determine their relative shift and rotation, as well as the resolutions of both.

The shifting algorithm was written by Doug Kelley. In the experiments described

below, resolutions are typically about 150 µm/pixel. Each camera records images

that are 2048 × 2048 pixels. I vary the frame rate depending on the flow speed,

sometimes imaging as rapidly as 40 Hz, but more typically imaging around 10 Hz.

Together, the two cameras measure the concentration field c and flow field u

throughout space and time, providing the necessary inputs for front tracking.

In all three experimental devices, we drive flow electromagnetically by passing

electrical current through the fluid layer above permanent magnets. Two of the

devices are built with magnets whose orientation alternates like a checkerboard

and are sketched in Fig. 3.5. In small-length-scale vortex flow, cylindrical NdFeB

magnets with diameter 12.7 mm are spaced 25.4 mm on center, and the vessel

has lateral dimensions 254 mm × 254 mm, producing a 10 × 10 square array of

alternating vortices. In the large-length scale vortex flow, rectangular ceramic

magnets with lateral dimensions 152.4 mm × 101.6 mm are tiled tightly beneath

the same vessel, producing a 2×2 rectangular array with larger length scale. Both

devices produce flows dominated by vorticity (not shear), but the characteristic

flow length scales differ substantially. The third device is a water channel that

produces a wake behind a bluff body, which has been previously studied [99]. The

water channel experiment was built and run by laboratory undergraduate Jinge

Wang with help from Rony Colon. The bluff body is an equilateral triangle with

side length 45 mm, positioned symmetrically about the channel center with one

vertex pointing upstream. The channel flow is dominated by shear (not vorticity)

except in the wake behind the bluff body. In all three devices, the depth h is

sufficiently small that the flow is quasi-two-dimensional, though the front tracking
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Figure 3.5: Laboratory advection-reaction-diffusion devices and typical data. (a) Two

hardware-synchronized cameras image a thin layer of BZ solution containing green fluorescent

tracer particles. One camera images product concentration, while the other camera images

particles. (b) Flow is driven by an electric current J in the x direction, which interacts with

a magnetic field in the z direction. In the small-length-scale vortex flow device, the field is

produced by a checkerboard array of small magnets below the fluid that drive vortices. (c) Ex-

ample snapshot of the BZ reaction, used to measure product concentration. (d) Simultaneous

snapshot of tracer particles, used to measure flow. (e) The large-length-scale vortex flow device

uses larger magnets to produce vortices with a larger characteristic length scale. (f) The water

channel device uses magnets to drive flow past a bluff body. Work of Douglas Kelley published

in [96].
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algorithm could be adapted to three-dimensional systems as well.

3.6 Tracking Fronts in Experimental Data

The experimental flows produced by our three ARD devices are more compli-

cated than the flows considered in the simulations described in §3.4, so I have

no a priori expectations for front velocities. Nonetheless, I can use experimental

measurements to show that the front tracking algorithm is self-consistent. I can

also use local measurements of front velocity to explore ARD phenomena beyond

the Eikonal approximation, such as variation of chemical speed with flow speed.

Figure 3.6 verifies the self-consistency of the algorithm in four cases, using

data from the uniform-flow simulation and from all three experimental devices.

In each snapshot, a concentration field is overlaid with the fronts located in that

concentration field, the fronts located in the next concentration field, and the

result of advecting the original front. Finally, the figure also shows original fronts

displaced by dxu + dxv, accounting for both the local flow velocity and the

local chemical velocity. According to Eq. 3.7 and the definition of dxw, those

displaced fronts should exactly match the fronts in the next concentration field.

The close agreement shown in Fig. 3.6 shows that the algorithm is implemented

correctly. In practice, the match is not perfect because continuous, curved fronts

are approximated by straight lines between discrete points, and the number of

front points does not remain constant over time. Nonetheless, the close match

shows that with sufficient spatial resolution the error in total velocity is small in

four different flows that vary in complexity, length scale, speed, and whether their

domain is open (as in the simulation and behind the bluff body) or closed (as in

the vortex flows).

In addition to velocity and concentration fields, the front tracking algorithm re-

quires user-specified parameters. It is important to know whether small variations
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Figure 3.6: Front velocity measurements are consistent with measured front locations in

simulation and in three different experimental devices. (a) Simulation of uniform flow. (b)

Vortex-dominated flow with small length scale. (c) Vortex-dominated flow with large length

scale. (d) Wake of a bluff body. The original front, displaced by dxu + dxv, closely matches

the next front, indicating that the algorithm is self-consistent and that discretization errors are

negligible at the given spatial resolution. Work of the author published in [96]. Concentration

field in (d) provided by Jinge Wang.
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in those parameters, especially the brightness threshold cthresh and the time step

dt, significantly affect the results of front tracking. I repeatedly tracked fronts

in the same experiment, varying those two parameters over a wide range, and

Fig. 3.7 shows the results. The change in median and root-mean-square chemical

speed is much smaller than the interquartile range (the range between the 25th

and 75th percentile), indicating that a wide range of cthresh and dt choices pro-

vide similar results. One exception is excessively low thresholds cause measured

front locations to change suddenly with minor brightness variations, artificially

inflating the chemical speed. Excessively high thresholds cause some fronts to go

undetected. Time steps significantly smaller than the typical time required for

a front to advance by one pixel also introduce noise that artificially inflates the

chemical speed. Increasing the spatial resolution allows reducing dt further. Large

time steps may reduce accuracy via the mechanism described above and shown in

Fig. 3.4.

Because front tracking provides local measurements of flow and chemical ve-

locity, it can gather statistics on a single data set. For example, the chemical

velocity can be measured at many locations along a front in order to determine

its mean and moments with great accuracy when the only likely source of variation

is random noise, as in Chapter 2. Perhaps more interestingly, front tracking can

measure the variation of chemical velocity and front thickness in space and time

when physical mechanisms may cause that variation. So it is interesting to also

consider how changing parameters changes local measurements of these velocities.

In Fig. 3.8 I plot probability density functions for chemical velocity in the x and y

directions. To do this, I find front points at the same location and time in a front

tracking with dt equal to that in Fig. 3.9, and dt twice as large. I find the most

likely local front velocity difference is zero, indicating good match between the

two locally. Errors caused by choosing dt > dtmin, which shifted the peak of the

chemical velocity distribution by a few percent in the front propagating through
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Figure 3.7: Variation of chemical speed’s summary statistics. (a) ∆cthresh is the difference

between a test threshold and the reference threshold used to produce Fig. 3.9. The gray region
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(b) Variation of statistics of chemical speed with time step dt. Work of the author published in

[96].
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Figure 3.8: Distributions of the change in chemical velocity components caused by changing

the time step dt from 0.5 s to 1 s. Both distributions are symmetric and peak at zero, indicating

a match. Work of the author published in [96].

a hyperbolic flow example (§3.4) are negligible in this experimental example. Dif-

ferences in vy are somewhat larger than those in vx because in this experiment,

the front advances primarily in the y direction, resulting in higher available speeds

in the y direction.

Having validated the front tracking algorithm in simulation and experiment,

and having shown that the algorithm is robust to variation of input parameters,

I measured distributions of chemical speed in both the small-scale and large-

scale vortex flows. Figure 3.9 shows a typical concentration field from each set

of experiments. I measured the chemical speed at between 8 × 104 to 2 × 106

locations over durations ranging from 36 s to 800 s. In the small-scale device, I

varied the flow speed (characterized by the root-mean-square, RMS, speed urms)

over two orders of magnitude, by changing the magnitude of the constant current

used for each experiment. I found that the distribution of chemical speed changes

with flow speed. The probability distributions vary nearly monotonically, growing

a longer tail as urms increases, which signifies a greater prevalence of high front
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speeds. In the large-scale device, because the magnets are weaker, I am unable to

vary urms as widely. Still, over a range of flow speeds, I observe the same trend:

regions where fronts have high chemical speed become more common as the flow

becomes faster. These results contradict the basic Eikonal assumption, in which

chemical speed is constant [43], because the constant front speed does not capture

the full dynamics of these experiments. This is entirely unexpected, especially

considering the success the Eikonal approximation has had in explaining at least

long term behavior of a variety of reactive mixing systems [33, 48].

Seeing the same trend in experiments using two different devices suggested

that a comparison might provide insight. I reduced each distribution to a single

measurement, the RMS chemical speed vrms of all fronts at all locations and times

in the experiment. Surprisingly, plotting vrms versus urms on the same axis for

experiments in both the small-scale and large-scale device, as in Fig. 3.9e, shows

that the two curves collapse to show a single trend. Neither scaling nor fit param-

eters are required for this collapse. It is also noteworthy that the RMS chemical

speeds are far above the expected chemical speed, which for BZ is measured at 72

µm/s (See Chapter 2).

Many mechanisms might explain the observed deviation from the Eikonal ap-

proximation. The Eikonal approximation requires that the second Damköhler

number, the Thiele number, and the first Damköhler number are all large. In

these experiments, the second Damköhler number is DaII = 1300, so I do not

expect DaII to explain the variation of chemical speed with flow speed. The

Thiele number Φ2 = DaI Pe relates advection, diffusion, and reaction times, where

Pe = UL/D and DaI = kL/U (L is flow length scale). In these experiments,

Φ2 > 7.7× 105, so I do not expect Φ2 to be the reason, either. The first Damköler

number relates reaction rate to advection rate. These experiments span the range

2 ≤ DaI ≤ 183, in which DaI � 1 is not strictly true, and I expect the small

values of DaI account for some deviation from the Eikonal approximation. In
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Figure 3.9: Concentration fields in vortex-dominated experimental flows with small (a) and
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reaction speed increases with RMS flow speed, and measurements from experiments with two

different length scales nearly collapse.Work of the author published in [96].



80

fact, I believe testing the DaI ∼ 1 regime to be particularly interesting, because

neither advection nor reaction can be neglected, and because it is likely relevant

for applications like modeling marine phytoplankton, whose growth rate nearly

matches the tidal timescale. Plus this is the regime where improved modeling of

fronts with a changing front speed could yeild the most benefit. That said, many

prior studies have considered the DaI � 1 case, and they expect that chemical

speed is nearly the stagnant speed in that case, which I do not find here. Scaling

arguments cannot provide a satisfying explanation of why chemical front speed

depends on flow speed.

One might also suspect front curvature of causing these front speeds. Front

curvature has been observed to affect front speed [42]. However, the curvature

correction term to the Eikonal approximation is proportional not only to cur-

vature but to diffusivity. Considering the effective diffusivity of BZ products

and the typical speed of BZ fronts, the curvature effect doubles front speed only

when curvature reaches 72mm−1, or approximately, when fronts have a radius

of curvature less than 15 µm. Curvature effects cannot explain the observations

partly because the apparatus described in §3.5 cannot resolve such small scales.

More importantly, at the scales observed, the vast majority of chemical velocity

measurements come from locations where fronts are nearly zero curvature. High

curvature regions are necessarily small, and short lived, so we would not expect

them to be powerful enough to sway the statistics of chemical speed.

Another possible excuse for the Eikonal approximation is that this front track-

ing measured fronts speeds of both fronts and “backs”. In Chapter 2 I discussed

that the front and back of a BZ reacted region have different properties because

the chemical kinetics during the transition from unreacted to reacted state (at

reaction fronts) differ from those during the return to the unreacted state (at

reaction backs). In stagnant fluid, both fronts and backs advance with the same

chemical velocity, as required by the fixed refractory time that separates them.
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But fronts and backs have different thicknesses, which may in turn be affected

differently by an underlying flow. However, examination of a single front with no

back in Fig. 3.7 still showed a wide chemical speed distribution, and summary

statistics much faster than the speed of BZ fronts in stagnant fluid. Tracking

fronts and backs separately in the future is likely to be interesting, but it is not

the source of our chemical speed variation.

While trying to uncover the cause of the chemical speed variation, I also specu-

lated about the possibility of unmeasured flow driving reaction front propigation.

Specifically Ekman pumping arises from the presence of our no-slip boundary

condition at the bottom of our vessel. Ekman pumping is a secondary flow that

results from the fact that rotation generates a radial pressure gradient. That pres-

sure gradient persists in the boundary layer, but flow there is too slow to balance

the pressure gradient. The result is upwelling at vortex centers and downwelling

at vortex edges, both of which cause mixing [100] and could affect measured front

speed. In these experiments, I sometimes observe high front speed where fronts

propagate into vortices, as would be caused by Ekman pumping. However, though

I would expect the effects of Ekman pumping to differ in vortices having different

sizes (and therefore different angular momentum), I have not observed such dif-

ferences. Essentially, if Ekman pumping were causing this effect, the two different

length scale data sets should not have collapsed onto a single curve.

The most interesting possibile cause for the chemical front speed variation is

new physics. The stretching and collision of fronts might cause interactions which

increase front speeds. While a recent study found behavior consistent with the

chemical speed of BZ fronts being unaffected by flow [34], they rarely measured

flow speeds exceeding 1 mm/s, whereas the experiments described above often

involved faster flows which still maintain DaI � 1. Higher flow speeds increase

the effects of local Lagrangian stretching, which may either enhance or inhibit

reaction the nonlinear reaction term, depending on the rate of stretching, causing
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reacted regions to grow or shrink. This and other interactions between stretching

and nonlinear reaction will be discussed in Chapter 5. The Eikonal approximation

of constant chemical speed assumes a lack of strain across the front, which is not

true in the presence of strong stretching [43], so stretching may cause front speed

to vary.

However, there is another possible physical explanation, which I claim to be

the cause of these measurements. I will cover this explanation, and all of its

consequences in Chapter 4. For now, note that these experiments are meant to

approximate two-dimensional flow, but the actual flow varies vertically and drops

to zero at the vessel floor, which is a no-slip boundary. Reaction fronts are there-

fore sheared vertically, which causes three-dimensional concentration variations

and corresponding brightness variations that differ from those expected for purely

two-dimensional fronts. An immiscible lubrication layer between the reacting fluid

and the vessel floor to greatly reduce shear, and therefore three dimensional con-

centration gradients. The results of Chapter 4 will show that this is the likely

cause of the front speed variation, which indicates that the front tracking algo-

rithm is accurately tracking bright regions in experiments, and furthermore that

analysis of this type opens up possibilities of observing new physics, as it has

already done so for my research.

3.7 Summary and Future Work

This chapter presented a new algorithm for measuring the chemical velocity and

total velocity of reaction fronts in ARD systems, expanding the prior algorithm

measuring front velocity and thickness in stagnant reaction-diffusion systems.

This algorithm requires knowledge of the underlying fluid flow. I validated the

algorithm by tracking fronts in ARD simulations with uniform flow and simple

enough initial conditions that we had clear a priori expectations for the front ve-
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locity. I further validated the algorithm by tracking simulated fronts approaching

a burning invariant manifold (BIM) in a hyperbolic flow region. I also tracked

experimental fronts, using three different laboratory devices to show that the algo-

rithm is self-consistent and that errors due to spatial discretization are negligible.

I found experimental front tracking to be insensitive to user parameter choices. Fi-

nally, I showed one example of the sort of investigation enabled by front tracking,

which makes a large number of local measurements of front velocity, throughout

space and time. In a series of experiments in small-scale vortex flow and large-scale

vortex flow, I observed that the distribution of chemical speeds varied with flow

speed: faster flow caused more measurements of high chemical speed. Comparing

experiments from the two different devices, I found that plots of RMS chemical

speed varying with RMS flow speed roughly collapsed onto the same curve.

Front tracking is applicable to either experimental measurements or simulation

results, in steady or unsteady flows. The algorithm is independent of the size and

speed of the ARD system, since the calculations are done in camera units before

being converted to physical units. This algorithm can accommodate situations

where flow cannot be removed, such as ocean flows or combustion. This method

also makes local measurements, providing far more information than prior meth-

ods, which measured the asymptotic, global front speed in steady flows [10, 37, 98].

The initial experiments yeilded an immediately unexpected result, so it is

likely that using front tracking to ask questions about reactive ARD systems will

be a productive area of future research. Indeed, the algorithm allows testing new

hypotheses about ARD dynamics. First, local measurement of front speed could

show whether fronts in experiments slow as they approach BIMs or bLCS, as they

do in the simulation I used for validating the algorithm. Second, other barriers to

front propagation may also be possible, and front tracking could locate them. For

example, experiments detailed in Chapter 5 will discuss how excitable reactions

are promoted most in regions where the Lagrangian stretching falls in an optimal
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range. Outside this range, fronts propagate slowly, or are driven to extinction

by a process analogous to blowing out a flame. Third, front tracking opens up

opportunities to test the dynamic causes of frozen front phase transitions observed

in open flows [10, 11, 33]. Finally, other authors have recently speculated that

front speed may depend on front thickness [33], a hypothesis that can be tested

directly with our front tracking algorithm.

The algorithm can also have important practical applications. I have con-

sidered only the BZ reaction, but future measurements of chemical speed and

its variation with flow speed in other chemical systems could reveal interesting

and useful chemical behavior. Industrial reactors are intended to maximize over-

all reaction rate while minimizing the energy required by the mixers that drive

flow. By locating regions of maximum front speed, front tracking could lead to

improved reactor design. Ocean phytoplankton blooms occur at length scales inac-

cessible in the laboratory and depend on many complex factors, including ocean

currents, temperature, nutrient availability, and plankton species. Determining

phytoplankton front speed and its dependence on those factors might allow im-

proved forecasting and even control of phytoplankton blooms. Also, variation of

front speed might account for the genetic diversity of phytoplankton [27]. Ap-

plying front tracking to combustion might reveal how different flames respond to

wind, whether a flame reaches all the fuel, what chemical mixes make the fastest

flames, and which parts of flames grow fastest.

The algorithm leaves opportunity for future improvement as well. For example,

we have implemented it only for two-dimensional domains, but the algorithm could

generalize directly to three dimensions. Higher order time-stepping may also be

possible. It would be especially helpful to account for the continuous change in

the orientation of front elements. These further generalizations of front tracking

could increase its usefulness and allow front tracking to provide insight into the

growth dynamics of a multitude of systems.
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While there are several strong pieces of evidence that front tracking in flow

is replicating the dynamics of the ARD system, further studies were needed to

ensure that front tracking was accurately measuring chemical front speed. Chap-

ter 4 will detail our explanation of the depth shear phenomenon in experiments.

