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Metabolic wastes may be cleared from the brain by the flow of interstitial
fluid (ISF) through extracellular spaces in the parenchyma, as proposed in
the glymphatic model. Owing to the difficulty of obtaining experimental
measurements, fluid-dynamic models are employed to better understand
parenchymal flow. Here we use an analytical solution for Darcy flow in a
porous medium with line sources (representing penetrating arterioles) and
line sinks (representing ascending venules) to model the flow and calculate
the hydraulic resistance as a function of parenchymal permeability and ISF
viscosity for various arrangements of the vessels. We calculate how the
resistance varies with experimentally determined arrangements of arterioles
and venules in mouse and primate brains. Based on experimental measure-
ments of the relative numbers of arterioles and venules and their spacing, we
propose idealized configurations for mouse and primate brains, consisting of
regularly repeating patterns of arterioles and venules with even spacing.
We explore how the number of vessels, vessel density, arteriole-to-venule
ratio, and arteriole and venule distribution affect the hydraulic resistance.
Quantifying how the geometry affects the resistance of brain parenchyma
could help future modelling efforts characterize and predict brain waste
clearance, with relevance to diseases such as Alzheimer’s and Parkinson’s.
1. Introduction
Increasing evidence supports the idea that a ‘glymphatic system’ in the brain func-
tions similarly to the lymphatic system in peripheral tissue, clearing waste and
distributing nutrients via fluid transport. Abnormal function of this system has
been linked to disorders including hypertension, atherosclerosis, stroke and
Alzheimer’s disease [1–4]. However,much remains unknown about the glympha-
tic system, inhibiting the development of interventions that could rehabilitate or
compensate for abnormal glymphatic function. Models of fluid flow and solute
transport in the glymphatic system can illustrate how its function changes
between wakefulness and sleep or between good health and disease [5].
Models can focus and guide experimental efforts by revealing which features of
the system are most important to measure accurately. Once validated, a model
can be used to predict the effects of various interventions. The usefulness of a
model is, of course, limited by its accuracy; therefore, the development of accurate
models with appropriate uncertainty bounds is essential. The present study
focuses on modelling one important but understudied part of the glymphatic
system: the flow from perivascular spaces (PVSs) surrounding penetrating arter-
ioles to the PVSs surrounding ascending venules through the brain parenchyma.
The results of this study can be directly incorporated into models of glymphatic
flow and transport.

The glymphaticmodel posits that cerebrospinal fluid enters the brain via PVSs
surrounding arterioles and exits the brain via PVSs surrounding venules and/or
nerve sheaths [6]. Though PVSs may extend continuously from arterioles to veins
via capillaries [7], most studies have focused on the idea that fluid escapes PVSs
surrounding arterioles and passes through the extracellular space in brain par-
enchyma before being taken up at the PVSs around venules [8–14]. Though the
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speed of interstitial flow through the parenchyma and the
importance of its role in metabolic waste clearance is an open
question, increasing evidence supports the idea that interstitial
flow may be important for transport of large molecules [9,15].
Some prior works have drawn conclusions about the speed
and importance of interstitial flows based on estimates of the
hydraulic resistance in the parenchyma. Holter et al. [8] mod-
elled parenchymal flow as that from a single line source
(arteriole) to a single line sink (venule). Because the parench-
yma is punctuated by an array of sources and sinks, the
dipole configuration is a simplification that deserves further
examination. Ray et al. [9] used a computational approach to
model flow in three dimensions between rows of evenly
spaced arterioles and venules. Real configurations of arterioles
and venules do not have even spacing, and therefore a study of
the impact of uneven spacing on the predicted flow would be
instructive. Vinje et al. [10] used a computational approach to
model two-dimensional parenchymal flow in an array of
sources and sinks, the locations of which were based on exper-
imental data obtained in primate brains [16]. Making those
simulations comparable to the many measurements made in
the mouse cortex requires significant adjustment, however.
Beyond brain size and vessel spacing, the vessel ratio also dif-
fers: in the primate cortex, there are approximately two sources
(penetrating arterioles) for each sink (ascending venule),
whereas in the rodent cortex, there is approximately one
source for every three sinks. Accurately modelling hydraulic
resistance in the parenchyma is central to the question of the
role of interstitial flow in clearance of metabolic waste, which
have implications for pathological conditions such as Alzhei-
mer’s disease.