This following chapter involves an analytic prediction derived from the Eikonal

approximation, which then accurately predicts front tracking results in new exper-

iments, and indicates that the anomoulous front speed measured in this chapter

is physical. While Chapter 4 is required to confirm the validity of the results in

this chapter, it is worth noting that all the experiments of the following chapter

flow from the analysis enabled by front tracking: measuring chemical front speeds

and observing that they are not the value expected. The following chapter also

demonstrates the importance of shearing to reaction growth, and the usage of a

lubrication layer to improve two-dimensionality of an ARD experiment. I believe

the combination of a front tracking algorithm and an understanding of depth

shear will enable numerous future studies by making easy to operate experimen-

tal analogues for two-dimensional reactive systems, which can provide a wealth of

data.
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4 Vertical shear alteration of

chemical front speed in

thin-layer flows

This chapter is based on Reference [101], which is currently under review for

publication. It has been reformatted and edited to fit within the thesis. The

thesis author was the primary author on this work.

4.1 Introduction

To study the growth of chemical reactions in fluid flows, I developed the algorithms

of chapter 2 and 3. The front tracking algorithm tracks edges separating reacted

and unreacted – fronts – and calculates local quantities to describe their behavior.

Local perspective on the reaction front growth of a chemical reaction in a fluid flow

can uncover features that prior studies on global average reaction front growth

cannot [102–105]. Local understanding is the first step toward prediction and

control, with goals like maximizing or minimizing reaction spreading. However,

in Chapter 3 the output of the algorithm was puzzling, and demanded explanation

to prove the measurements were real.

In order to explain the measurements of chapter 3 I took a closer look at the
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growth of a reactive scalar advected in quasi-two-dimensional (quasi-2D) flow,

common in reactive mixing experiments. Though three-dimensional (3D) reac-

tive mixing experiments have recently been undertaken [47], quasi-2D systems

simplify experiment, instrumentation, and analysis while capturing rich dynam-

ics, including mixing barriers [48], sensitivity to boundary conditions [106], and

the optimal flow properties I will discuss in chapter 5. Two-dimensional data is

sometimes gathered by averaging over one spatial dimension [107], and more often

gathered by driving reactive mixing in a thin layer [5, 33, 48, 99, 106]. However,

even thin-layer fluid experiments have at least some three-dimensionality; their

flows and reaction fields depend on depth, and that dependence goes unmeasured.

As I will show, unmeasured 3D processes, especially shear, can cause surpris-

ing results. I will also suggest methods for minimizing the effects of shear and

three-dimensionality.

To see why the results of chapter 3 were surprising, first recall that the growth

of a scalar concentration field (such as a chemical reaction product) c(x, t) de-

pends on advection (flow), reaction, and diffusion. (Here x = xx̂ + yŷ + zẑ is

position and t is time.) c is normalized to range from 0 (unreacted) to 1 (reacted),

and in experiments, is approximated by measuring the local color of the reacting

solution [92]. Consider the case where the local reaction rate depends only on ex-

isting concentration, and diffusion is independent of concentration, then the field

c obeys the advection-reaction-diffusion (ARD) equation

∂c

∂t
+ (u ·∇)c = D∇2c+ αG(c), (4.1)

where t is time, u is the velocity of the fluid in which c is growing, D is the

diffusion coefficient, α is a reaction rate coefficient, and G(c) is a dimensionless

reaction term. Chemical reactions that involve multiple species are modeled by

systems of ARD equations, one for each chemical species ci with its own reaction

term Fi(c1, c2, . . . , cn). I will focus on the simple case of a single reaction product.

To complete the system of equations, the flow u obeys the Navier-Stokes equation,
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which I presume is independent of c, so that it need not be solved simultaneously

with equation 4.1.

Though equation 4.1 rigorously governs the behavior of a reactive scalar field,

simplifying the equation can lead to new intuition about reaction dynamics. In

particular, reaction fronts, have proved conceptually useful. For many reactions

G(c = 0) = G(c = 1) = 0, and G(c) > 0 for 0 < c < 1, such that regions

of moderate concentration quickly react and become nearly saturated (c ≈ 1).

Typically, c ≈ 0 or c ≈ 1 over much of the domain. In that case, equation 4.1

shows that ∂c/∂t ≈ 0 except in the small regions where ∇c is large, since the

advection and diffusion terms in equation 4.1 both involve spatial variation. Thus

the fronts that separate c ≈ 0 regions from c ≈ 1 regions locate the essential

dynamics of the system, and front propagation is a natural descriptor of system

evolution. The same reasoning holds for excitable chemical systems in which

G(c) > 0 only in the smaller range c0 < c < 1 (where c0 is a dimensionless

excitation threshold).

To understand the velocity of any differential element of a reaction front, first

consider what the motion must be in stagnant and uniform flows. The total

velocity, w, must move outward at the chemical speed v in stagnant. Then in

uniform flow the exact solution is obtained by simply adding the flow velocity.

The Eikonal equation for ARD systems is then created by assuming this simple

summation works for non-uniform flows as well: [43]

w = u + vn̂. (4.2)

Here n̂ is the local unit normal to the front. By definition, n̂ points in the

direction of decreasing c (opposite ∇c). This equation is much simpler than

Eq. 4.1 to understand and implement numerically, and therefore it is a powerful

tool for predicting ARD systems. It also provides a point of comparison for

further studies on front dynamics, where any deviation from the Eikonal equation

indicates an interaction between reaction and advection.
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The motion of reaction fronts, and the Eikonal approximation for describing

that motion, were used to great effect in the development of the theory of burning

invariant manifolds (BIMs) [45, 50]. BIMs are dynamical barriers to front prop-

agation, located where u · m̂ = −v with m̂ as the unit normal of the BIM. The

m̂ direction of the BIM causes these to be one-sided barriers. There, the flow

velocity is fast enough in the direction opposite to the front propagation, such

that w is strictly tangent to the BIM according to equation 4.2. BIMs attract

fronts and predict where fronts can propagate and where they cannot. Seeing

the power of fronts for capturing the dynamics of reactive mixing, Dr. Kelley

and I developed an automated algorithm for measuring the instantaneous, local

chemical velocity vn̂ and the instantaneous, local total front speed w which were

presented in chapters 2 and 3. Fig. 4.1 demonstrates the front tracking technique.

The algorithm is written for 2D simulations or quasi-2D experiments and works by

identifying reaction fronts, advecting them forward according to the known flow

u, and measuring the perpendicular displacement between the advected front and

the front observed at a later time. In this way it uses knowledge of u and the

nature of the Eikonal equation to measure vn̂ and w.

Like BIM theory, front tracking is built on equation 4.2, but without the sim-

plifying assumption that the chemical speed is a constant v = v0. Instead I will

measure a va speed, which can be positive (growth) or negative (shrinkage). How-

ever, the constant front speed assumption has been broadly applicable, despite

neglecting higher-order effects like curvature, Ekman pumping, and shear. Cur-

vature is known to affect chemical speed according to v = v0 +Dκ, where κ is the

curvature [41]. Curvature effects have been observed in experiments having length

scales on the order of microns [42] but are generally negligible in aquaeous experi-

ments at larger length scales because D ∼ 10−3mm2/s. Inclusion of curvature can

improve predictions in the pinning of reaction fronts [33]. BIM theory (using the

v = v0 assumption) agrees closely with experimental measurements in a variety of
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Original Front
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Figure 4.1: Experimental measurements of chemical reaction fronts using front tracking. A

thin layer of reacting fluid is imaged from above, appearing bright where product concentration

is high and dark where product concentration is low. Fronts are identified as borders on regions

that are brighter than a user-defined threshold. To measure the local front speed, a front

(Original Front) is advected using the known flow velocity field and compared to a front at a

later time (Next Front). The perpendicular distance that separates them is attributed to the

measured chemical velocity van̂, and the total velocity w is calculated using equation 4.2. Work

of the author in [101].
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flows with a variety of parameters [47–49]. Other studies have predicted [102–105]

or observed [38, 106] variation in the total velocity w or the space-averaged chemi-

cal speed, while using that the local chemical speed v is essentially constant. This

implies that stirring could accelerate the growth of chemical reactions without

enhancing the true chemical speed.

However, in chapter 3, I observed in fig. 3.9 chemical speeds far in excess of

v0, apparently contradicting the v = v0 assumption. The effect was much larger

than could be explained by curvature [42] or Ekman pumping [100]. I performed

the experiments in a thin, horizontal layer of reacting solution and measured

flow velocity u, but I was able to measure only horizontal components of flow,

and only at the top of the layer. Therefore, vertical flow was a potential source

of complications, though I was careful not to drive flows fast enough to cause

the onset of substantial vertical motions [76, 77]. Moreover, the apparently high

chemical speeds persisted even in directions misaligned with electric field [108,

109]. These puzzling observations could be due to either a physical mechanism

not included in equation 4.2, or a complication associated with doing experiments

in reactive mixing.

In this chapter I focus on the second possibility: an experimental complication.

I will show that vertical shear can change both the magnitude and sign of apparent

the chemical speed va in front tracking experiments, depending on the orientation

of the front relative to the flow. I will compare experimental measurements of

va to simulations that assume the true chemical speed is v0 but account for front

deformation by vertical shear. Close agreement between simulation and experi-

ment will show that vertical shear explains nearly all of the apparent deviation

from v0. Vertical shear is caused by the no-slip boundary condition at the base of

the thin layer and smears reaction fronts in a way that makes measuring the local

concentration c more complicated. In most experiments, concentration is accessed

optically, by measuring the depth-averaged concentration, but shear changes the
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vertical concentration profile. Many prior and future quasi-2D reactive mixing

experiments are subject to similar shear effects, so shear must be considered when

interpreting results. The effect persists even if u·ẑ = 0 everywhere (where ẑ points

upward). Shear originating from a no-slip boundary condition has been shown to

have a major effect before, especially in the case of Poiseuille flow [35, 37]. I will

further show that vertical shear can be substantially reduced, allowing reactive

mixing experiments that are more nearly 2D, if the reacting layer is separated

from the no-slip boundary below it by a lubrication layer.

In section 4.2 I describe the results of simulating front propagation throughout

the depth of a single thin layer, and extract the chemical speeds that would be

measured in an experiment using optical methods. In section 4.4 and section 4.3 I

repeat the discussion for different systems. First a two-layer system in which the

thin, reacting layer is bounded below by an immiscible, dielectric, lubrication layer

to reduce shear. Second the Hele-Shaw style of experiment in which the reacting

layer is sandwiched between two solid plates and flow is driven by a pressure

difference. In section 4.5 I detail the experimental apparatus and methods I

developed to test the predictions of sections 4.2 —4.3. In section 4.6 I present

the results of one- and two-layer experiments, showing good agreement with the

simulations, including a significant reduction in apparent deviation from v = v0

in the two-layer system. The chapter closes with a summary and outlook in

section 4.7.

4.2 Simulations of Single-Layer System

I begin my investigation by simulating reactive mixing in a single, thin layer of

fluid, with flow driven horizontally, a common configuration for quasi-2D exper-

iments [5, 33, 48, 78, 96, 99, 106]. The layer is subject to a no-slip boundary

condition at the solid floor that supports it, and may be subject either to a
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no-slip condition or a no-penetration condition at its top surface. I will consider

the no-penetration condition first before briefly visiting the other case when I con-

sider Hele-Shaw experiments. In the laboratory, it is convenient to study chemical

reactions whose products have a different color than the reactants, so that concen-

tration c can be measured optically. Common candidates include the Belousov-

Zhabotinsky reaction [2, 92–94], the iodate arsenous acid reaction [10, 33], and

acid-base reactions [79]. In thin-layer experiments, the local color depends on

the average concentration across the reacting layer, and reaction fronts can be

defined as the locations where the brightness crosses some user-defined threshold.

For simple forms of the reaction term G(c), eq. 4.1 can be solved analytically in

the one-dimensional case and predicts concentration profiles that maintain their

shape while propagating, so that front speed measurements are insensitive to the

choice of threshold. If the concentration is uniform across the layer depth, fronts

located this way are unambiguous, and three-dimensionality need not be consid-

ered. However, if the concentration varies with depth, more care is required. The

sensitivity of concentration measurements to variation with depth contrasts with

measurements of other quantities. For example, tracer particles used for measur-

ing the flow u can be selected with a density that causes them to float atop the

reacting layer. Their motion samples only the top of the layer, without depth-

averaging, so 3D effects are negligible until upwellings and downwellings become

substantial [76, 77]. When locating reaction fronts, however, three-dimensionality

must always be considered carefully. I begin with a simple simulation.

4.2.1 Velocity Profile

In this section I simulate the implications of vertical shear for reactive mixing

experiments. To simplify the problem, I consider a steady, planar flow that is

uniform at the free surface of the layer: u(x, y, z = h) = U x̂. Here h is the

layer thickness, and I choose z = 0 at the bottom of the layer. The flow must
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vary with depth, but we will assume that the forcing is such that we can separate

the planar motion from its z dependence [110–112]. I expect this construction

to provide a reasonable approximation for the non-uniform flows as well, because

a similar approach by Suri et al. [110] closely matched experiments with non-

uniform flows. Considering uniform flow also gives clear expectations for front

velocity, since uniform flow differs from the well-studied u = 0 case only by a

Galilean transformation.

Such a flow can be generated by applying a vertical magnetic field B = B(z)ẑ

and passing a uniform, horizontal electrical current with density J = J ŷ through

the reacting layer. Including the resulting Lorentz force, the Navier-Stokes equa-

tion that governs the flow is

∂u

∂t
+ (u ·∇)u = −1

ρ
∇P +

µ

ρ
∇2u +

JB

ρ
x̂− gẑ, (4.3)

where ρ is the density of the fluid, P is the pressure, µ is the dynamic viscosity, and

g is the gravitational acceleration. I consider a magnetic field that varies vertically,

as it does in experiments [111] with magnets arranged below the reacting layer:

B(z) = B0e
−λz. (4.4)

Here B0 and λ are empirical constants measured for my apparatus and listed in

table 4.1. To satisfy ∇ ·B = 0, the magnetic field must also have a horizontal

component that varies with z, but the vertical force it produces is negligible

compared to gravity, so I will not discuss it further. The flow occurs in a layer of

infinite extent in x and y. At z = 0, I impose a no-slip boundary condition u = 0.

At z = h, I impose a no-penetration boundary condition u · ẑ = 0 and require

that the shear be zero: ∂ux/∂z = 0. Solving eq. 4.3, I found

u = uxx̂ =
JB0

µλ

(
1

λ
− e−λz

λ
− e−hλz

)
x̂. (4.5)
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Figure 4.2: Depth dependence of streamwise velocity in a uniform thin-layer flow. Fluid

properties and layer thicknesses are given in table 4.1, with J set to normalize the maximum

speed. Work of the author in [101].

The velocity profile is shown in fig. 4.2. At z = h, where flow is typically measured

in experiments, the velocity is

u(x, y, h) = U x̂ =
JB0

µλ

(
1

λ
− e−λh

λ
− e−hλh

)
x̂.

Fig. 4.2 and eq. 4.5 make it clear that flow in these experiments will vary with

depth. Flow variation with depth ensures that concentration will also vary with

depth and take on aspects of three-dimensionality.

4.2.2 Simulation

Knowing the velocity profile ux(z), I can simulate the propagation of reaction

fronts having constant chemical speed v = v0, then determine if the results are

consistent with the Eikonal approximation (eq. 4.2), where u is independent of

depth. The Eikonal approximation leads to a set of ordinary differential equa-

tions governing the position and angle θ of a reaction front in the vertical x − z
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plane Mitchell and Mahoney [44]:

∂x

∂t
= ux + v0 sin θ, (4.6)

∂z

∂t
= −v0 cos θ, (4.7)

∂θ

∂t
= −∂ux

∂z
sin2 θ. (4.8)

Consistent with Mitchell and Mahoney [44], I define the angle, θ, as the angle a

front element makes with the x axis, oriented such that the front advances in the

n̂ direction when θ = π/2. Accordingly, a front element with θ = π is horizontal

and propagates upward with n̂ = ẑ.

There are a number of useful features of these equations. First, they mandate

that front elements move with a speed that is the sum of the local flow speed and

v0, a constant I choose. Second, the vertical shear ∂ux/∂z appears explicitly and

has the effect of changing the front angle θ. Eq. 4.7 shows that when θ 6= π/2 and

θ 6= −π/2, the front element has a vertical component to its propagation. Even

if θ = π/2 initially for all front elements, because ∂ux/∂z 6= 0, the positions and

angles of front elements evolve differently over time than if they were acted on

by a uniform flow of magnitude equal to the flow speed at their starting height.

Third, front curvature and Ekman pumping are absent and cannot be confused

with the effect of shear on any apparent changes in v. Finally, it should also be

noted that equations 4.6-4.8 are in an easy to numerically solve form, making

them a preferable tool if they accurately model experiments.

I used eq. 4.6 - 4.8 to simulate reaction fronts with constant chemical speed

v0 in two flows: supporting flow u = uxx̂ as given by eq. 4.5, and opposing flow

u = −uxx̂. Parameter values were chosen to match laboratory experiments and

are listed in table 4.1. I initiated fronts at time t = 0 with x = 0 and θ = π/2 for

200 front elements spaced evenly over 0 ≤ z ≤ h. The front was advanced through

time using a fourth-order Runge-Kutta method with a time step corresponding to

0.001 s. After each Runge-Kutta step, I interpolated along the front to relocate its
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Parameter Value Description

h 2 mm Single layer depth

he 3 mm Reacting layer thickness in two-layer system

hd 5 mm Lubrication layer thickness in two-layer system

v0 72 µm/s Reaction front speed

B0 0.02 T Magnetic field surface strength

λ 230 1/m Decay coefficient of magnetic field

ρ 1000 kg/m3 Density of reacting layer

µ 1.60× 10−3 Pa s Dynamic viscosity of reacting layer

µd 1.42× 10−3 Pa s Dynamic viscosity of lubrication layer

γ 0.5 Concentration threshold locating apparent fronts

Table 4.1: Parameters measured from experiments and used for simulations.

elements at the original depths, preventing loss of resolution through the bottom

and top of the domain, then recalculated θ from x and z for self-consistency.