Here we model parenchymal flow as a two-dimensional
flow in a porous medium owing to an array of parallel line
sources (representing PVSs around arterioles) and line sinks
(representing PVSs around venules), for which there is an
analytical solution. We show that realistic arrays of sources
and sinks result in considerably different flow patterns, driving
pressures and hydraulic resistances than those for a simple
dipole configuration. We first examine how the relative spa-
cing, distribution, and vessel ratio impact the resistance of
idealized configurations. We then calculate flows and resist-
ances for vessel arrangements measured ex vivo in primate
and mouse brains. We show how normal physiological vari-
ations (inter-species, inter-subject and intra-subject) affect the
hydraulic resistance of the parenchyma.
2. Methods
2.1. Analytical solution for the flow
We model the flow of interstitial fluid (ISF) in the parenchyma as
a two-dimensional viscous flow in a porous medium from line
sources (representing PVSs around penetrating arterioles) to
line sinks (representing PVSs around ascending venules). Line
sources and sinks provide an appropriate approximation because
the spacing between arteriole and venule PVSs is large compared
to their diameters (approx. 3.92 times larger for mice and 4.43
times larger for primates). We use Cartesian coordinates with
the z-direction parallel to all line sources and sinks, and therefore
approximately perpendicular to the surface of the brain cortex.
We denote the two-dimensional location of source (or sink) j as
(xj, yj). The volume flow rate per unit length emanating from
source j (or entering sink j) is qj. Given a collection of sources
and sinks, we determine the pressure and (superficial) fluid
velocity by solving Darcy’s equation and the continuity equation.
Details of the analytical solution are given in appendix B.

When fluid flows along a pathway from an inlet to an outlet
in a two-dimensional domain, the hydraulic resistance of that
pathway is Δp/q, where Δp is the pressure drop from inlet to
outlet and q is the volume flow rate (per unit vessel length).
Brain parenchyma contains many arterioles and venules, so if
they are all acting as inlets and outlets, a more useful quantity
is the average two-dimensional hydraulic resistance:

R ¼ �part � �pven
q

, ð2:1Þ

where �part and �pven are average values of the arteriole and
venule PVS pressures, respectively, and q is the total volume
flow rate per unit length. Because the solutions given in appen-
dix B treat arteriole and venule PVSs as line sources and sinks
of zero diameter, the pressure diverges at each. To compensate,
we calculate �part using the pressure at the edge of each arteriole,
a distance rart from the centre, then averaging over all arterioles,
where rart is the radius of the penetrating arteriole. Likewise, we
calculate �pven using the pressure at the edge of each venule, a dis-
tance rven from the centre, then averaging over all venules, where
rven is the radius of the penetrating venule. Changing the angular
location of the point on the edge of the vessel where we calculate
the pressure changes the resistance by less than 1%. Changing
the size of the radius by 10% changes Rart less than 3% for the
mice data or 3.5% for the primate data. If we assume that each
arteriole PVS emits fluid at the same rate, then qj = q/na = q/Sj,
where na is the number of arterioles and Sj = na if the jth element
is an arteriole. Likewise, if we assume each venule PVS receives
fluid at the same rate qj =−q/nv =−q/Sj, where nv is the number
of venules and Sj =−nv if the jth element is a venule. Using these
expressions and the one for pressure from appendix B, q can be
cancelled out so that the average two-dimensional hydraulic
resistance is no longer a function of the flow rate and becomes

R ¼ m

4pk

XJ
j¼1

Xna
a¼1

1
na � Sj ln

ðx0 � xjÞ2 þ ðy0 � yjÞ2
ðxa þ rart � xjÞ2 þ ðya � yjÞ2

 

�
Xnv
v¼1

1
nv � Sj ln

ðx0 � xjÞ2 þ ðy0 � yjÞ2
ðxv þ rven � xjÞ2 þ ðyv � yjÞ2

!
: ð2:2Þ

R scales with 1/na because all of the arterioles are in parallel.
In other words, R is an extensive measure of hydraulic resistance,
in that it depends on the domain size (or equivalently, na). R
also depends on the viscosity μ of the flowing fluid and the per-
meability κ of the porous tissue between arterioles and venules.
It is useful to define a dimensionless resistance Rart that is inde-
pendent of domain size (intensive) and material properties (μ
and κ), determined only by the anatomical arrangement of
arterioles and venules:

Rart ¼ Rna
k

m
: ð2:3Þ

We shall report calculated values of the dimensionless hydraulic
resistance Rart throughout the remainder of this paper.
2.2. Boundary conditions
The solution described above satisfies the boundary condition that
velocity goes to zero at infinity. We can instead consider a finite
domain whose boundaries either are impenetrable or are locations
of zero pressure, and an expression for Rart is given, for both of
those cases, in appendix C. However, setting p = 0 at the edge of
an arbitrary domain within the brain parenchyma excludes the
possibility of brain-wide pressure gradients and is therefore
unrealistic. Similarly, asserting that arbitrary boundaries within
the parenchyma are impenetrable excludes the possibility of flow
there and is unrealistic. Moreover, impenetrable boundary
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Figure 1. Locations of penetrating arterioles (red) and venules (blue) in the parenchyma of four mice, provided by Blinder et al. [17,18] (see appendix A). The
gridded cross-sections parallel to the x–y plane indicate the range of the depths where we use the arteriole and venule locations to model parenchymal flow. We
exclude depths of less than 150 μm in order to eliminate pial vasculature. We eliminate depths deeper than the point where the vessel density is less than 20% of
its maximum, owing to uncertainty in the imaging. (The exclusion depth for mouse 1 and 4 is 900 μm and for mice 2 and 3 is 1100 μm.)
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Figure 2. Pressure field and streamlines for an arrangement of arterioles and venules measured in mouse brains [17,18]. Each cross-section is located at a depth of
200 μm into the cortex. Streamlines are represented as white curves, the pressure field is indicated by a grey scale shading, arterioles are in red and venules are in
blue. Flow is directed from arterioles (higher pressure) to venules (lower pressure).
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conditions tend to impose global pressure gradients inadvertently.
Thus, the most physiologically relevant boundary condition is the
one in which velocity goes to zero at infinity, and unless otherwise
noted, all subsequent discussion will consider that boundary con-
dition. As implied by equation (2.1), hydraulic resistance depends
only on pressure differences, so the absolute pressure is irrelevant.
That said, we measure all pressures relative to the pressure at an
arbitrary point (x0, y0), as described in appendix B.
500 mm 

Figure 3. Pressure field and streamlines for an arrangement of arterioles and
venules measured in a primate brain [16]. As in figure 2, pressure is rep-
resented as a grey scale, streamlines are represented as white curves,
arterioles are red and venules are blue. Pressure is higher around clusters
2.3. The arrangement of arterioles and venules
Characterizing parenchymal resistance using equation (2.2)
requires specifying the location of each source and sink. We con-
sider arrangements based on ex vivomeasurements of mouse and
primate brains. For the mouse brain, we use rart = 5.5 μm and rven-
= 4.5 μm [17] and the configurations of the penetrating vessels in
the vibrissa primary sensory cortex of four mice [17,18], shown in
figure 1. The locations where the vessels intersect cross-sections
parallel to the cortical surface are obtained as described in appen-
dix A. For the primate brain, we use rart = 17.8 μm, rven = 23.1 μm
and the configuration shown in fig. 3 of Adams et al. [16].
of arterioles and lower in regions without arterioles.
3. Results
3.1. Ex vivo data
Figure 2 shows examples of the velocity and pressure fields
we calculate according to vessel locations in the mouse
cortex. The corresponding dimensionless resistances are
Rart ¼ 0:961, 1:224, 1:090 and 1:165. Figure 3 shows the vel-
ocity and pressure fields for an arrangement of arterioles
and venules based on data from a primate; the corresponding
dimensionless resistance is Rart = 1.669.
3.2. Idealized arrangements
Having calculated Rart for vessel arrangements measured ex
vivo, we wondered if parenchymal resistance might be accu-
rately modelled by repeating, simple arrangements of
arterioles and venules. Figure 4 shows two such arrangements,
accounting for the fact that primates and mice have different
vessel ratios. Both arrangements are simpler than ex vivo
vessel arrangements, starting with the fact that the distance
from any vessel to its nearest neighbour is uniform, which
reduces the dimensionless resistance. In the primate-like