The boundary conditions for θ are subtle. The concentration outside the do-

main is always c = 0, and the front propagation direction n̂ points in the direction

of decreasing c, by definition. Since c < 0 is non-physical, a front element cannot

emerge from outside the domain, but can vanish into the edge of the domain.

Accordingly, I impose the boundary condition −π/2 ≤ θ ≤ π/2 at z = 0. In prac-

tice, the condition must be imposed only for opposing flow; supporting flow rotates

front elements in the allowable direction. At z = h, the initial angle θ = π/2 re-

mains unchanged because ∂ux/∂z = 0 there, so fronts never emerge from outside

the domain. At z = h, and in supporting flow at z = 0, θ is determined using a

front element interpolated outside the domain.

Fig. 4.3 shows simulated front evolution over time. Eikonal fronts in a thin

layer do not remain straight and vertical, but have positions that vary with depth,

even in an entirely horizontal flow (eq. 4.5), because of shear. Also, I observe a
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Figure 4.3: Fronts propagating in supporting and opposing thin-layer flow, according to

the Eikonal equation. Each curve represents the location of a front moving at v0 = 72 µm/s,

throughout the depth of a thin layer. Different colors indicate different times. Flow speed is

10 mm/s, and fronts are initialized with θ = π/2. The flow is directed to be either (a) supporting

the front (x̂) or (b) opposing the front (−x̂). Work of the author in [101].

symmetry difference between fronts in supporting flow (fig. 4.3(a)) and opposing

flow (fig. 4.3(b)), which causes a change in front shape. Fronts in opposing flow

are pinned at the solid boundary, maintaining a point that resists flow, whereas

no such pinning occurs in supporting flows. Because they are pinned, fronts in

opposing flow are sheared more strongly. This difference results in higher apparent

chemical speeds in opposing flow than supporting flow.

I also simulated Eikonal fronts for 20 s of front growth in flows with−20 mm/s ≤

U ≤ 20 mm/s. Fig. 4.4 shows all the fronts at two times, t = 5 s and t = 10 s. As

one might guess, larger flow magnitudes cause greater displacements and slopes

that deviate more from vertical. Given the condition of fixed chemical speed v0

in a single-layer system of fixed depth, I can focus on two important variables for

fronts growing in a single layer: time and flow intensity.

In order to compare to experiments, I use the depth-averaged concentration
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Figure 4.4: Front propagation in thin-layer flow, varying with flow speed, according to the

Eikonal equation. Color indicates the flow speed U at the top surface (z = h). The white

side indicates the reacted side, and the growth direction is to the right. The upper plot shows

fronts after propagating 5 s, and the lower plot shows the same fronts after 10 s. All fronts were

initialized as vertical lines at x = 0. Work of the author in [101].

of each simulation to assign an apparent front location, as would be done in the

laboratory. When fronts deviate from being strictly vertical, the depth-averaged

concentration varies more gradually in space; fronts appear to be smeared by

shear. Apparent fronts can be assigned where the depth-averaged concentration

crosses a user-defined threshold. For sharp, vertical fronts, the choice of threshold

is irrelevant for front location. For fronts smeared by vertical shear, the apparent

front location depends on both the choice of threshold and the actual front profile.

If vertical shear changes the actual front profile over time, apparent front speed is

also affected. Using the results described above, I chose threshold γ = 50% of the

maximum depth-averaged concentration to locate an apparent front at each time

t in each simulation, naming that location xf (t). I calculated the total velocity of

the apparent front

w =
xf (t+ dt)− xf (t)

dt
x̂,

where dt is the time step. Then I calculated the apparent chemical speed va using
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eq. 4.2 and the known surface flow. Fig. 4.5 shows the results. We find that

shear can cause the apparent front speed to be orders of magnitude larger than

v0 = 72 µm/s. Similar results can be found in Leconte et al. [37] for Poiseuille

advection. However, those results pertain to the apparent total speed, w, miss-

ing the apparent chemical speed, and the focus was long-term behavior neglects

interesting time dynamics.

These simple simulations confirm that apparent front speeds in quasi-2D ex-

periments can vary and be anomalously large, even when the underlying dynamics

have a constant front speed. The simulations also show that the apparent front

speed converges to an asymptotic limit at long times, though the limit depends

on the flow direction. For supporting flow, the apparent speed va converges to

the true chemical speed v0. For opposing flow, the apparent speed converges to

v0 + U , the sum of the actual chemical speed and the maximum flow speed. In

either case, the apparent speed approaches the asymptotic limit from below.

The lower panel of fig. 4.5 suggests an explanation. At t = 0, va ∝ U with

the same slope for all values of U , but at later times, va and U are related by

a piece-wise function with two linear parts, each having a slope that increases

over time toward an asymptotic value. The initial slope can be explained by

observing that at t = 0, the 50% position has θ = π/2, so it moves perfectly

in the x̂ direction. Thus for any U , the measured front speed at t = 0 will

be va = v0 + ux(z = h/2) − U . Factoring out the surface speed and direction

I am plotting against, the slope can be identified as ũx(z = h/2) − 1, where

ũx(h/2) = ux(z = h/2)/U . Convergence of the apparent chemical speed depends

on the concentration profile converging to its long-term shape (fig. 4.3), which

occurs as information propagates at the true chemical speed across the layer depth,

starting at the leading edge of the front and finally reaching the depth γh. The

process is analogous to the downstream widening of a boundary layer or narrowing

of an entrance region in pipe flow. Opposing fronts have leading edges at the
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Figure 4.5: Apparent chemical front speed in a simulated thin-layer flow, determined using

depth-averaged concentration. The upper panel shows apparent speed over time, for different

flow speeds. The lower panel shows the variation of apparent speed with flow speed, at different

times, in 2 s intervals. All chemical velocities were obtained by tracking the position where 50%

of the layer is reacted, and subtracting surface flow speed, mimicking the procedures for tracking

fronts in experiments. Over time, apparent front speed converges to v0 for supporting flow and

v0 + U for opposing flow. Work of the author in [101].
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bottom of the layer, so they converge to the speed of the front at the bottom, which

is va = v0. Their characteristic time for convergence is τo = γh/v0. Supporting

fronts have leading edges at the top of the layer, so they converge to the speed

at the surface, which is va = v0 + U . Their characteristic time for convergence is

τs = (1−γ)h/v0. In the case of γ = 0.5, both convergence times are the same, and

for the parameters listed in table 4.1, τo = τs = 13.9 s. Choosing γ < 0.5 results in

faster convergence for opposing fronts than for supporting fronts; choosing γ > 0.5

results in faster convergence for supporting fronts. The convergence time does not

depend on flow speed or structure. The value of γ does not change the asymptotic

apparent chemical speed.

Further insight can be gained if I consider front propagation in dimensionless

form. Normalizing simulation results like those shown in fig. 4.4 with velocity scale

U , length scale h, and timescale h/U produces the dimensionless front profiles

shown in fig. 4.6. The simulations plotted there differ only in the ratio ṽ0 = v0/U .

When |ṽ0| is large, the front propagates further in the x̂ direction and extends

across a shorter region (in dimensionless units): fronts are less distorted by vertical

shear. Note that since all distances are non-dimensionalized with respect to h, that

increasing depth will not reduce distortion. Depth’s effect is to change how long

in physical time a given dimensionless time is, but it cannot change the profile at

that time. On the other hand, when |ṽ0| is small, fronts converge to the shapes one

would expect in passive scalar mixing. The curves for a non-reactive scalar are also

mirror images of each other, because the front has no directionality in the ṽ0 = 0

case. Front speed is what breaks the symmetry between supporting and opposing

flows. Though flow speeds in the experiments (described in section 4.5) are often

much faster than reaction front speeds, I nonetheless observe clear deviation from

the ṽ0 = 0 case.
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Figure 4.6: Dimensionless front propagation in thin-layer flow. Front speed, v0/U , varries

between different lines, and is normalized with the flow speed U and the layer depth h, at

dimensionless time t̃ = 20. As v0/U decreases, the fronts approach the passive case for both

opposing and supporting flows. Work of the author in [101].

4.3 Simulations of Hele-Shaw System

Another common type of experiment for thin layer flows is to use a single reacting

layer, sandwiched between two solid boundaries and driven by a pressure differ-

ence [10, 33, 113]. One major advantage of the Hele-Shaw system is that it can be

made much thinner than the free surface systems. However, the resulting no-slip

conditions on both the top and bottom of the experiment cause roughly double

the shear for the same layer thickness. Regardless, in many systems where a free

surface is impractical the Hele-Shaw method is the only option. As with thin layer

experiments, the depth shear has an effect, and here I quantify what that effect

would be.

4.3.1 Velocity Profile

Flow in a Hele-Shaw system is driven by pressure difference ∇P with no-slip

boundary conditions at z = ±h/2. Solving eq. 4.3 results in Poiseuille flow. If the
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Figure 4.7: Depth dependence of streamwise velocity in a Hele-Shaw style, pressure driven

flow. Fluid properties and layer thicknesses are given in table 4.1, with ∇P set to normalize the

maximum speed. Work of the author in [101].

flow is in the x̂ direction, then the velocity profile is parabolic:

ux(z) = (∇P )
z2 − (h/2)2

2µ
, (4.9)

as shown in fig. 4.7. The profile is symmetric across about z = 0, and the halves

have the same form as the single-layer profile shown in fig. 4.2. Flow measurement

in Hele-Shaw is also measured differently than free surface systems. Particles can-

not float on the surface so, the average flow speed through the depth is frequently

used instead. Since this is the flow speed of interest, I will define U equal to this

average. Integration of eq. 4.9 yields,

U = −∇P h2

12µ
.

Should an experiment be done using maximum flow speed (U = ux(z = 0))

instead, the results presented here are essentially indistinguishable from those for

a single layer system with layer thickness of h/2.

4.3.2 Simulation

I repeated the simulations described in section 4.2.2 with ux given by eq. 4.9,

increasing the values of ∇P so that values of U fall in the same range as before.
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Figure 4.8: Front propagation in Hele-Shaw flow, varying with flow speed, according to the

Eikonal equation. Color indicates the flow speed U equal to the average flow speed throughout

the depth. The white side indicates the reacted side, and the growth direction is to the right.

The upper plot shows fronts after propagating 5 s, and the lower plot shows the same fronts

after 10 s. All fronts were initialized as vertical lines at x = 0. Work of the author in [101].

Fronts from simulations at different U values are presented in fig. 4.8. The two no-

slip boundaries enhance the differences between fronts in supporting and opposing

flow. Fronts in opposing flows now pin to both the top and the bottom of the

domain, while the middle is now the trailing edge. A sharp cusp forms there on

fronts in opposing flow, whereas fronts in supporting flow are not only smooth at

the center of the layer, but flattened there.

As with the single layer, the apparent chemical front speed va shows strong

deviation from v0. Fig. 4.9 shows apparent front speeds at different flow speeds

and times. The shapes of the plotted curves differ from single-layer systems with a

free boundary. This difference arises entirely from defining U as the average, which
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is lower than the maximum flow speed in the layer. If maximum is used instead,

these results differ from the single layer results only in the time to converge. In

supporting flow, va converges to v0 − U + ux(z = 0), because the leading edge in

supporting flows is at ux(z = 0) 6= U . In the previous section the flow velocity at

this leading edge corresponded to U , and thus supporting flow converged to v0.

The convergence time changes in Hele-Shaw because information propagates both

up and down: τs = (1 − γ)h/2v0, which gives τs = 6.94 s for these parameters.

In the case of opposing flow, va converges to v0 + U as it did in single layer.

The convergence time for opposing flow is analogous to the single-layer system:

τo = γh/2v0, which is also 6.94 s for these parameters. The initial slope of va

versus U in the Hele-Shaw system has the opposite sign and is less steep than in

the single-layer system: ũx(z = h/2)− 1 = 0.13 instead of -0.23 for a single layer

with a free surface. However the lines that Hele-Shaw converges to are at least

as far from va = v0 as they were in single layer, and the convergence times are

strictly smaller. Therefore, Hele-Shaw transitions to the convergent state faster

than the single layer. Taken together, this implies that the effects of depth shear

are at least as important in Hele-Shaw systems as they are in single layer systems,

and using an average flow speed does not cause the measurement of front speed

to match the expected value.

Fig. 4.10 presents front propagation in dimensionless form for the Hele-Shaw

system. I still see the cusp formation in the dimensionless system. Fronts in the

Hele-Shaw system can reach around 60 times wider than they are tall, whereas

fronts in the single-layer system reached 20 times as wide as tall. This difference

is due to the fact that a Hele-Shaw layer of the same thickness as a single layer

must reach its maximum speed in half the distance due to the reflection across

the x axis.
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Figure 4.9: Apparent chemical front speed in simulated Hele-Shaw flow, determined using

depth-averaged concentration. The upper panel shows apparent speed as it evolves over time,

for different flow speeds. The lower panel shows the variation of apparent speed with flow

speed, at different times, at 2 s intervals. All chemical velocities were obtained by tracking the

position where 50% of the layer is reacted, and subtracting the average flow speed, mimicking

the procedures for front tracking experiments. Over time, the apparent front speed converges

to v0 − U + ux(z = 0) for supporting flow and v0 + U for opposing flow. Work of the author in

[101].
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Figure 4.10: Dimensionless front propagation in the Hele-Shaw flow. Front speed, v0/U ,

varries between different lines, and is normalized with the flow speed U and the layer depth h,

at dimensionless time t̃ = 20. As v0/U decreases, the fronts approach the passive case for both

opposing and supporting flows. Work of the author in [101].

4.4 Simulations of Two-Layer System

As I showed in section 4.2, shear in thin-layer flows changes the apparent chemical

front speed, if it is measured using depth-averaged concentration, even in simula-

tions that exclude higher-order mechanisms like curvature and Ekman pumping.

Section 4.3 showed that shear can also change the results of a Hele-Shaw style

experiment. Studies of front propagation with thin-layer experiments must there-

fore be undertaken with care. To ensure that the apparent front speed gives a

good approximation for the true front speed in 2D experiments, shear must be

minimized. One strategy for minimizing shear is to add an immiscible, dielectric

lubrication layer below the reacting layer. In this section I will repeat the analysis

and simulation of section 4.2 for such a two-layer system. I will show that the

two-layer system produces apparent front speeds much closer to the true front

speed, though shear still has some effect.
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4.4.1 Velocity Profile

To determine the velocity profile of the two-layer system, first consider each layer

separately. In the lubrication layer that occupies the region 0 ≤ z ≤ hd, current

cannot flow: J = 0. In the reacting layer that occupies the region hd ≤ z ≤

hd + he = h, the current density is unchanged from the single-layer case. Flow

at the interface between the layers must be continuous and stress free, so the

boundary conditions at hd require that ux be continuous and

µd
∂ux
∂z

∣∣∣
h−d

= µ
∂ux
∂z

∣∣∣
h+d

,

where µd and µ are the viscosities of the lubrication layer and reacting layer, re-

spectively. Other parameters and boundary conditions remain unchanged. Solving

eq. 4.3, I found

ux(z) =


JB0z
µdλ

e−λhd
(
1− e−λhe

)
, 0 ≤ z ≤ hd

JB0

µλ

(
hde

−λhd
[
µ
µd
− µ

µd
e−λhe + 1

λhd
+ e−λhe

]
− e−λz

λ
− ze−λ(hd+he)

)
, hd ≤ z ≤ hd + he

(4.10)

This velocity profile agrees closely with the results of Suri et al. [110], with differ-

ences arising from my use of an exponentially decaying magnetic field (eq. 4.4);

they used a linear decay. Fig. 4.11 shows the velocity profile, for the parameters

shown in table 4.1. Because µ ∼ µd, the slope discontinuity (kink) at z = hd is

weak. I define U in a two-layer system to be the velocity at z = hd + he. As

expected, only a small fraction of the vertical variation in velocity, about 20%,

occurs in the reacting layer.

4.4.2 Simulation

I repeated the simulations described in section 4.2.2 with ux given by eq. 4.10, in-

creasing the values of J so that values of U fall in the same range as before. Fronts

at different U values are presented in fig. 4.12. Fronts in the two-layer system are
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Figure 4.11: Depth dependence of streamwise velocity in a uniform thin-layer flow including

a lubrication layer. Fluid properties and layer thicknesses are given in table 4.1, with J set to

normalize the maximum speed. Work of the author in [101].

distorted by vertical shear much less than fronts in the single-layer system. The

asymmetry between fronts in supporting and opposing flow is smaller in two-layer

systems because the bottom of the reacting layer is no longer subject to a no-slip

boundary condition, so pinning is eliminated. Some asymmetry remains, however,

because front elements can vanish into the edge of the domain but not emerge from

it (see section 4.2).

This reduction of distortion has a major effect on the apparent chemical front

speed va. Fig. 4.13 shows apparent front speeds at different flow speeds and

times. The shapes of the plotted curves closely resemble those of the single-layer

system (fig. 4.4). However, the magnitude of va for any given flow speed U is

only about 20% as large as in the single-layer system. For example, the initial

slope is once again equal to ũx(z = h/2)−1, but where this value was about -0.23

for single layer, it is -0.04 for two layers. Therefore there is less dependence of

apparent chemical speed on flow speed in two layers. In the case of supporting

flow, va converges to v0, just as in the single-layer system. The convergence time

is analogous: τs = (1− γ)he/v0, which gives τs = 20.8 s for these parameters. In

the case of opposing flow, va does not converge to v0 + U , as in the single-layer
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Figure 4.12: Front propagation in the two-layer flow, varying with flow speed, according to

the Eikonal equation. Color indicates the flow speed U at the top surface (z = hd + he). The

white side indicates the reacted side, and the growth direction is to the right. The upper plot

shows fronts after propagating 5 s, and the lower plot shows the same fronts after 10 s. All

fronts were initialized as vertical lines at x = 0. Work of the author in [101].

system, but to v0 +U −ux(z = hd). That is, the apparent chemical speed exceeds

the true chemical speed by the difference in flow speed at top and bottom. The

same is true for the single-layer system, since the flow speed at the bottom of

a single layer is zero. The convergence time for opposing flow in the two-layer

system is analogous to the single-layer system: τo = γhe/v0, which is also 20.8 s

for these parameters.