(a)
(b)

Figure 4. Idealized arrangements for primates (a) and mice (b). Primates
typically have approximately two arterioles for each venule, as in this hexa-
gonal lattice. Mice typically have approximately one arteriole for every three
venules, as in this triangular lattice. In both idealized configurations all
vessels are equidistant from their nearest neighbours.
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arrangement, each venule is surrounded by arterioles, and in
the mouse-like arrangement, each arteriole is surrounded by
venules. Regular arrangements allow us to quantify how
anatomical properties like the number of vessels in the array,
vessel density, vessel ratio and vessel arrangement affect the
dimensionless resistance.
3.3. Effect of domain size on resistance
The first anatomical propertywevary is the numberof vessels in
the idealized arrangement, or equivalently, the domain size.
Figure 5 shows how the dimensionless resistance is affected,
with vessel density kept constant, for three different arrange-
ments. In all three, Rart approaches a constant value as the
vessel count becomes large. That convergence is consistent
with the fact thatRart, unlikeR, does not scalewithna (equations
(2.2) and (2.3)). We attribute the variation in Rart at small na to
boundary effects. The converged value of Rart in general
depends on the chosen boundary conditions (zero flow at
infinity, impermeable boundaries, or zero-pressure boundaries).
The converged value varies by 32% among different boun-
dary conditions for the primate data and by 10% for the
mouse data. In the special case of a square arrangement, how-
ever, Rart converges to the same value (within 1:8� 10�6%)
for all three boundary conditions. Parenchymal flow has
previously been modelled as flow from a single line source
to a single line sink [8]. For the boundary condition with
zero flow at infinity, this dipole configuration results in a
dimensionless resistance Rart that is 28% higher than that for
the square arrangement.

If a single value ofRart is to be used when modelling flow
in the parenchyma, that value should be determined from a
domain size large enough to ensure good convergence. As
figure 5 shows, the value of na required for convergence
depends on both the boundary conditions and the vessel
arrangement. Below, we shall assert that the domain is
large enough if Rart differs by less than 1% from its value
for an array with 10 times as many vessels.
3.4. Effect of vessel density on resistance
The second anatomical property we vary is the vessel density:
we change the vessel spacing while holding the aspect ratio
of the domain and the vessel ratio constant. Rart decreases
with increasing density, as figure 6 shows. The relationship
between vessel density and Rart scales similarly for different
configurations. We fit the equation