I can also consider front propagation in dimensionless form in the two-layer

system, and results are shown in fig. 4.14. As in the single-layer system, fronts are

distorted least when ṽ0 is large, and have shapes like fronts bounding a passive

scalar when ṽ0 is small. The effect of changing ṽ0 is much weaker than in the

single-layer system, however. Fronts in the two-layer system are never more than

4 times as wide as they are tall, whereas fronts in the single-layer system can be

20 times as wide as tall.



113

0 5 10 15 20 25
-1

0

1

2

3

-15

0

15

-15 -10 -5 0 5 10 15
-1

0

1

2

3

0 s

20 s

0

20

Figure 4.13: Apparent chemical front speed in simulated two-layer flow, determined using

depth-averaged concentration. The upper panel shows apparent speed as it evolves over time,

for different flow speeds. The lower panel shows the variation of apparent speed with flow speed,

at different times, in 2 s intervals. All chemical velocities were obtained by tracking the position

where 50% of the layer is reacted, and subtracting the flow speed at the surface, mimicking the

procedures for front tracking experiments. Over time, the apparent front speed converges to v0

for supporting flow and v0 + U − ux(z = hd) for opposing flow. Work of the author in [101].
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Figure 4.14: Dimensionless front propagation in the two-layer flow. Front speed, v0/U ,

varries between different lines, and is normalized with the flow speed U and the layer depth h,

at dimensionless time t̃ = 20. As v0/U decreases, the fronts approach the passive case for both

opposing and supporting flows. Changing v0/U has a much smaller effect than in the single-layer

system (fig. 4.6), because fronts are not pinned by a no-slip boundary condition at the bottom

of the layer. Work of the author in [101].

4.5 Experimental Apparatus

Simulations show that vertical shear causes the apparent front speed va to deviate

from the true front speed v0 in thin-layer experiments, assuming that the Eikonal

approximation (eq. 4.2) holds and that reaction fronts propagate according to

eq. 4.6, 4.7, and 4.8. Those assumptions generally hold in the limit of thin fronts,

when the characteristic reaction rate is much faster than the characteristic rates of

advection and diffusion. That is, I expect those assumptions to hold when the first

Damköhler number DaI = αh/U and second Damköhler number DaII = αh2/D

are both large. I find DaII ≥ 2600 � 1 for all simulations described above,

satisfying the necessary condition. However, while DaI goes to infinity at U = 0,

it drops below 10 at a flow speed of only U = 0.25 mm/s, which means a very

small portion of the simulated domain falls in the high DaI range. The validity

of the Eikonal approximation is not obvious. To test the validity, and determine

whether the simulations accurately predict the effect of shear on apparent front
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speed, I performed reactive mixing experiments in thin-layer flows.

Experiments were configured to match the simulations. I drove flows that were

nearly uniform and nearly unidirectional by passing electrical current through a

thin layer of reacting fluid in the presence of a magnetic field that varied little

in the horizontal directions and decayed exponentially in the vertical direction. I

varied ux by changing the current amplitude J . All flows were steady after an

initial transient. I performed experiments both with and without a lubrication

layer below the reacting fluid.

To accurately measure the dynamics of reactive mixing, I use an experimental

apparatus which can measure both depth-averaged concentration and flow velocity

simultaneously, as shown in fig. 4.15. A pair of cameras (Emergent HS-4000M)

images a thin layer of the reacting Belousov-Zhabotinsky (BZ) solution [2, 92–94].

It changes color from blue to red as it reacts, producing fronts with chemical speed

v0 = 72 /mum/s as shown in chapter 2. Single-layer experiments were recorded

with spatial resolution 0.163 mm/pixel; two-layer experiments, 0.140 mm/pixel.

On top of the reacting layer, red fluorescent tracer particles (Cospheric UVPMS-

BR-0.995, 75-90 µm) follow the flow closely, with Stokes number St < 0.1. The

rectangular flow channel is 263 mm long, and its width can be varied from 59 to

68 mm wide. It is placed above a large ceramic magnet (152 mm × 102 mm) which

provides unidirectional flow within the channel when current is induced from two

bounding electrodes. Fluid recirculates outside the viewing area (fig. 4.15 (b)). In

the two-layer system, immiscible Fluorinert FC-3283 is placed below the reacting

layer. We illuminate the apparatus with blue LED light, which passes through the

BZ solution to reflect off a white background and which matches the absorption

wavelength of the particles. One camera has a blue-pass optical filter to see the

light reflected from the blue reacted regions, and the other has a red-pass filter

which sees the fluorescent particles; fig. 4.15(c)-(d) shows examples.

The BZ reaction is an excitable redox reaction catalyzed by ferroin indicator.
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Figure 4.15: Diagram of the experimental apparatus. (a) Two cameras image a thin layer of

reacting Belousov-Zhabotinsky solution with red tracer particles. For single-layer experiments

there is no lubricating layer. (b) Flow is driven by a current in the +ŷ direction, and a magnetic

field in the +ẑ direction, resulting in a channel flow in the +x̂ direction.(c) Typical image from

the reaction camera, and (d) from the particles camera (inverted to enhance visibility). I use

particle tracking to measure flow velocity and front tracking to measure front speeds. Work of

Douglas Kelley.

The reaction oscillates, allowing the same batch to be used for several different

experiments. While the BZ reaction is chemically complex, I will measure only

the early stages of the reaction within each experiment so it is well-modelled as

a second-order autocatalytic reaction [2, 78]: F (c) = c(1 − c). I produce the BZ

solution using a recipe similar to one described in Bargteil and Solomon [34]. In

a fume hood, I mix a beaker of liquid to concentrations: 0.22 M sulfuric acid

(H2SO4), 0.12 M malonic acid (C3H4O4), 0.12 M sodium bromide (NaBr), and

0.34 M sodium bromate (NaBrO3). After mixing and the addition of ferroin

indicator, a silver wire is immersed in the BZ layer for 20 s to catalyze the reac-

tion, which is allowed to grow for 30 s before flow is started. Ferroin indicator

is added repeatedly throughout experiments to maintain strong contrast, which

would otherwise fade over the 2-3 hours in which a batch of solution continues

reacting. Color does not provide a calibrated measurement of depth-averaged

concentration, nor is it accurate to make quantitative comparisons between color

at one time and color at a much later time. However, color variation in an image

does accurately locate reaction fronts.
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I use particle tracking velocimetry to produce velocity fields from particle

motions [75]. Then I use front tracking velocimetry to produce chemical front

velocities from the concentration fields and velocity fields as described in chap-

ters 2 and 3. I varied the frame rate among experiments, from 15 Hz for slow

flow to 45 Hz for fast flow, to ensure good particle tracking. Fig. 4.16 shows an

example velocity field from a single-layer experiment, and fig. 4.17 shows an exam-

ple velocity field from a two-layer experiment. Both experiments produced flows

nearly uniform and unidirectional (in the x̂ direction) over most of the field of

view. The two-layer experiment produced a slightly more uniform flow, partially

because the magnet was better aligned during that experiment. Uniformity is

not essential since we measure both the local flow velocity and the local apparent

front velocity directly. Once the current J is switched on, two-layer experiments

take longer to reach full speed than single-layer experiments because of the added

inertia of the lubrication layer.

In the simulations the front always had horizontal orientation such that n̂

pointed in the x̂ direction. In our experiments the front is not always oriented

in the streamwise direction. Initially, reacted regions are are roughly circular,

so the leading edge experiences supporting flow, while the trailing experiences

opposing flow. When a flow is not strictly one-dimensional, the speeds of front

elements are affected by the component of the flow locally normal to the front,

u · n̂. This dot product is positive for supporting flow and negative for opposing

flow. Tangential front displacement has no effect, since concentration is constant

along the tangential direction.

4.6 Experimental Results

Using the apparatus described in section 4.5, I measured the growth of reacted

regions under the influence of uniform flows with different speeds. Experimental
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Figure 4.16: Mean flow in a single-layer experiment. Red and magenta lines indicate cross-

sections where I measured the speed profiles plotted in the top and right panels, respectively.

Work of the author in [101].
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Figure 4.17: Mean flow in a two-layer experiment. Red and magenta lines indicate cross-

sections where I measured the speed profiles plotted in the top and right panels, respectively.

Work of the author in [101].
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Figure 4.18: Snapshots of the BZ reaction in a single-layer experiment (a-c) and a two-layer

experiment (d-f). In both experiments, U ≈ 13 mm/s and flow goes from left to right, but the

reacted regions in (a) evolve differently than in (d). Streamwise smearing is much stronger in

the single-layer system because of greater vertical shear. Work of the author in [101].

parameters match those in table 4.1. Fig. 4.18 shows a series of images from each

of two experiments, one using the single-layer system, and the other using the

two-layer system. Though the flows in these two experiments have comparable

speeds, the reacted regions evolve in qualitatively different ways. In the single-

layer experiment shown in fig. 4.18(a–c), the reacted region becomes smeared in

the streamwise direction over time, therefore dimming. The left end of the region

appears to remain nearly stationary. There, the front propagation direction n̂

points left, and the rightward flow opposes it, so the observation of a nearly

stationary front implies va ≈ U � v0. The right end of the region moves to the

right with propagation direction n̂ pointing right. The rightward flow supports

the front, but measurements show its total speed to be slightly less than the flow

speed, so va < 0. This behaviour was predicted by the simulations, as shown in

the lower panel of fig. 4.5: va ≈ U in opposing flow, and va < 0 in supporting

flow. Interestingly, this behaviour also leads to dilution of the reaction region,

which the Eikonal equation could not predict. The two-layer experiment shown

in Fig. 4.18(d–f) involves much less smearing, so that the smearing persists only

weakly, consistent with the predictions of figure 4.13.
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Having shown that the qualitative speeds of experimental fronts in opposing

and supporting flows are consistent with trends predicted by simulations, I now

make quantitative comparisons. I used front tracking to measure chemical speeds

and total speeds at many locations on all fronts in 7 single-layer experiments,

each with a different flow speed U . For each experiment, I calculated the mean

apparent chemical speed, va, at all locations with similar values of u · n̂ during

the first 20 s of flow. Measurements were grouped into bins 0.25 mm/s in extent,

and conditional averages were discarded for all bins containing fewer than 100

measurements. Next, I calculated the mean of va conditioned on u · n̂ for all the

simulations plotted in fig. 4.5, combining the simulations to produce a single curve,

and including error bars sized according to the variation of va over the duration

of the simulation. The variation in va in simulations is due to time dependence

of the front speed, which originates from the front’s depth profile changing over

time.

Fig. 4.19 shows the results. Each experiment gives a different curve, because

it represents a variety of u · n̂ values. Experiments are labeled by the root-mean-

square flow velocity measured in that experiment during the 20 s of data collection.

Experimental measurements show similar trends to the simulation results: va < 0

for supporting flows (u · n̂ > 0), and va grows with the magnitude of opposing

flows (u · n̂ < 0). Five of the seven experimental curves fall within or near the

error bars of the prediction from simulations.

Two of the five experimental curves in fig. 4.19 did not fall near the prediction

from simulations and deserve further attention. Both experiments involved fast

flow that caused severe smearing and poor contrast, making front tracking difficult.

When diluted this much the reaction’s reacted regions appear to drastically shrink

everywhere. The dilution was extreme enough that no reaction appeared again

even when the flow was turned off. This front extinction led directly to a lower

va at all flow values. This indicates a limitation of the Eikonal approximation,
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Figure 4.19: Variation of apparent front speed with the front-normal flow speed u · n̂ in

single-layer experiments and simulations. Error bars are developed from data in figure 4.5.

Experiments and simulations agree reasonably well. Work of the author in [101].

because in this case the magnitude of the concentration field did matter. These

two experiments also correspond to the lowest DaI. It seems the dilution effect

matters beyond some shear level, because slower flows eventually get brighter in

spite of the shear. I will discuss dilution effects due to stretching in more detail

in chapter 5.

I also considered two-layer experiments. Using the same methods, I calculated

the mean of va conditioned on u ·n̂ in 16 two-layer experiments and in all the two-

layer simulations plotted in fig. 4.13. Fig. 4.20 shows the results. All experimental

curves fall within or near the error bars of the prediction from simulations. The

shape of the graph is similar to single-layer experiments, but the magnitude of

va is only about 20% as large, consistent with the fact that ∂ux/∂z is only about

20% as large in the two-layer system as in the single-layer system (fig. 4.2 and

4.11). Notice that there is no data set with the large drop like that observed in

one layer, even though I reach higher surface speeds. Reduced dilution due to

smearing makes the Eikonal approximation hold much better. The extinction of
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Figure 4.20: Variation of signed front speed with the front-normal flow speed u·n̂ in two-layer

experiments and simulations. Error bars are developed from data in figure 4.13. Experiments

and simulations agree reasonably well. Work of the author in [101].

the front in two layers requires a much higher surface flow speed for the same

straining and dilution. This is an additional benefit to the predictability and

repeatability of two-layer experiments over one-layer.

In experiments, va varies with u · n̂ in a way that is quantitatively consistent

with predictions from our simple simulation built on the Eikonal approximation,

neglecting curvature and assuming thin fronts moving at constant speed, despite

the fact that DaI was small in some cases. The match holds for single-layer and

two-layer experiments.

Reaction fronts are characterized not only by a chemical speed, but also by

a thickness, which is the distance separating reacted and unreacted regions, as

represented by a fitting parameter (see chapter 2). Predicting thickness is impos-

sible with my simple simulations, which are built on the thin-front assumption.

Simulations built from numerical solutions of equation 4.1 would predict front

thickness but are substantially more numerically demanding and lie beyond the

scope of this study. My experimental measurements, however, include front thick-
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Figure 4.21: Variation of front thickness with the front-normal flow speed u · n̂ in single-

layer experiments. Vertical shear increases front thickness in either supporting or opposing flow.

Work of the author in [101].

ness. I calculated the mean thickness, conditioned on u · n̂, for all fronts in the

single-layer experiment with U = 2.86 mm/s. As shown in fig. 4.21, fronts appear

thicker when u · n̂ has greater magnitude, whether positive or negative. Greater

normal speed causes greater vertical shear perpendicular to the front, which makes

fronts thicker, regardless of whether the flow supports or opposes front propaga-

tion. Future work might characterize the variation of front thickness with flow

speed in more detail, perhaps providing a functional form to explain the variation

shown in fig. 4.21.

4.7 Conclusions

In this chapter I provided an explanation for the puzzling prior observation that

apparent chemical speed of reaction fronts depends on flow speed in thin-layer ex-

periments from chapter 3. Assuming that the fronts are sharp and that their actual

chemical speed is constant, I simulated their motion in vertical cross-sections of
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thin-layer flows. I found that even if fronts are initially vertical, shear distorts

them over time, so that locating apparent fronts using depth-averaged concentra-

tion leads to apparent chemical speeds which differ from the true chemical speed.

However, simulations also showed that adding a lubricating layer can reduce shear

distortion by 80%. Single-layer experiments designed to match the simulations

showed the same distortion by shear, and two-layer experiments showed the same

reduction in distortion. The dependence of apparent chemical speed on flow speed

agreed closely between simulation and experiment, for both single-layer and two-

layer systems. The agreement held even when dimensionless parameters suggested

the underlying assumptions to be unfounded. These results resolve the puzzle by

showing how the observed variation can arise from the dynamics proposed by [44],

via shear. The agreement between simulations and experiments also further val-

idates our front tracking algorithm by confirming that the results it revealed are

physical.

Based on these results, the immiscible two-layer configuration for reactive

mixing experiments substantially reduces shear and produces apparent chemical

speeds much closer to the true chemical speed, making it the ideal setup to use

for such experiments. Whereas velocity measurements from particle tracking or

particle image velocimetry are relatively unaffected by 3D phenomena until some

forcing threshold is exceeded [76, 77], apparent front speed is strongly affected by

3D phenomena, even under gentle forcing. Reactive mixing has been studied in

other thin-layer flows, notably Hele-Shaw configurations [33, 106], but the results

of section 4.3 indicate that the effect is greater in Hele-Shaw configurations. While

I did not perform Hele-Shaw experiments, I hope that these predictions will be

useful to future researchers. In this work, I have considered only a single lubricant

type, and only a single lubricating layer thickness, hd = 5 mm. Both could be

optimized to reduce shear further. In particular, it is known [110] that increasing

the viscosity of the electrolyte layer greatly reduces shear. Using the two-layer



126

configuration does introduce new technical challenges, notably that reaction bub-

bles are more difficult to eliminate, and stirring the solution after adding ferroin

is trickier. Still, they can be managed with careful experimental methods.

Open questions remain and give opportunity for future work. Apparent front

speed displays a piecewise-linear variation with flow speed in both the uniform

flows considered here and the vortex flows considered in chapter 3 — but the

slopes differ. It would be interesting to use analysis similar to that presented here

to derive that slope. The non-uniformity of vortex flow may provide the answer,

since the local vertical shear depends on the local speed and direction. Initial

studies might use Kolmogorov-like flows with simple horizontal speed variation,

and correspondingly simple variation of vertical shear. Rotation may have sepa-

rate effects and could be considered later. Time-dependent flows may involve still

more complications.

In future work, it would be interesting to check the agreement between experi-

ments and simulated front dynamics when the Damköhler numbers are even lower

than considered here. Also, I have considered only the Belousov-Zhabotinsky re-

action, which has v0 = 72 µm/s. Future work might test that these predictions

hold for different chemical kinetics and different true chemical speeds. Ultimately

both of these questions probe a deeper question: what are the limits of the Eikonal

approximation, and how can we model those limitations to expand its applicabil-

ity.

In the next chapter, I set my sights on a limitation which is visible in fig. 4.19.

There dilution of the front led to extinction. Since the Eikonal equation does

not consider concentration on either side of the front, this is beyond its ability to

predict. Put another way, in a single layer the flow at the base of the domain is

no-slip, so the disappearance of the front cannot be attributed to the front being

blown downstream, since there is always a slow zone, where ux < v0. The front

transitions from a pinned state to an unreacted state, not a “blown away” state.