Rart ¼ a ln 1� b
r1=2

� �
, ð3:1Þ

to the resistances calculated with equation (2.3), where a and
b are fit constants, and ρ is the vessel density (number of
vessels per unit area). The form of the fit equation is derived
from equation (2.3). The fit captures the relationship between
Rart and ρ quite well and shows that Rart scales with density
for a regular arrangement of vessels. For the primate ideal-
ized configuration, a = 0.5578, b =−2.536 × 104, and the
coefficient of determination is 0.9988; for the mouse idealized
configuration a = 0.2204, b =−1.402 × 105, and the coefficient
of determination is 0.9999. The differences in resistance
between the idealized mouse configuration the idealized
primate configuration arise from differences in the arrange-
ments, including a difference in vessel ratio, as discussed
further in the following section, and vessel diameter.
3.5. Effect of vessel ratio on resistance
The third anatomical property we vary is the vessel ratio.
Prior models of parenchymal flow have approximated the
resistance between even numbers of arterioles and venules
[8,9]. However, images of the parenchyma suggest that
neither mice nor primates have a 1–1 vessel ratio; primates
have a ratio of approximately two arterioles to one venule
[16], whereas the ratio for mice is approximately one arteriole
to three venules [17]. We explore the effect of the vessel ratio
by calculating Rart for idealized arrangements with different
vessel ratios in a small unit cell, as shown in figure 7. It is not
obvious how to tile each of these arrangements, so we only
look at a single cell. Because the domains are small, Rart is
not well converged, but its variation among arrangements
nonetheless illustrates the dependence on vessel ratio. An
array with one arteriole and one venule and inter-vessel spa-
cing of 230 μm has Rart = 0.78. A triangular array which
consists of two arterioles and one venule with the same
vessel-to-vessel spacing as the 1–1 ratio has Rart = 1.14, 46%
greater than the 1–1 arrangement. Part of this difference
can be explained by the different number of arterioles,
since Rart is multiplied by the number of arterioles, but
Rκ/μ is also different (0.78 in the 1–1 arrangement
versus 0.57 in the 2–1 arrangement). We can also compare
the resistance for one arteriole and three venules with the
same vessel-vessel spacing; in this case Rart = 0.47, 40% less
than the 1–1 ratio. Other configurations with different ratios
but the same vessel–vessel spacing (2–2, 3–1, 4–2, 5–2 (A),
and 5–2 (B)) all have larger resistances than the 1 : 1
configuration. Clearly, the vessel ratio significantly impacts
the hydraulic resistance, and the difference in vessel ratio
between species should be considered when modelling
parenchymal flow.

Figure 7 also shows that Rart can differ among arrange-
ments with the same vessel ratio. The 2–2 arrangement has
the same ratio as the 1–1 arrangement, but the resistance dif-
fers: Rart = 0.66 compared to Rart = 0.78. Similarly, the 4–2
arrangement has the same ratio as the 2-1 arrangement but
different Rart (1.07 compared to 1.14). Arrangements 5-2(A)
and 5-2(B) have the same vessel ratio and greater differences
in Rart (1.24 compared to 1.78). Arrangement 5.2(B) has
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greater resistance because the typical arteriole-to-venule dis-
tance is larger. Generally, Rart depends not only on vessel
ratio but also on vessel–vessel distances.
3.6. Effect of vessel arrangement on resistance
Because Rart varies with vessel–vessel distance, and real
vessels are not arranged on perfect lattices, it is of interest
to examine how Rart would vary if we keep the average
vessel–vessel distance unchanged but vary the locations of
individual vessels. First, we calculate the resistance of a
random arrangement. We place 130 arterioles and 50 venules
randomly over a 11.16 μm2 region; this is approximately the
same ratio and exactly the same domain size as the primate
data shown in figure 3. (The ratio is 131 to 50 in the primate
data.) Figure 8 shows the statistical distribution of resistances
for 10 000 different random vessel arrangements (labelled as
‘random random’). Placing vessels at random results in a
larger Rart than that of the idealized primate arrangement.
Because we have primate data for only a single cross section,
we cannot construct a statistical distribution, but we can sup-
pose that the arrangement of arterioles and venules is related
to the demand for oxygen and therefore more evenly mixed
than the random case, leading to a lower resistance. Blinder
et al. find this to be true in the mouse brain [17].