127

Furthermore, previous works in reactions growing in adverse flows have observed

a “frozen front” regime that lasts for some distance before the front is blown

downstream [10]. In the Eikonal simulations above, there was no speed at which

the front could not eventually achieve a frozen state. This eventual detaching

from a no-slip location must be beyond the simple Eikonal equation I have used,

and may also be beyond the curvature correction.

Since the depinning appears in the single-layer configuration but not the two-

layer configuration, shearing is the probable cause. This may be due to another

geometric effect of shearing and strain-rate in general. Shearing does not just cause

fronts to turn, it can also change front thickness, and change front perimeter. In

reactions of limited spatial extent, straining flows can also pull reacted regions into

thin filaments, where concentration levels begin to matter. In the next chapter I

will present an analysis of strain over a period of time interacting with nonlinear

chemical kinetics to cause effects which are beyond the Eikonal equation.
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5 Optimal Stretching and

Blowout in Excitable

Reactions

This chapter is based on a combination of published and unpublished results.

It reproduces Reference [5] which is the source of all single layer vortex flow

experimental results. Sections from Reference [99] regarding flow past a bluff body

are also included as this was a later experiment showing the same phenomenon

in a new setting. These two previously published sections have been reformatted

and edited to fit within the thesis. The thesis author was the primary author on

the work from Reference [5], and a co-author on Reference [99]. I have obtained

permission to use the materials in Reference [99]. The last section of the chapter

is entirely unpublished analytic and simulation results aimed at explaining the

results of the previous papers.

5.1 Introduction

So far in this thesis, I have focused my attention on understanding the most basic,

and expected behaviors of advection-reaction-diffusion (ARD) systems. The steps

I have taken to do this involved expanding on the simplified front tracking model,
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and I have built the experimental and analysis tools required to test that model.

As such, most of the previous chapters have been focused on validating the tools

I created, and exploring some of their immediate implications. In this chapter I

will instead focus on phenomena that are beyond that simple model. A hint of

what I found can be seen in the two unusual experimental results in chapter 4,

fig. 4.19. In this chapter I will discuss some unusual behavior that I observed

in our experiments which compared how reactions responded to different levels

of fluid stretching. Importantly, this interaction between reaction and stretching

seems likely to be universal to excitable ARD systems, making it a fundamental

concept to understand for predicting and controlling ARD.

In particular, I am interested in studying ARD systems in which the reac-

tion is both excitable, in that it proceeds only if the concentration exceeds some

threshold; and autocatalytic, in that it spreads in fronts once triggered, because

the reaction product is also a catalyst. While at first this may seem an unusually

specific reaction class, such reaction dynamics describe the well studied oscillating

Belousov-Zhabotinsky (BZ) chemical reaction [2, 46, 48–50, 80, 114, 115], flame

dynamics [2], and phytoplankton blooms [22, 23]. So these reactions are experi-

mentally accessible, and also can have important applications.

The experiments of this chapter are comprised of two different experimental

setups over a five year period. One conducted by me, and one by undergraduate

Jinge Wang, partially under my supervision. For all these experiments, we drive

thin-layer flows of ferroin-catalyzed BZ reaction [2, 92] as in chapter 4. When

triggered, the BZ reaction oxidizes ferroin, changing from red to blue [2]. BZ

also produces other products which are catalysts for further reaction, making

BZ autocatalytic. Diffusion spreads those catalysts, causing reacted regions to

grow outward. Because BZ has a large Damköhler number [48], sharp fronts

separate reacted and unreacted regions. We measured BZ’s kinematic viscosity,

ν = 1.6 × 10−6 m2/s using a TA Instruments DHR-2 rheometer. We trigger
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reaction by immersing a silver wire near the vessel’s center for 20 s.

Reaction and flow fields were imaged using two hardware synchronized cham-

eras (Emergent HS-4000M) as described in chapters 2-4. One has a dichroic filter

to pass blue light matching the color of the LED illumination and the reacted BZ,

so reacted regions appear bright when light is reflected from a white background.

The other camera has a dichroic filter which blocks blue but passes the color of

the fluorescent tracer particles we add to the fluid to visualize advection. We mea-

sure advection by tracking each particle [75]. The particle tracking makes a large

number of flow measurements and these measurements are distributed over space,

giving us a picture of the flow field. Particles range in size 66 µm to 100 µm in

diameter and follow fluid motions accurately with small Stokes number (St < 0.1).

By simultaneously imaging a calibration pattern with both cameras, we determine

their resolution (which varies between experiments) and the translational and ro-

tational offsets between their images. Once the cameras are calibrated, we can

overlay simultaneous measurements of advection and reaction state. We adjust

camera frame rates with flow speed.

I conducted the first experiment in this project in a 2-mm-thick, single-layer

experiment, with flow driven by passing current through BZ over an array of mag-

nets, patterned as in chapter 3 for the small length scale vortex flow (fig. 3.5(b)).

As such, I will call this the single-layer vortex experiment. The vessel has lateral

dimensions of 230 × 330 mm, and I avoid the vessel edges by imaging only the

central 150 × 200 mm. The magnet spacing is L = 25.4 mm and produces

flows with Reynolds numbers 0 ≤ Re ≤ 350, where Re = UL/ν. Throughout the

experiments U is the measured root-mean-square velocity. The Reynolds num-

ber compares inertial forces to viscous forces, and in this apparatus I observe a

transition from steady flow to time-dependence at Re ∼ 100.

Jinge Wang and Rony Colon built the second experiment where they attempted

to replicate the results of the first experiment, but in the open flow past a bluff
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Figure 5.1: Schematic of the channel flow experiment, viewed from above. In the drive

section to the left a cross-stream current density J (indicated by red arrows) in the presence

of a downward magnetic field B produced by nearby permanent magnets, causes Lorentz forces

in the x-direction. Reaction is measured in the wake behind a bluff body, located far from the

drive section and far from channel ends. Work of Jinge Wang published in [99].

body. This experiment will be referred to as the open flow experiment. This

apparatus (shown in fig. 5.1) is a 640 mm long and 139 mm wide channel filled to

a 4 mm depth with a single-layer of BZ. In this situation electric curent is passed

through the BZ in the spanwise direction (−ŷ), in the prescence of a downward

(−ẑ) magnetic field B, so a Lorentz force drives fluid in the streamwise direction

(x̂). The magnetic field is provided by large rectangular ceramic magnets of size

152 mm × 102 mm × 12.7 mm. Current is only applied in the area with magnetic

field, so a unidirectional flow is obtained. This unidirectional flow using electro-

magnetic forcing is — as Jack Ryan [116] would say — “a magnetohydrodynamic

drive, or caterpillar”. Jinge placed a triangular bluff body (equilateral, with side

length L = 45 mm and height greater than the fluid depth) downstream from the

forcing and symmetric with the channel center line. This creates a recirculating

wake. Boundary layers on the leading edges of the triangle separate at the sharp

corners, resulting in a pair of vortices behind the bluff body, as is common in

wakes. The triangular shape was chosen, so a wake could form with flow speeds

comparable to the v = 72 µm/s of BZ. Jinge took high resolution data on one

experiment with Re = 520.

In this chapter I will investigate the phenomenon shown in fig. 5.2, where I

observe that reacted regions primarily occupy vortex edges in low Reynolds num-
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ber flows, but occupy vortex centers for high Reynolds number flows in the single

layer vortex flow. In the vortex flow, this is comprised of two effects. First in sec-

tion 5.2, I will show that reaction fronts move towards vortex centers more quickly

as the Reynolds number increases, but passive scalar fronts do not. This explains

the ease with which reactions reach vortex cores in faster flows. In section 5.3

I find that advective stretching rates [55], related to the finite time Lyapunov

exponent (FTLE) [63], correlate with reaction state. The probability of a region

being reacted is highest for moderate stretching rates, whereas strong stretching

prevents the reaction and weak stretching does little to enhance reaction. Just as

a little wind boosts a fire, but a strong gust can extinguish it. Optimal stretching

is ubiquitous in our all experiments indicating that it is a flow effect that does

not depend on advection details. Since optimal stretching does not depend on

flow details, understanding it may explain a huge variety of phenomena in very

different systems. For example, regions of fast ocean flow may lack plankton be-

cause of strong stretching preventing reproduction, and segregation of species into

geographically distinct niches [27] may be explained by optimal stretching values

that differ between species. In section 5.4 I explore the probable causes of this

optimal stretching value through analysis of the front behaviors in experiments.

Finally section 5.5 considers the implications of these findings and possible future

directions.

5.2 Radial front growth enhancement

In the single-layer vortex flow I observe that reacted regions spend more time

near vortex edges in low-Re flows, but prefer vortex centers in high-Re flows,

as shown in fig. 5.2. Supposing a smooth transition between these two distinct

states, I would expect that reaction fronts move toward vortex centers with a

speed that increases with Re. Figure 5.3 sketches my algorithm for measuring
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Figure 5.2: Snapshots of ARD experiments with the BZ reaction. Arrows indicate the

measured flow velocity. In slow (Re = 19.8) flow, reacted regions persist near vortex edges, but

in fast (Re = 198) flow, reacted regions occupy vortex centers. Work of the author published in

[5].

that speed. In each reaction state image I average the brightness of all pixels

at a given radial distance from the center of the nearest vortex. The result is a

measurement of azimuthally-averaged brightness versus radius for each frame, and

I display many subsequent frames on space-time plots. Using the Laplacian of a

Gaussian edge finding method [117], I obtain the front location in each frame, and

find that the reacted region always moves to smaller radii eventually. To show that

the inward propagation of reacted regions is not trivially due to advection, Doug

Kelley simulated the motion of a passive scalar in the same flow. In the simulation,

he seeded the initially reacted region with tracers, then integrated the measured

velocity fields to determine their trajectories. As shown in fig. 5.3(d), he finds little

or no radial propagation of the passive scalar, consistent with an incompressible

flow, but differing starkly from reacting material. (Azimuthal speed increases

linearly with Re, as expected for passive tracers, or for reactions moving tangent to

flow [35, 37].) Thus propagation of reacted regions toward vortex centers depends

on coupling between reaction, diffusion, and advection, and cannot be explained

by advection alone.
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Figure 5.3: Propagation of reacted regions toward vortex centers. (a), A reacted region

entering a vortex at time t = 70 s. (b), The same vortex at t = 140 s, the bright reacted region

has propagated inward. (c), Space-time plot showing azimuthally-averaged brightness varying

with radial position r and time t, in the vortex shown in (a–b). The thick curve marks radial

front position, and its slope measures the inward propagation speed: 100 µm/s. Vertical lines

locate the snapshots in (a–b). Here Re = 9.3. (d), Space-time plot generated by simulating

a passive scalar in a vortex in a Re = 18.6 flow, with the edge and slope indicated as in (c).

Inward propagation speed of the passive region is nearly zero (in this experiment, 28 µm/s).

(a–c) Work of the author published in [5]. (d) Work of Douglas Kelley, published in [5].
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Figure 5.4: Speed toward vortex centers increases with Reynolds number for reaction fronts,

but not for a passive scalar. Work of the author published in [5].

With this algorithm I measure inward radial front speed at many different

flow speeds, and for all reacted vortices not triggered by impurities in the single

layer vortex flow, I obtain fig. 5.4. I find that reacted regions do indeed propagate

toward vortex centers more quickly as Re increases. The large variation in speed

at each value of Re is not an indication of measurement error, nor time-varying

advection, as all these experiments involve steady flow. Rather, it indicates varia-

tion in initial conditions: reacted regions first reach vortex edges at different times

and places for each vortex. Passive scalar fronts show negligible variation with

Re, again demonstrating that the propagation of reacted regions toward vortex

centers depends on coupling between reaction and advection.

This observation is not consistent with the Eikonal equation. After the initial

burn in of a reaction, where the front is wrapped around the vortex, a circular

front propagating inward is formed. The front normal direction becomes n̂ = −r̂.

The Eikonal equation then predicts that front speed in the −r̂ direction should

be v0 + (−r̂ · u). Since (−r̂ · u) ≈ 0, this means the Eikonal equation predicts

a constant inward radial speed with Re at 72 µm/s for the BZ reaction. This

speed is about a third the size of the speed measured in the fastest flows. The



137

curvature correction [41, 42] cannot fix this, since the radius at which curvature

can double front speed is r = 14 µm. My resolution is on the order of 100 µm/px,

so I could not be observing this. Also, flow is perpendicular to the front direction,

so the results about depth shear of chapter 4 do not apply. Changing radial speed

with increased flow is consistent with Ekman pumping [100], but Ekman pumping

would also appear in the simulations of passive fronts, because we used measured

flow fields for passive tracers. On top of this, we expect Ekman pumping to resist

inward propagating fronts, not support them. This observation is consistent with

prior predictions that by spreading reacted regions, advection lengthens fronts

and thereby drives diffusion, which supplies reactants more quickly and enhances

reaction [52–54], but this effect is beyond the Eikonal equation.

5.3 Observation of optimal stretching

If advection always enhanced reaction, I would expect reacted regions to persist

near vortex edges, where advection is fastest, especially for large values of Re. My

observations show otherwise (fig. 5.2). A transition occurs after which increased

advection no longer enhances reaction, and it is natural to expect the transition to

be governed by a quantifiable property of the flow. A property has been identified

before in a simplified model that qualitatively fits this behavior. Neufeld [53]

reduced a chaotic ARD system by considering the behavior of a single filament.

He developed a one-dimensional model whose single flow parameter was the strain

rate, which quantifies the rate at which regions of fluid are stretched by advection.

Through simulation, he found that the spatially-averaged reactant concentration

at large time was maximized at moderate strain rates. Larger strain rates blew out

the reaction, and smaller strain rates did little to enhance reaction. Specifically, in

Neufeld et al. [29] this behavior was identified as a saddle-node bifurcation, where

the filament stabalized at progressively thinner widths until the small width could
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not be maintained anymore at some critical strain rate. This model is limited,

because the strain rate was spatially uniform, and the analysis only covers global

reaction state in the steady state.

In more complex flow a reaction can travel through many strain rates through

time, and the reaction may experience different strains in different places. There-

fore, I would like a different flow quantity that is analogous to Neufeld’s strain

rate, but which quantifies strain that an element of a reaction has experienced

recently. That is, the quantity must be Lagrangian (so it tracks a reaction el-

ement), and it must consider a finite time interval. The quantity analogous to

strain rate which meets these criterion is the stretching S, which can vary in space

and time and can be measured in simulations and experiments. The stretching

is a dimensionless quantity defined as the square-root of the largest eigenvalue of

the right Cauchy-Green strain tensor [55], and is obtained from φ, the function

that maps each point x0 in the flow at time t to its location x at time t+ T .The

Cauchy-Green strain tensor CT (x) is given by [69]

(CT (x0))ij = (∇φT )ki (∇φT )kj , where

(∇φT )ij =
∂xi
∂x0,j

.

Which makes the stretching equal to

ST (x0, t) =
√

max eigenvalue (CT (x0)). (5.1)

Finite time Lyapunov exponents (FTLEs) commonly used for locating barri-

ers to scalar mixing are defined as [55, 62, 63] λ = T−1 logS1/2. In the results

described in this chapter, I consider S with T = −15 s, that is, the stretching

imposed by the prior 15 s of advection. A consistent stretch time is essential

so that in all experiments, the physical meaning of the stretch, as experienced

by the reaction, is maintained. The value T = −15 s corresponds to half an

eddy turnover time in the slowest flows measured, and proved long enough for
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qualitative convergence of S, which depends only weakly on T if T is sufficiently

large [67].

Recent numerical experiments have observed correlations between stretching

and reaction rate. In simulations of the double-gyre flow, a two-dimensional pre-

scribed model, the reaction rate was observed to be enhanced in regions of strong

stretching [32]. When two competing autocatalytic species were simulated in

double-gyre flow, it was observed that the one initiated in a region of stronger

stretching almost always dominated long-term [31]. Similarly, in simulations of

competing species in sine flow, another two-dimensional prescribed model, it was

observed that local FTLEs accurately predict long-term concentrations [8]. Ex-

periments have shown that the global averaged FTLE is correlated with global

reaction rate [79]. It seems a global correlation is well established, but local ef-

fects are not as clear, and should provide an explanation of where these global

correlations come from.

The chaotic advection I observe is not prescribed, but is produced physically

using the apparatuses described previously. Furthermore, I measure ongoing re-

action state at each location, not only long-term behavior or global behavior.

Nonetheless, the observed reaction state correlates with measured stretching, as

shown for single-layer vortex-flow in fig. 5.5 and for open flow in fig. 5.6. The cor-

relation changes with advection speed. For small values of Re, reacted regions lie

primarily along vortex edges and in narrow filaments where stretching is strongest,

consistent with simulations showing that stretching enhances reaction [8, 31, 32].

At large values of Re, however reacted regions are confined where S is weakest.

At moderate values of Re, reacted regions lie where stretching is moderate, away

from both the large-S corners and the small-S vortex cores. In all cases, reacted

regions lie where stretching has similar magnitude — an optimal range of S for en-

hancing reaction. Optimal stretching differs from the simulations of non-excitable

reactions [8, 31, 32], but is consistent with Neufeld’s simple model [29, 53].
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Figure 5.5: Observed reaction state and measured stretching S overlaid, for (a) Re = 35, (b)

Re = 74.9, (c) Re = 135, and (d) Re = 218. Reacted regions are shaded lighter. The typical

stretching in reacted regions is similar in all four experiments, but the range of stretching values

increases with Re. Color scales vary. Stretching is calculated on a 2.5 mm grid, below our

resolution but allowing sufficient data for stretching measurements at all grid points. Work of

the author published in [5].
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Figure 5.6: Observed reaction state and measured stretching S overlaid, for the open flow

experiment at Re = 586. Reacted regions are shaded lighter. The typical stretching in the

reacted regions is similar to those in fig. 5.5. Work of Jinge Wang published in [99].
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To quantify the relationship between stretching and reaction state, I calculate

S throughout the observation region at all times after an initial 15 s, and compare

the observed reaction state. As in fig. 5.5, regions are classified as reacted or

unreacted based on whether their brightness exceeds a chosen threshold. No

reacted regions smaller than 5.8 mm2 are considered. I calculate the reaction

probability by normalizing the number of reacted pixels with the given stretching

by the total number of points with the given stretching, giving p(reacted|S). These

probabilities estimate a binomial distribution’s probability parameter for each bin

of S, and as such I can calculate their error bars as being the reliability of this

estimator. The probabilities in three single-layer vortex flow experiments are

shown in fig. 5.7(a–c), and Jinge’s results in open flow are shown in fig. 5.8. Since

S is usually small [55], estimation errors are highest for large S. Our analysis

shows that for small values of Re, the probability of being reacted increases with

stretching. For larger values of Re, larger values of S become available, but the

probability there is low. This is the phenomenon I call blowout: regions with

stretching stronger than some blowout level Sb allow little or no reaction. Such

regions are visible in fig. 5.5(b–d). One striking example is shown in fig. 5.5c. In

that experiment, reaction was triggered in the bright vortex just left of the center

of the image, but did not spread further left because of a blowout barrier, instead

spreading right. I observe Sb ∼ 15 for BZ with T = −15 s in single-layer vortex

flow, and Jinge found an optimal range of 8 ≤ Sb ≤ 20 in open flow.

Further support for the idea of optimal stretching comes from fig. 5.7(d), where

I plot the average stretching 〈S〉 for reacted and unreacted regions. For large

values of Re, 〈S〉 is larger in unreacted regions; but for small values of Re, 〈S〉 is

larger in reacted regions. Reacted regions persist at highest available S for low Re

and at lowest available S for high Re. The transition between these two regimes

occurs around Re ∼ 70, and is not coincident with the transition to time-varying

advection at Re ∼ 100. Alongside the agreement with open flows, this strongly
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suggests that this reaction behavior is independent of flow details.

The rough agreement between the single-layer vortex flow and the open flow

is truly remarkable. These two systems exist at very different Reynolds numbers,

advective timescales, and have different geometries. The pattern even persists

between steady and unsteady fluid flows. Also, the single-layer vortex flows only

reached flow speeds up to 15 mm/s, while the open flow experiment studied by

Jinge was faster yet at 18 mm/s. Characteristic time scales in the vortex flow went

from 1.85 s to 11.5 s, while the open flow had a timescale of 2.4 s. Vortex flow had

a large number of stagnation points, and the open flow had only a handful in the

wake region. Shear is also much higher in the open flow, while vorticity is more

substantial in the vortex flow. In fact most global properties are substantially

different between the two experiments, but local ARD processes are not different.

The reaction kinetics have remained the same, and stretching is calculated at the

local level. Assuming stretching is the dominant advection parameter, one would

expect that regions of similar stretching would behave similarly regardless of the

global flow, and indeed fig. 5.7 and 5.8 support this idea. What’s more, in both

experiments the regions of S > Sb play a major role in reaction transport, because

reactions cannot cross these regions. Since the reaction cannot cross, these zones

may act as a kind of “blowout barrier”.

The results from the stretching dependence of the two experiments indicates

that local flow behavior is the dominant effect, but there are some important

caveats that should be discussed. First of all, I have treated all points in a domain

as being randomly able to be reacted, and uncorrelated to show the change in ratio

of reacted regions with stretching, but reaction growth is not random; reaction

could only happen in regions suitably near the reaction front.

Second, these experiments were conducted before the results of chapter 4 were

uncovered. As such Jinge and I did not use the two layer system which would more

accurately replicate the two-dimensional behavior we measure. Therefore it is not
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Figure 5.7: Dependence of reaction state on stretching in the single layer vortex flow. (a–c),

The probability p(reacted|S) that a region with a given stretching S will be reacted, at varying

Re. Because we plot no data point involving fewer than 100 measurements, the probabilities

plotted as zero are well-estimated by a probability of zero. We avoid transients by excluding

the first 15 s of each experiment. (d) Average stretching 〈S〉 in reacted and unreacted regions

over nine entire experiments, each at least 500 frames long, at varying Re, error bars are smaller

than the plot markers. For Re < 70, reacted regions have larger 〈S〉, but for Re > 70, unreacted

regions have larger 〈S〉. Flows with Re > 100 vary over time. Work of the author published

in [5].
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Figure 5.8: Dependence of the reaction state on stretching in the open flow experiment. No

data point involving fewer than 100 measurements is plotted. Measurements from the open flow

are similar to the single-layer vortex flow. Work of Jinge Wang published in [99].

clear how the depth shear effect will matter. This could be problematic, because

strain in the vertical dimension is quite strong, but high vertical straining is

correlated with high horizontal straining in these flows. Therefore, the most likely

effect of vertical straining is to change the apparent critical stretching, because the

vertical straining helps stretch out the reaction. The qualitative behavior should

not change though.

Third, the results of Neufeld [53] show that the bifurcation happens when

instantaneous strain passes a critical value. Stretching meanwhile has a finite

time T over which it is calculated, during which it could be thought of as “adding

up” the strain rates experienced by a fluid element. The problem with this can be

seen by noting that Neufeld built his simulation with the flow near a hyperbolic

point, for which I calculated the stretching analytically to be

ST (x0, t) = e|T |γ (5.2)

where γ is the uniform strain near the hyperbolic point. Now note that no matter

the time allowed, Neufeld observed that γ < γc never went extinct while contin-

ually getting longer. What this means is that if I were to repeat my analysis on

Neufeld’s simulation, I would find that my critical stretching would depend on
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the T I chose (Sb = e|T |γc). A different researcher using a larger T would find

reaction still present with ST ′ > Sb. Sb is not just dependent on the chemistry the

way γc is. I have avoided this problem by fixing a constant T , but it does indi-

cate that the true effect driving optimal stretching is an instantaneous effect that

needs a certain amount of time to take full effect. As such, deeper mathematical

investigation is needed to obtain a better flow quantity.

To handle each of these problems, a deeper understanding of why stretching

should matter in the first place is necessary. Previously I have mentioned that

Neufeld observed a critical strain rate which caused a transition from a steady

reaction filament to extinction, and that stretching could be used as an analogue

in more complex systems. It is not clear that squeezing a filament in this manner

is the only reason for optimal stretching, and the filament transition does not

provide an obvious reason moderate stretching helps a reaction. In the next

section, I attempt to put optimal stretching on a more firm theoretical ground by

considering three effects that emerge from the spatial derivatives of flow.

5.4 Understanding optimal stretching

To use optimal stretching for prediction or control of ARD systems, it would be

useful to have a theoretical understanding of what happens in a stretched reaction

that both helps and hurts reaction growth. Our experiments so far indicate that

stretching plays a major role. On an intuitive level, this is because stretching

relates to diffusion. Stretching relates to how much an initially circular region

would be deformed by the fluid flow around it. Thus a large stretching maps

a circle to a new shape with a large major axis. In an incompressible flow any

material region advected by the flow cannot increase in area due the flow being

divergenceless. Since a circle (or sphere in 3D) is the smallest perimeter that can

enclose a given area, stretching increases perimeter. This increases availability of
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reactants for the reaction, but also increases dilution of catalyst. The blowout can

then be understood as when the dilution — via diffusion — outpaces reaction.

While this is a useful qualitative picture, it is not a rigorous explanation of

why the Eikonal equation is no longer useful. Put another way: what happens

to a reaction front that causes the effect of diffusion to increase, especially to the

point where diffusion can reduce concentration below threshold, causing blowout?

Understanding the dominant effect behind optimal stretching may someday enable

the prediction of the blowout value in any system without having to conduct

an experiment. Then from that value, an accurate prediction of the optimal

stretching region that will contain most of the reaction growth.

To understand optimal stretching more deeply, notice that perfectly uniform

flow cannot have any effect on the total reaction occuring due to Galilean invari-

ance. That is to say, u cannot change a reaction, but its derivatives in space and

time could. Stretching is linked with the spatial derivatives, so we should consider

the different ways that the flow gradient tensor, ∇u could interact with a reac-

tion’s growth. This flow gradient tensor can be decomposed into the symmetric

and antisymmetric components,

∇iuj = Sij +
1

2
Rij

where the symmetric part Sij is the strain-rate tensor, and twice the antisymmetric

part is the rotation-rate tensor Rij. I will show that the antisymmetric part has no

effect on total reaction growth besides displacing the reaction. I will also examine

how the symmetric part boosts reaction by both changing reaction geometry,

changing the 1D profile of the front, and pulling the reaction into filaments.

5.4.1 Strain-rate drives perimeter change

The first effect of a flow gradient is to change reacted region perimeter. This is

a unique effect, because it can change the global reaction rate, without changing
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the chemical front speed. To understand why, consider an initial reacted region

with a front curve, R, and area A. Within the Eikonal equation, the growth of

this reacted region would be

dA

dt
=

˛
R

w · n̂ dR

=

˛
R

(u · n̂) dR +

˛
R

(vn̂ · n̂) dR

=

ˆ
A

∇ · u dR + v

˛
R

dR

= vP.

where P is the perimeter, and n̂ is the unit normal to the front. Here using in-

compressibility I have eliminated the flow component, then shown that the growth

is identical to front perimeter times the front speed, assuming the front does not

collide with itself. The perimeter P of a material line R in 2D ARD systems

changes according to:
dP

dt
=

˛
R

rirjSij dR. (5.3)

Here the ri and rj are unit tangent vectors written in Einstein notation. This

extends the textbook equation for change in a infinitesmal material line to a

finite, closed material line. When fronts are not self-intersecting and have zero

front speed, this equation is exact. This result shows that faster global reaction

(as given by growth of a total reaction area) does not imply a faster chemical front

speed. It also indicates why strain-rate — and by extension stretching — would

support reaction growth. A larger perimeter has more access to fresh reactant.

This is shown by an increase in P leading to an increase in A. The question still

remains though: How might front speed be changed by flow gradient?

5.4.2 Strain-rate modifies reaction front profile

Perimeter change is the simplest of possible flow effects on reaction growth, be-

cause it holds as an effect even if chemical front speed v is constant. The second
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and third effects of the flow gradient can change v. Consider the one dimension-

alization of the reaction diffusion equation in chapter 2. Taking into account the

overall front shape in a second and third dimension just provides the curvature

effect [41]. I could solve the 1D equation and obtain a front profile that moved at

a constant speed. To disrupt the constant front speed, flow must do something

to invalidate this solution. One way to do this is for the front to modify the 1D

reaction profile of the front, because this alters how catalyst spreads. Flow gra-

dient provides a forcing that changes this profile. To see how flow modifies front

profile, consider the equation for the reaction gradient as it is advected, which can

be obtained by taking the gradient of eq. 3.1

∂gi
∂t

+ (∇iuj)gj + uj∇jgi = D∇2gi + αgi
dG(c)

dc
. (5.4)

where gi = ∇ic is the gradient of the reaction field. Now notice that the terms

on the right come from diffusion and reaction, so they would create the stagnant

profile without flow. The third term is an advection term, but now the quantity

being advected is the gradient field. Only the second term here will change the

chemical gradient differently away from the stagnant front profile. The second

term acts as though the flow gradient squeezes or stretches the front causing the

front gradient to get steeper or flatter. This changes how much space is required to

go from reacted to unreacted, or in other words, this changes the front thickness.

Since the dynamics of the reaction along the one dimensional cross section lose

all information about direction, we really care about what happens to the front

gradient’s magnitude. Using the fact that d|x|/dt = x̂ · dx/dt and substituting

eq. 5.4, I can write the gradient of the front over time as

∂|g|
∂t

= ĝi [− (∇iuj) gj + (. . .)]

where I have gathered all the terms not of interest at the right. Now consider

just the rotation-rate tensor portion of the flow gradient tensor. This term would
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appear in the above equation as

∂|g|
∂t

= − 1

2|g|
(giRijgj) + (. . .)

but this rotation-rate term is always zero because the rotation-rate tensor is anti-

symmetric. Therefore, I expect that rotation has no effect on front thickness, but

does have an effect on the front angle. Once again I am left with strain-rate as

the only term which could affect front growth.

To see that rotation rate has no effect both on reaction perimeter and front

profile, see simulation results in fig. 5.9. These show that as rotation rate is

increased, there is no corresponding change in global average reaction state. In

this simulation I simulate a strain-less vortex with rotation-rate constant Ω where

u = Ω (−yx̂ + xŷ) . (5.5)

using the full ARD equation with an Oregonator driven reaction (eq. 2.16), with

Eulerian time stepping and central differencing. An initially reacted circular re-

gion slightly offset from the center of the vortex turns in space counterclockwise,

but continues to grow outward at the same speed as if it were not moving at

all. This is interesting, because this is a case where the system is not a Galilean

transformation away from stagnant front growth, but it still acts as though it is.

Strain rate on the other hand can change the magnitude of the reaction front

profile. To study its effects, I performed simulations of a reaction growing in a

uniform strain,

u = γ (−xx̂ + yŷ) (5.6)

where γ is the strain rate. By making the initial condition an infinite vertical strip

of reacted region, the system becomes independent of y at all times. This matches

how stretching tends to elongate initial reacted regions into filaments which are

much narrower than they are long, especially reactions in areas like the ones

providing blowout in my experiments. This setup was originally used by Neufeld
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Figure 5.9: Results of simulations of the Oregonator growing in a strainless vortex. Top row

(a–d) is snapshots from the highest rotation rate data. I find that to within numeric imprecision

of the simulation, the global amount of reaction product is independent of the strength of

rotation (e). This can also be seen by the constant time it takes to double reaction product with

Ω (f). Unpublished work of the author.
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[53]. By simulating this 1D cross section, I can reproduce the dynamics of a real

2D filament. For the Oregonator this has governing equation,

∂c1

∂t
− γx∂c1

∂x
= D

∂2c

∂x2
+ α

[
c1(1− c1)− c1 − q

q + c1

fc2

]
(5.7)

∂c1

∂t
− γx∂c1

∂x
= D

∂2c

∂x2
+ αε [c1 − c2] (5.8)

where c1 and c2 are the activator and inhibitor species of the Oregonator model

respectively, and q = 9× 10−5, ε = 0.01, and f = 3 which are constants to match

the experiment. This can then be nondimensionalized as

∂c1

∂t̃
− x̃∂c1

∂x̃
=
∂2c

∂x̃2
+ DaI

[
c1(1− c1)− c1 − q

q + c1

fc2

]
(5.9)

∂c1

∂t̃
− x̃∂c1

∂x̃
=
∂2c

∂x̃2
+ DaIε [c1 − c2] (5.10)

where I have taken t̃ = γt and x̃ = x
√
γ/D. In this system, strain controls

DaI = α/γ.

I simulated the dimensionless ARD equation (eq. 5.9) using Euler’s method in

time, and a central differencing scheme in space at various values of DaI = α/γ.

Time stepping in the simulation is determined based on the input spatial resolu-

tion squared times 0.15 to provide some simulation stability. Half filaments are

simulated to shorten computation time, because the system is symmetric across

the y axis. I have observed that numeric dispersion and diffusion are reduced us-

ing these methods, but that they are still present. The effect is negligible far from

a critical DaI = DaIc. At this critical value the filament transitions from a stable

solution to blowout which I will investigate in more detail below. Simulations

near this critical point take a very long time to reach their final state, allowing

the nonlinear reaction term to grow the numeric dispersion effects. In a given

numeric test, I choose an initial condition in dimensional units before convert-

ing it to dimensionless units. All the information about concentrations and flow

fields are available to me in this simulation, so detailed investigations of transient

behaviors are possible.
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Reactions in the simulations have a front normal of g = −gx̂, and a constant

strain rate tensor with diagonal elements equal to ±γ. Therefore the flow gradient

effects from eq. 5.4 on the gradient is

∂|g|
∂t

= |g|γ + [(. . .)] . (5.11)

The front profile will be steepened by the straining flow. In fig. 5.10 I show

simulations of a reaction filament where a large reacted region exists at the start

along with an Eikonal front initiated at the same starting position. I find that

while the two look qualitatively similar (up to blowout), the actual measurement

of front speed (at c1 = 0.5) is very different than the expected constant front speed.

This speed difference occurs for any DaI. However, as strain rate increases, so

does the deviation away from the stagnant front speed.

The two simulations in fig. 5.10 are identical in the starting dimensional profile.

I have also simulated front profiles that are steeper or more gradual in the DaI =

2.1 case. I found that the gradual profile started with front speed greater than v0,

and the steep profile started with front speed less than v0. Both quickly converged

to the same asymptotic front speed as shown. From this it is clear front profile is

closely linked with front speed. BZ has diffusion time much longer than reaction

time, so a steep front limits the available area for reaction and slows the front.

Wide fronts expand this area, and the front moves faster. In this situation the flow

is converging, so it steepens and slows fronts. If I allow the front any orientation

in 2D, then g = (|g| cos θ, |g| sin θ). θ is the angle the gradient makes with the

direction of converging flow (in this case the x axis), then the flow gradient changes

according to,
∂|g|
∂t

= γg(cos2 θ − sin2 θ) + [(. . .)] . (5.12)

The minus sign on the sine term here means that fronts tend to get more gradual

along the diverging direction (my y axis). Thus I expect that while fronts pointed

in a converging flow direction will steepen, those in an expanding direction will
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Figure 5.10: Comparison of full ARD and Eikonal equation in the uniform strain situation.

(a) Vertical lines with diamonds indicate Eikonal approximation, and curves indicate the ARD

result in a DaI = 0.5 situation which eventually blows out. Qualitatively the agreement looks

good, but actual calculation of front speed (b) shows significant deviation between the speed

of an Eikonal front and the true front speed. The front speed deviation is also present in a

DaI = 2.1 simulation, which reaches a nonzero steady state. Blowout transition is shown by a

sudden negative spike of front speed. Unpublished work of the author.
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widen.

Strain-rate causing a change in front profile does not by itself indicate that

shear is changing front speed. In fig. 5.11 I plot a number of simulations that

are eventually stable with 1.5 ≤ DaI ≤ 3, and all initiated to match the same

dimensional condition. I measure chemical front speed at a threshold of 50%

reacted, just as it would be measured in experiments. Front thickness — as

defined in chapter 2 — is also measured to provide quantification of the gradient.