Next, we consider an arrangement with more structure:
we create a hexagonal lattice of 180 vessels and randomly
assign vessels as either arterioles or venules (‘hex random’
in figure 8). This produces a similar Rart distribution to that
of the ‘random random’ arrangement, suggesting that
uniform vessel spacing does not make an appreciable differ-
ence if vessels are assigned as arterioles or venules randomly.
While the spacing between all vessels is uniform, the spacing
between arterioles and venules is not uniform; clusters of
arterioles or venules can exist, an arrangement unlikely to
occur in physiological cases.
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We also consider a hexagonal arrangement for which we
assign vessels as arterioles or venules in a pseudorandom
fashion (‘hex pseudorandom’ in figure 8). In each group of
18 adjacent vessels, we randomly assign five to be venules
and 13 to be arterioles. This strategy places each arteriole
closer to a venule, on average, than the ‘hex random’ arrange-
ment, making Rart typically lower in the ‘hex random’ or
‘random random’ arrangements.

To further explore the impact of vessel location and arter-
iole-to-venule spacing, we use the same vessel locations as in
the primate data but assign vessels as arterioles or venules
either randomly or psuedorandomly (assigning five of 18
vessels at a time). The random assignment of vessels (primate
data random) has values of Rart similar to the ‘random
random’ and ‘hex random’ arrangements. The pesudoran-
dom assignment of vessels (primate data pseduorandom)
has Rart typically smaller than the random cases, but larger
than ‘hex pseudorandom’, suggesting that once the arterioles
and venules are more uniformly arranged in a pseduoran-
dom way, the more uniform vessel-to-vessel spacing in the
hexagonal arrangement serves to reduce the resistance.

Next, to isolate the impact of non-uniform vessel spacing,
we perturb each vessel location in the ideal primate configur-
ation in a random direction. The perturbation distances are
sampled from a normal distribution with a standard devi-
ation selected so that, following perturbation, the ratio of
the standard deviation to the average nearest neighbour
vessel-to-vessel distance is the same as that in the ex vivo pri-
mate data. We label this distribution ‘ideal perturbed’ in
figure 8. The Rart distribution shows very little variation
from the Rart of the ideal arrangement, demonstrating that
changing the vessel-to-vessel spacing slightly does not
significantly affect the resistance. Of course, as the pertur-
bation distance increases, Rart increases because the spacing
between the arterioles and venules becomes less uniform.
Adding very large perturbations to the ex vivo primate
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arrangement produces an Rart distribution matching the
‘random random’ arrangement, as expected.

Other geometric arrangements produce similar distri-
butions of Rart. Square and triangular arrangements of
vessels with the same vessel density (‘square pseudorandom’
and ‘triangle pseudorandom’) result in distributions similar
to that for the hexagonal psuedorandom arrangement, again
suggesting that the exact locations of the vessels are less
important than having arterioles well mixed with venules. In
summary, more uniform arrangements of arterioles and
venules result in lower resistances, with pseudorandomassign-
ment of vessels producing resistances lower than those of
completely random assignments. The uniformity of the arter-
iole-to-venule spacing is more important than the uniformity
of the vessel-to-vessel spacing.
3.7. Resistances in the mouse brain
To produce a statistical characterization of flow resistance in
the mouse cortex, we calculate Rart using ex vivo vessel
locations at many cross sections parallel to the cortical sur-
face, spaced 1 μm apart in depth, from the four mice shown
in figure 1. The dimensionless resistance Rart is shown in
the left panel of figure 9 as a function of depth into the
cortex. Also shown is the dimensionless resistance Rart for
the idealized mouse arrangement calculated at the mean
and ± 1 s.d. of the vessel density. The variation in Rart for
the idealized arrangement owing to the difference in density
is much less than the observed variation in Rart throughout
the depth of the cortex, so density alone cannot explain the
variation. Changing individual distances between arterioles
and venules, and vessel ratio, account for most of the
variation (see appendix A, figures 10 and 11). In the panel
on the right in figure 9, we show Rart as a function of
vessel density, further demonstrating that the variation in
Rart throughout the cortex cannot be completely attributed
to the change in vessel density.
The dimensionless resistance is typically lower in ideal-
ized arrangements than in arrangements based on ex vivo
data. The few ex vivo cross sections with Rart lower than
that in the idealized arrangement have higher density or a
different vessel ratio. The median resistance for mouse 1 is
closest to the resistance in the idealized arrangement because
the median vessel ratio is closest to 1–3. (see appendix A)