Front speed and thickness are not constant with strain, but take some finite time to

converge to a new stable point. The interesting result occurs when the front speed

is plotted versus the thickness. The speed at any given time is linearly related

to the thickness at that time. These numerical results indicate the equation for

front speed, v, given its thickness, τ , is v = 1.1(s−1)τ −5.4(µm/s). The plots only

deviate from this speed when the filament gets thin enough for boundary effects

to matter. Notice that fronts that have very different DaI can have the same front

speed if their front thickness is equivalent. The agreement shows that it is not

flow detail that changes front speed, but flow detail changes front profile, which

in turn changes front speed.

This result has large potential importance in the dynamic modeling of reaction

fronts. Firstly, this shows that fluid flow can change chemical front speed, and

that a mechanism for this change is strain-rate altering reaction front thickness.

Second, strain is normally assumed to be negligible to derive the Eikonal equation

in flow [43], but these results indicate a way to model some of strain’s effects. For

instance, this could be done by having chemical speed change in the system by

Mitchell and Mahoney [44] as,

v = Aτ +B, (5.13)

where A and B are empirical constants which model how a given reaction front’s

velocity changes due thickness. These constants likely depend on specific chem-

istry. There remains a problem in predicting reaction front growth from the fluid
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Figure 5.11: Trends of front speed and front thickness in uniform strain simulations at

DaI from 1.5 to 3. (a) Starting from the stagnant profile, strain causes the fronts to narrow,

with stronger strain resulting in thinner fronts. (b) Similarly, stronger strain results in slower

front speeds. (c) Plotting front speed versus thickness shows a collapse onto a single line of

v = 1.1(s−1)τ − 5.4(µm/s) for all DaI. Unpublished work of the author.
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flow. So far I have only found the reaction growth from the reaction front thick-

ness. The equation that controls τ is still needed. These results indicate that such

a dynamic equation will depend on strain-rate, but not rotation-rate. Here I also

have not explicitly tested shear rate, which also appears in the strain-rate tensor,

so future work is required to understand if it behaves differently. Eq. 5.12 gives a

calculation for the gradient in this flow, but this is not the whole story, because

diffusion and reaction (which is nonlinear) also matter, and much more complex

strain fields may be possible. Fronts in flows are typically advected such that the

strain they experience is always changing, so steady situations like this serve only

as a simplified problem. Therefore it would be interesting for future researchers

to determine a dynamical equation for how τ is changed in an arbitrary straining

flow over time, and test a time dependent strain. If this could be done, the Eikonal

equation could be expanded to greater accuracy in faster mixing flows with only

a small increase in the simulation complexity.

In the following section I will investigate how strain rate also alters the usual

solution to the one dimensional profile by changing the boundary conditions.

Specifically, strain can pull an initial reacted region into a thin filament, where

the distance across the filament is thin enough that the reaction no longer reaches

fully reacted and strain sweeps away growth due to diffusion faster than it can be

replenished leading to the blowout transition.

5.4.3 Straining reaction into thin filaments drives reaction

blowout

The third and final effect of flow gradient emerges, because I don’t always have the

reaction being reacted out to infinity on one side, and unreacted to infinity on the

other. Which is to say, the boundary conditions can change. In real situations, a

reaction could be spatially isolated, or a reacted region could encounter another
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reacted region. I will focus on an isolated regions and note that since the boundary

has changed, the 1D solution can change, and therefore front speed can change.

Fluid flow is capable of compressing a region into a thin filament to bring

these boundary effects into play, as shown in the simulations by Neufeld [53].

Due to flow incompressibility, any elongation must be accompanied by this com-

pression, so the front elongation in section 5.4.1 is not without cost. During

perimeter elongation, the compressed direction gets smaller, and reaction prod-

uct always diffuses outward to reduce the concentration of the filament. This is

related to KiSS theory for the minimum habitat-size problem in phytoplankton

populations [18, 24, 25, 52]. Kierstead and Slobodkin [24], Skellam [25] observed

that if an initial patch of plankton growing linearly without limit is constrained by

some habitat of lateral size l outside which the plankton immediately disappear,

then if l < lc = π
√
D/α the population tends to zero at infinite time. Martin

[18] expanded this idea for when the plankton are stretched by a straining flow.

In flow plankton outside the initial zone are swept away faster than those at the

center, so that the population growth along the 1D profile must compete with

the straining flow. In this case, the population trended to zero at infinite time

if strain rate exceeds reaction rate, γ > α. Strain which pulls reacted regions

into filaments can cause extinction if the strain is able to outcompete reaction

production.

The problem with this theoretical development is that in my experiments I

have neither infinite time or infinite space to stretch the filament. In a closed flow

domain, flow cannot remove a reaction product, only relocate it. A reaction of

first, second, or third order, or any reaction where the unreacted state is unstable,

will take infinite time to reduce to zero, so the reaction filament will expand outside

the stretching zone before extinction. Since neither advection, nor diffusion, nor

reaction can decrease global reaction product in an enclosed volume, the global

total reaction product cannot decrease. Blowout would be impossible. But a
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dish of BZ with a small reacted region stirred vigorously enough will return to

unreacted nonetheless. This indicates that BZ must have a stable unreacted state

and a threshold reaction level above which the reaction grows to fully reacted, and

below which the reaction returns to unreacted. Other types of reaction with this

quality include other excitable reactions like BZ, bistable reactions, combustion

reactions (where often the catalyst’s role is played by temperature), and more. In

the case of BZ, this threshold is very slightly above the unreacted stable state 1.2,

but it is present. Since the unreacted state is stable, the reaction term of the

ARD equation can decrease global concentration. This tiny threshold allows BZ

to go through blowout even though it is contained in a dish, and in finite time, so

that I can measure it.

To investigate the relevance of the filament model of reaction blowout to my

experiments, I repeated the simulations of Neufeld [53]. These are the same simu-

lations as shown for strain rate in section 5.4.2, but now I will look for the critical

strain γc and characterize the behavior of filaments which have γ > γc to deter-

mine what stretching level should lead to reaction blowout. For these situations I

use the same simulation methods, but find that the physical dimensionless initial

conditions are usually too large to simulate well. Thus I treat D = 1 unit of

diffusion distance squared per second. Thus the results are dimensional, but no

longer mm. With BZ’s diffusivity this works out to about 1 diffusion unit = 31.6

µm. That this is much smaller should not matter since strain quickly shrinks any

reacted region anyways.

In fig. 5.12 I show simulations at various times to demonstrate the effect.

Straining flow is inward from the right, so the concentration is pushed left over

time. If DaI < DaIc (in other words, γ > γc) then we have the situation in

fig. 5.12a. The maximum reaction intensity drops below the reaction threshold

in a finite amount of time. Even though the filament is getting longer, the entire

filament will die out since it is zero across the width, this is what I call blowout.
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Figure 5.12: Results of two simulations of the Oregonator growing in a hyperbolic strain in

1D. Both simulations start with the same initial condition in dimensional units, but experience

different strain. In (a) DaIc > DaI = 0.3 so the reaction undergoes blowout in a finite time of

about 3.25 s. In (b) DaIc < DaI = 1.7 so the reaction stabalizes. Insets provide a closer look at

the time behavior near the origin. Unpublished work of the author.

If DaI > DaIc (or γ < γc) the solution is stable as in fig. 5.12b, and therefore the

reaction filament will grow over time, because it reaches a stable state that does

not get thinner while it keeps getting longer.

According to KiSS theory a linear reaction is blown out by γ > α [18, 52].

The growth rate of the Oregonator F1(c1, c2) can be shown to be always less than

a linear reaction with the same reaction rate, α. Therefore, the Oregonator can’t

have DaIc < 1, since that would imply the Oregonator resisted strain flow better

than linear. Fig. 5.13(a) shows the trends of Oregonator reaction filaments with

DaI by showing the reaction level at x = 0 over time. At a certain DaIc this

maximum reaction state switches from being stable over time to decaying to zero,
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indicating reaction blowout. From these simulations, I estimate that DaIc ≈ 1,

or γc = α. The apparent resilience of the Oregonator to strain is very different

from the behavior of the Fitz-Hugh Nagumo studied in Neufeld [53], which had

a higher DaIc. This may be because the Oregonator is approximately second

order, while Fitz-Hugh Nagumo is third order, and so the Oregonator is stronger

near the threshold. That I can identify a transition between optimal stretching

and blowout in this filament model based on strain is good evidence that this

is the process I am seeing in the experiments when I compare reaction state to

stretching. Even better evidence is the fact that if I assume the depth shear is

the dominant source of strain-rate in these experiments, then I get γ = α = 1.3

1/s when I experiment at Re = 41. This is of the same order of magnitude as

results of fig. 5.7(d). Higher strain rates may be required in experiments due to

the presence of layer boundaries which the reaction can’t diffuse through.

Fig. 5.13(b) shows a problem with using stretching to predict blowout. From

the experiments I expect that reaction filaments will blow out when they reach

some specific Sb. From eq. 5.2 the time being stretched and γ uniquely determine

stretching S, so I expect that the time to blowout should change such that as γ

increases the blowout time decreases, so the product stays constant. Therefore,

I have proven that in this simple situation there is no single critical stretching

Sb, but there is a critical strain γc, which causes blowout after some time. The

constant stretching time used in experiments however would lead to an apparent

critical stretching, where all γ > γ∗ > γc are strong enough to blow out the

reaction in less than the stretching time T . Therefore Sb is a good half measure:

it tracks the Lagrangian strain effects which do result in blowout, and it has a

quantifiable transition that depends only on the reaction, not the flow structure,

but the actual value of Sb is dependent on user choice of T . So stretching is not

the whole story to explain blowout, but it is a reasonable way to estimate blowout

locations, and is very close to the flow quantity that is truly most relevant.
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Figure 5.13: Plots of simulation results near DaIc. (a) Each color is a different DaI, showing

the trends of the maximum reaction over time. This shows a sudden switch at DaIc ≈ 1. (b)

Time it takes to reach the KiSS radius l = π
√
D/α times γ is not constant as expected if a

specific S is needed to cause blowout. Unpublished work of the author.
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An open question then is: how could a researcher develop a better Lagrangian

quantity which could track blowout more accurately, without an arbitrary stretch-

ing time? According to Martin [18] time behavior of linear reactions will go

roughly as exp (t(α− γ)). Thus a system with strain below α could have an in-

finitely high stretching with enough time, and yet be below the critical strain.

Therefore any improvement to optimal stretching should incorporate the reaction

rate constant α.

While these simulations are very simple, being only 1D and in uniform flow

they are powerful. Because they are 1D, they focus on the local behavior of

the reaction, which is universal for reactive mixing. A 1D profile can always

be drawn from a reaction level surface. Growth of a reaction front perimeter

is due to strain-rate, so reactions are often spread through filaments. An inital

reaction is stretched in filaments which are then folded over each other until

they are close enough to interact. However, as strain is increased the narrow

dimension of the filament loses front speed. This may be because our reaction is

diffusion limited, and therefore the front thickness determines the chemical front

speed. A more complex system modeling the development of front thickness τ

is required, but nonetheless, a modification of the Eikonal equation should be

possible to account for this effect. The strained front which moves slower than

normal is more easily squeezed into a thin filament and it can then blow out if

the strain rate exceeds the reaction rate. Since this can all be developed from

a local picture of a reaction front, this could happen in any ARD system. All

three effects are rooted in the interaction of reaction, diffusion, and strain-rate

over a finite period of time (stretching). Therefore these are the causes of optimal

stretching I observed across different experimental setups. A little stretching helps

growth through an increase in perimeter and boosted front speed along spreading

directions, but larger stretching slows the front speed in the compressed direction

until the filament grows thin enough that the front dies due to diffusive losses
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faster than reaction can replenish.

5.5 Summary and Implications

I have observed that reacted regions primarily occupy vortex edges for small values

of Re, but primarily occupy vortex cores for large values of Re. I found that as

Re increases, reaction fronts move more quickly toward vortex cores. This is

consistent with ideas about flow enhancing reaction growth by enhancing access

to reactant. I then focused on the disappearance of reaction from vortex edges,

and explained this with stretching of material volumes, specifically that for the

BZ, there exists an optimal range of S for enhancing reaction. Just as a flame

grows in moderate winds but is blown out by high winds, moderate stretching

promotes reaction by supplying fresh reactants, but strong stretching inhibits

excitable reactions by diluting catalyst. To determine the root of this I performed

a series of analytic and numerical results to study different ways the flow gradient

tensor could influence the growth of a reaction. Perimeter growth due to strain-

rate drives enhancements to reaction growth, which causes moderate stretching

to help reaction growth more than small stretching. Front thickness is modified

by strain-rate, but not rotation-rate, and front thickness in turn directly modifies

reaction front speed. Finally, I examined how reaction compression into filaments

is causing the blowout effect, and made predictions about how much straining is

needed to cause blowout.

Though the regions of strong stretching, where S > SB, account for only a

small fraction of the total observation region, they make large regions inaccessi-

ble to the reaction by blocking its spread. In large-Re flows, I observe that the

reaction is often limited to a few vortices near the trigger point. A barrier region

with S > SB forms across several vortex cells, and may even surround a few vor-

tices. In small-Re flows, however the barriers are missing, and the initial reaction
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spreads throughout. Blowout could therefore represent a new and important type

of barrier to reactive mixing, in addition to the barriers predicted by theories of

burning invariant manifolds (BIMs) and burning Lagrangian Coherent Structures

(bLCS) recently developed by Mitchell, Mahoney, and Solomon [44, 46, 49–51].

Both BIMs and bLCS are calculated using a constant reaction front speed and the

flow u. Those quantities alone are sufficient for locating barriers arising from in-

teractions between front speed and advection speed — roughly, where front speed

is matched or exceeded by headwinds. Their power and simplicity are elegant.

However, stagnant front speed is the only information about chemical kinetics

encoded in BIMs and bLCS; the excitation threshold is absent. Thus blowout

would represent a new sort of barrier.

Blowout barriers likely occur in natural and industrial ARD systems outside

the laboratory. For example, phytoplankton blooms may be blown out by fast

ocean currents, and blowout regions may form barriers that segment the ocean.

While plankton blooms depend on many conditions, they have been shown to

be well-modeled as excitable ARD systems [22, 23] and are therefore likely to

experience blowout. Blowout may play a role in forming the dynamical niches re-

cently observed [27] to promote phytoplankton diversity in Earth’s oceans. Flames

in many kinds of combustion are known to experience extinction under high

strain [107]. These results open up the possibility of a simplified model of re-

action extinction, which need not rely on empirical testing. Stretching is present

in all of these situations, and the mechanisms I have outlined combine to cause op-

timal stretching which appears to be a very important property of these chemical

systems independent of the flow details.

Based on the analysis in section 5.4, it is clear that strain-rate of a flow is im-

portant to the growth of a chemical reaction. Since it takes some finite amount of

time for this strain rate to have an effect, and in experiments the reaction is swept

along by the flow, Lagrangian stretching is a reasonable quantity to understand
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eventual structures of a reactive scalar. The strain rate a reaction experiences may

vary as it is carried, so determining how to measure a more relevant Lagrangian

stretching for reactions, and determining front profile dependence on strain-rate

remain open questions. Time dependence of the strain-rate can be especially

noticeable when flows become unsteady, and vortices start to combine. Under-

standing all of these effects will be key to understanding reactions in turbulent

systems. The results of section 5.4 also indicate that a key feature of blowout in

real systems is the presence of an excitation threshold, above which the reaction

takes a long excursion through phase space, but below which the system quickly

returns to equilibrium. The thresholding of the reaction enables blowout to hap-

pen in a finite time, and at local positions. Higher stretching is correlated with

increasing perimeter of a reacted region, but because stretching makes thinner

structures diffusion can deplete the bulk below the threshold. With too much

thinning and dilution, the excitable threshold is crossed in reverse, and blowout

occurs. Determining how critical strain relates to critical stretching still requires

some work in both theory and experiment, but once blowout is well understood

in one system, it will apply in general because it is not a function of flow details.

Understanding optimal stretching may someday allow researchers to predict likely

reaction structures from only reaction kinetics, regardless of flow details.
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6 Conclusion

Research into advection-reaction-diffusion (ARD) systems has a long history and

a large body of existing literature, enough to fill several books [2, 7, 52, 118].

But number of results does not indicate how well a field is studied; number of

remaining questions does. Prediction of a reactive mixing system tends to involve

expensive direct numerical simulations [8, 31, 32, 38], which can be difficult to

interpret. Control of ARD systems is an even farther goal, because these direct

simulations have not provided insight into the dominant effects on the reaction.

Even assuming that the flow is given and unaffected by product concentration,

intuition about the transient dynamics of an ARD system remains elusive. In this

thesis I have attempted to enable simplified modeling methods for ARD systems.

For a simplified model to be useful it must (1) be simpler than the full system,

(2) provide insight about what is most important to the problem, and (3) provide

accurate predictions of real world behavior.

In chapters 2 thru 4 I specifically investigated a reduced dimensional modeling.

This reduced dimensional modeling is given by replacing the full partial differen-

tial ARD equation with an ordinary differential equation, known as the Eikonal

equation [41, 43, 44]. The Eikonal equation models a field of reaction state un-

dergoing diffusion, nonlinear reaction, and advection (which is in general infinite

dimensional) as a material line with an outward growth term (using motion in
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only 3 dimensions: 2 space, 1 orientation). In this way, the Eikonal equation

is clearly simpler, and it provides insight about reactions in flows. The Eikonal

equation assumes that all regions are irrelevant except for a small transition region

known as the front, and even within that region the reaction and diffusion terms

act separately from the advection. This leads to a constant front velocity which

is then added to the local flow speed to get the overall dynamics of the reaction

front. In this model the primary effect of advection is to carry the reaction around

and change its shape.

What the Eikonal equation was lacking was a test of its accuracy in real world

situations. In particular, measurements which could compare a real experiment

to the Eikonal equation were necessary. Interestingly, since front speed does not

appear in the ARD equation anywhere, direct simulations of ARD systems also

lack a way to easily measure local chemical front speed, so even in simulations

local front speed is not measured. In chapter 2, I began developing the methods

to measure a local front speed, by first working without advection. To measure

front speed, only the perpendicular direction matters, because tangent to the

front is along the level curve. In 1D without flow, the ARD equation has known

solutions for second and third order reactions [2, 39]. These solutions indicate

that there are only two parameters needed to describe the front: front speed and

thickness. These two parameters describe the system well enough that measuring

front speed and thickness can be used to back out reaction rate and diffusion. I

showed that automated computer measurements of front speed and thickness were

possible by use of image thresholding to find reaction fronts, and the combination

of curve fitting and interpolation to find chemical speed and thickness. Front

speed and thickness measurements using this algorithm matched expected values

in simulations and experiments, and the diffusion and reaction rates backed out

also matched expected values.

In chapter 3, I expanded this method to flows. An initial front is advected
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forward using a measured flow field before the algorithm of chapter 2 was applied.

This works off the assumption that the original front’s material line is going to be

carried to a new position by the fluid flow. In this way, the front tracking with

flow mimics the behavior of the Eikonal equation, except that it measures chemical

speed instead of assuming that it is constant. A measurement of constant chemical

reaction speed with flow speed then indicates an agreement with the Eikonal

equation. The method showed good agreement with simulations, indicating that

it works as intended. However, the Eikonal equation did not have good agreement

with experiments, instead showing that as flow speed increased so did front speed.

This trend occured at all values of Re, so they could not be avoided by restricting

experiments to some parameter range.

In chapter 4, I identified why the experiments in chapter 3 disagreed with the

Eikonal equation. Getting a good understanding of real world systems through

simulation or experiment does not just require good analysis, it also requires good

simulation or experiment. The problems experienced in chapter 3 are due to my

experimental setup. While flow velocity is well modeled as quasi-2D in thin layer

flows, this is partly because flow is tracked by tracer particles at the layer surface.

Reactions on the other hand must be depth averaged to measure in a quasi-2D

situation. This wouldn’t matter if the reaction field were independent of depth.

Shear within the reaction layer ensures that this is not the case, and the difference

between the apparent front location and the surface advection yields an apparent

chemical speed far above the usual chemical speed. I studied the dependency

of apparent chemical speed on flow profile for three different experiment types:

single-layer magnetohydrodynamically driven, Hele-Shaw, and two-layer magne-

tohydrodynamically driven. Simulations assuming the Eikonal equation was true

in unidirectional flow revealed that the front shape in each case converges to

a final shape which moves at the same speed as the leading edge of the layer.

Even though these simulations were very simple, and relied only on the Eikonal
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equation, they matched very closely with experimental results as long as the flow

experienced by the reaction was treated as the flow component along the front

normal (u · n̂). The two-layer system which drastically lowers depth shear also

drastically lowered the apparent front speed. Apparent front profile thickness was

also found to vary with flow speed due to depth shear, but I have not investigated

this in detail.

Based on these three results I was able to conclude that the Eikonal equation

could provide a reasonable model of reactions growing in fluid flows, that the al-

gorithm we designed for tracking reaction fronts was working, and that typical

quasi-2D reactive mixing experiments were subject to depth shear and therefore

should be done using a two-layer system. However, there remained some phenom-

ena that still went beyond the Eikonal equation.

In chapter 5 I investigated these optimal stretching phenomena which were

ubiquitous, being present in a variety of flows, and which could be related to be-

haviors like quenching in combustion [107], and extinction of plankton [19, 23].

In my experiments I observed that the Belousov-Zhabotinsky reaction tended to

gather at vortex edges in low Re flows, and at vortex cores in high Re flows. In

fact, it avoided reaction edges so much in fast Re flows that the vortex edges

became reaction barriers. I was able to identify the cause of these behaviors as

being a combination of an enhanced inward radial speed in faster fluid flows,

and the optimal stretching for reaction growth. Optimal stretching meant that

small stretching did help the reaction grow, but a stretching that was too high

led to reaction blowout, which the Eikonal equation could not predict. The opti-

mal stretching range was independent of the flow, so in faster flows the optimal

stretching sat in the vortex cores, while in slow flows it was on vortex edges.

The same optimal stretching value appeared when Jinge studied the completely

different flow, the wake of a bluff body [99]. This all indicates that the optimal

stretching is a property of the chemical reaction, and it will be the same for the
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reaction in any setting. While previous authors had identified optimal flow for

global reaction growth [53, 107] the identification of the Lagrangian stretching field

had never been used to identify the same optimal flow at a local level. Optimal

stretching appears to serve as a way to simplify reactive mixing systems, which

accurately reproduces experimental observations. Estimating the stretching gives

a good feel for whether or not a reaction will blwout. Since understanding how

stretching changed reaction growth, I conducted an analytic and numerical anal-

ysis of reactions exposed to different flow gradients. Stretching is the Lagrangian

finite time analogue of the instantaneous flow gradient, so it acts as the combined

effect of all flow gradients.

I characterized three possible flow gradient effects. The first is that any ma-

terial surface in a flow changes shape according to the strain-rate experienced.

This causes reactions to grow globally faster than they would without flow, since

the global reacted region growth is approximately vP . Even if v is constant, P

need not be. The second effect changes v, because strain rate can alter the usual

1D solution by adding an extra effect that changes reaction front shape. I found

that in simulations the reaction front speed was linearly related to the thickness

of a reaction front. This reveals a possible modification to the Eikonal equation:

allowing v to change in a way that relates to the current front thickness, and then

allowing that thickness to change as a function of strain-rate. Finally, I showed

that the results of KiSS theory [18, 24, 25] which predict that if strain-rate exceeds

reaction-rate, then for linear chemical reactions a filament will be stretched until

it reaches 0 concentration, applied reasonably well to blowout in the Oregonator.

Since the Oregonator is everywhere a slower reaction than a linear reaction, the

linear approximation serves as an upper bound for γc. In simulations I demon-

strated that the transition from a stable filament solution to a blown out solution

did happen at around γ = γc. When I estimated what Reynolds number first has

a strain rate exceeding γc, I found it a little below the observed transition from
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high stretching being reacted to low stretching regions. While blowout happens in

infinite time for reactions without a threshold, for the Oregonator it happens in

a finite time, which is why blowout has such a big effect on the eventual reaction

field. This blowout transition will be entirely chemical dependent, and it may

serve to quickly explain the transient structure of reaction fields when mixed.

6.1 Future Directions

These results all serve to help understand the growth of ARD systems through a

dynamical systems perspective. I can now measure the growth of reacted regions,

study how flow modifies the stagnant behavior of a reaction front, and calculate

the importance of strain-rate and stretching to ARD systems. The biggest value

provided by this thesis however is the work that it enables in the future. Both in

terms of the next basic science steps to develop these ideas, and also in terms of

the application of these results to important problems beyond the lab.

Front tracking is largely complete in its formulation. There could be slight im-

provements to time stepping methods, less arbitrary thresholding, three-dimensional

systems, or advancements to track more of the reaction field’s information, but

each of these would be an incremental improvement over its current state. It would

be more interesting to see if other researchers could expand the simple ideas of

front tracking to tracking regions besides reactive scalar concentration regions.

The goal would be to quantify how a bounding region moves over time, but that

region could be any volume that undergoes a sudden transition from one state

to another. This more general problem of “edge tracking” exists for a variety of

systems, each requiring their own theory. Numerous opportunities exist for study

in this area, from the dynamics of cloud formation, motion of interfaces due to

surface tension, quantifing growth or shrinkage of flow structures like coherent

vorticies, or tracking phase transitions to name a few.
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The research on depth shear in quasi-2D reactive mixing experiments was in-

tended to enable future research in reactive mixing. While predictions are easier

in 2D and ARD systems such as phytoplankton in the ocean can be modeled as

2D ARD systems [18, 19, 22], depth shear means that experiments are rarely com-

parable. For all the difficulty posed by a quasi-2D experiment, a 3D experiment

is even more challenging. With the understanding that depth shear is the cause

of the discrepancy, I hope that future experiments will find ways to suppress the

shear further and replicate 2D ARD dynamics more accurately. The first step is

to develop experimental proceedures that reduce depth shear even farther than

the reduction I achieved with a two-layer system. For example by tuning the vis-

cosity [110]. On the subject of improving reactive mixing experiments, it would

also be good to find new chemical reactions that can be worked with. BZ has

the benefit of being very colorful, but its complex kinetics can make it difficult to

isolate the causes of different behaviors in experiments. It might also be interest-

ing to think about modifying the Eikonal equation to account for the depth shear

effect and see if it better predicts one layer experiments.

Optimal stretching was helpful for understanding my results, but an improved

measure is needed. This is because optimal stretching treats strain-rate and time

as interchangeable. If more strain rate is needed, the same result can be obtained

by increasing time. The finite-time-Lyapunov exponent — which is the logarithm

of stretching divided by the stretching time — may be part of the answer, but

it remains unclear if this is the only problem. For now, Lagrangian stretching

with a fixed stretching time serves the purpose of predicting reaction structures.

Another big open problem in optimal stretching is a method for accurately mea-

suring a blowout level Sb. Conceivably, since blowout appears regardless of flow

structure, being able to measure blowout level in a lab should provide valuable

information on reactions outside the lab. Theory could also be developed on the

reaction kinetics dependence of blowout. For instance, how does γc depend on
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q which determines the threshold, ε which sets the strength of interaction with

the inhibitor, or even why different order reaction terms behave differently? For

that matter how does the blowout time tb depend on those things? Combined,

measuring Sb in experiments and determining its relationship to reaction kinetics

could allow enhanced prediction capabilities and someday even control capabili-

ties. For instance, blowout barriers may serve as a major organizer of reaction

state in turbulent flows, but predicting where these barriers would be is tricky

unless Sb can be predicted from the kinetics, or measured in a lab.

Finally the big remaining basic science questions from this thesis is what will

happen when the results are combined. If an experiment is run in a two-layer

system, the reaction will experience strain-rate similar to that measured through

particle tracking velocimetry. Such a system is driven more easily into unsteady

or turbulent flow too, so I would be able to further probe the applicability of these

results to turbulence. I could reasonably expect the fronts to be more 2D, and I

could therefore use front tracking to measure the various strain-rate effects I have

identified. In such an experiment there is no guarantee I would not see even more

new behavior, but at the least I could better test the ideas I have presented.

Applications for front tracking are numerous. Even ignoring “edge tracking”,

it can already be used to track the movement of any scalar edge. What this means

is it provides new information about reactive mixing systems with important

applications such as fires, phytoplankton blooms, and stirred chemical reactions.

More importantly, the new information matches the information that we are most

interested in: Where is the fire? How fast is it advancing? What’s the effect of the

wind? By knowing how reaction front speed is changed by different environmental

situations, we could enable a real time prediction of how a flame will grow, or a

plankton bloom will travel. Within industrial mixing, front tracking provides an

easily digestible diagnostic tool for how well a chemical reaction is growing. If

it takes a long time for a chemical reaction front to encapsulate an entire vat,
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then the mixing is not good. By measuring a reaction front speed and location

throughout time, industry can track what they care most about in their mixers.

With these applications in mind, I would suggest one of the next steps would be

to try front tracking some of these different systems, such as phytoplankton in

the ocean, or a flame. In fact, I have recently worked on a collaborative project

in Plog et al. [119], in which front tracking was used to quantify the inflow of

cerebrospinal fluid into the brains of mice. The results of front tracking helped

to show that hypertonic saline or mannitol could cause an influx of cerebrospinal

fluid. From this the paper was able to conclude that these chemicals could possibly

enable drug delivery into the brain through the cerebrospinal fluid.

Optimal stretching may have practical impacts of its own in all these areas as

well. Understanding that strain-rate is the next most dominant effect on global re-

action caused by mixing was very useful for me in my research, because it provided

an intuition about what a reaction was going to do before doing any experiments.

In terms of the growth of phytoplankton in the ocean, it is possible that each phy-

toplankton species has a different optimal stretching, due to differences in predator

avoidance, nutritional needs, and reproduction rates. If different species have dif-

ferent optimal stretching ranges, that means each is best suited to the area of the

ocean at that stretching. This means stretching could be selecting the species in

a given area of the ocean. Optimal stretching may be the cause of “the paradox

of the plankton” [28], but measurements of stretching and plankton in the ocean

would be required to confirm this. Optimal stretching regions for wildfires due to

wind could be important to track in order to better predict the motion of fires.

Since I have shown strain-rate is the primary reason reactions grow faster in flows,

the three different strain rate effects should be carefully considered in the design

of reaction mixers. It may be interesting to study how to get a given reaction to

take place more quickly without increasing the total flow kinetic energy input to

the mixer. Industrial mixers have a huge number of possible variables from the
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complexity of the machinery, the driving mechanism, the spacing of mixing, and

so on, so having an understanding of what promotes reaction mixing may prove

invaluable.

Between the simplified modeling enabled by front tracking, the results sur-

rounding strain-rate, and optimal stretching, the results of this thesis enable nu-

merous future projects within the study of ARD. These results serve as a way to

understand the evolution of ARD systems, and front tracking in particular may

be a useful tool for analyzing reaction dynamics. In the future these methods

may ease the difficulties of predicting ARD systems, even in turbulence. From

there even control may be reachable. Questions like: “How can I mix these reac-

tions with the least possible energy input?”, or “How fast is the combustion front

moving in this motor?”, or even “Why are the plankton here different than over

there?” show that there is still much to study. Studying these ARD problems

through the lens of dynamical systems will bring new insights, answers, and even

more questions.
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[108] H. Sevčiková and M. Marek, Physica D: Nonlinear Phenomena 9, 140 (1983).

[109] R. Feeney, S. L. Schmidt, and P. Ortoleva, Physica D: Nonlinear Phenomena

2, 536 (1981).

[110] B. Suri, J. Tithof, R. Mitchell, R. O. Grigoriev, and M. F. Schatz, Phys.

Fluids 26, 053601 (2014).

[111] A. Figueroa, F. Demiaux, S. Cuevas, and E. Ramos, Journal of Fluid Me-

chanics 641, 245 (2009).

[112] F. V. Dolzhanskii, V. A. Krymov, and D. Y. Manin, Journal of Fluid

Mechanics 241, 705 (1992).

[113] J. Sharif, M. Abid, and P. D. Ronney, in 1st Joint US Sections Combustion

Institute Meeting (1999) p. 4.

[114] A. von Kameke, F. Huhn, A. P. Muuzuri, and V. Prez-Muuzuri, Phys. Rev.

Lett. 110 (2013), 10.1103/PhysRevLett.110.088302.

http://dx.doi.org/10.1137/S0036144599364296
http://dx.doi.org/10.1016/j.physrep.2003.08.001
http://dx.doi.org/10.1016/S0294-1449(01)00068-3
http://dx.doi.org/10.1016/S0294-1449(01)00068-3
http://dx.doi.org/ 10.1103/PhysRevE.64.046307
http://dx.doi.org/ 10.1103/PhysRevE.64.046307
http://dx.doi.org/10.1103/PhysRevE.96.053109
http://dx.doi.org/10.1016/j.combustflame.2013.05.009
http://dx.doi.org/10.1016/0167-2789(83)90296-8
http://dx.doi.org/10.1016/0167-2789(81)90027-0
http://dx.doi.org/10.1016/0167-2789(81)90027-0
http://dx.doi.org/ 10.1063/1.4873417
http://dx.doi.org/ 10.1063/1.4873417
http://dx.doi.org/ 10.1017/S0022112009991868
http://dx.doi.org/ 10.1017/S0022112009991868
http://dx.doi.org/10.1017/S0022112092002209
http://dx.doi.org/10.1017/S0022112092002209
http://dx.doi.org/10.1103/PhysRevLett.110.088302
http://dx.doi.org/10.1103/PhysRevLett.110.088302


186

[115] A. von Kameke, F. Huhn, G. Fernndez-Garca, A. P. Muuzuri, and V. Prez-

Muuzuri, Phys. Rev. E 81 (2010), 10.1103/PhysRevE.81.066211.

[116] Clancy, Tom, The Hunt for Red October (Naval Institute Press, 1984).

[117] J. R. Parker, Algorithms for Image Processing and Computer Vision (Wiley,

Hoboken, US, 2010).

[118] P. Pelce, Dynamics of Curved Fronts (Elsevier, 2012).

[119] B. A. Plog, H. Mestre, G. E. Olveda, A. M. Sweeney, H. M. Kenney, A. Cove,

K. Y. Dholakia, J. Tithof, T. D. Nevins, I. Lundgaard, T. Du, D. H. Kelley,

and M. Nedergaard, JCI Insight 3 (2018), 10.1172/jci.insight.120922.

http://dx.doi.org/10.1103/PhysRevE.81.066211
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10469865
http://dx.doi.org/10.1172/jci.insight.120922

	Biographical Sketch
	Acknowledgments
	Abstract
	Contributors and Funding Sources
	List of Tables
	List of Figures
	Introduction
	Motivation
	Context
	Fluid Dynamics
	Reaction Dynamics
	Experimental Methods
	Thesis Overview

	Front Tracking Method for Quantifying Reaction-Diffusion
	Introduction
	Relating Thickness and Speed to Diffusivity and Reaction Rate
	Front Tracking
	Tracking Fronts in Validation Data
	Tracking Fronts in Simulation Data
	Tracking Fronts in Experimental Data
	Summary and Future Work
	Acknowledgments

	Front Tracking Including Advection
	Introduction
	 Separating Flow Velocity from Chemical Velocity
	 Front Tracking Algorithm
	 Tracking Fronts in Simulation Data
	 Experimental Advection-Reaction-Diffusion Devices
	 Tracking Fronts in Experimental Data
	 Summary and Future Work
	Acknowledgments

	Vertical shear alteration of chemical front speed in thin-layer flows
	Introduction
	Simulations of Single-Layer System
	Simulations of Hele-Shaw System
	Simulations of Two-Layer System
	Experimental Apparatus
	Experimental Results
	Conclusions
	Acknowledgements

	Optimal Stretching and Blowout in Excitable Reactions
	Introduction
	Radial front growth enhancement
	Observation of optimal stretching
	Understanding optimal stretching
	Summary and Implications
	Acknowledgements

	Conclusion
	Future Directions

	Bibliography