The median values of Rart are 0.8469, 0.9817, 1.0482 and
0.9646 for mice 1, 2, 3 and 4, respectively. The median across
all four mice is Rart ¼ 0:9563. The median resistance
is considerably higher for the primate arrangement:
Rart ¼ 1:669. The mouse resistances are lower because of the
difference in the vessel ratio (as shown in figure 7) and the
difference in density (as shown in figure 6).
4. Discussion
We begin this section with a brief summary. We calculate the
hydraulic resistance of the parenchyma using the locations of
penetrating arterioles and venules in the parenchyma for
both mice and primates based on ex vivo data. Using approxi-
mately realistic vessel ratios (2–1 for primates and 1–3 for
mice), we create idealized arrangements with equidistant
spacing between all vessels and between arterioles and
venules. When using regularly repeating patterns like the
idealized arrangements, the dimensionless resistance, Rart

converges to a constant as the domain size increases; this
asymptotic behaviour illustrates the importance of calculat-
ing the resistance of an array of vessels, rather than the
resistance among just a few vessels. The dimensionless resist-
ance varies monotonically with vessel density: more densely
packed arrays of vessels produce lower values of Rart which
can be accurately estimated with a logarithmic curve. The
vessel ratio impacts the dimensionless resistance; for
example, from a dipole arrangement to an arrangement of
two arterioles and one venule, or one arteriole and three
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venules, Rart varies approximately 50%. The arrangement of
arterioles and venules also affects the resistance; without
changing vessel ratio or density, we vary the locations
of the arterioles and venules, finding that less-ordered
arrangements have higher resistance. Natural variations in
the locations of arterioles and venules lead to a range of
Rart in physiological data as well: we calculate Rart at various
cross sections in mouse brains, showing the range of
resistances owing to intra- and inter-animal variations.

Dimensionless resistances for mice are smaller than those
for primates: 0.5≤Rart ≤ 1.5, compared to Rart = 1.67. The
same trend occurs in idealized arrangements, where Rart dif-
fers by a factor of approximately 1.5. Species-specific models
will be necessary for accuracy in future studies of flow in
brain parenchyma. Qi et al. examine the impact of the
vessel ratio on blood flow in the cerebral cortex, modelling
the blood flow in the capillary bed as a porous medium.
They find that an uneven ratio of vessels is important for
blood perfusion and that the optimal ratio closely matches
the ratios observed in multiple mammalian cortices [19].

Modelling parenchymal flow is challenging because of the
uncertainty in the values of several parameters. The flow rate
through the parenchyma is a quantity of considerable interest,
but it remains largely unknown. The flow rate determines
whether solutes are cleared primarily by diffusion or advec-
tion, which has implications for the development of
Alzheimer’s disease and drug delivery [8,9,11,20]. Another
challenge is the uncertainty in the parenchymal permeability
κ; published estimates differ by orders of magnitude [8,21],
and permeability changes with brain state [22]. Pressure
drops across brain tissue are largely unknown; only a single
study has measured intracranial pressure simultaneously at
more than one location [23]. Herewe have focused on themath-
ematically tractable problem of the dimensionless resistance
caused by the geometric arrangement of arterioles and venules,
which links the unknown flow rates, permeabilities and
pressure drops. We have provided values of the non-dimen-
sional resistance Rart: the dimensional resistance, R, scales
linearly with κ and μ and can easily be calculated from Rart.
Determining the actual value of μ is straightforward, while
obtaining avalue for κ is not straightforward and controversial.
When comparing mouse and primate brains in this work, we
only describe the efficiency of the geometrical arrangement
of the vessels, i.e. their ratios and spacings. It is possible that
the brains of different species have different permeabilities,
and the differences in permeability may be much more impor-
tant for the dimensional resistance than the differences in
geometrical arrangement we describe here.

Presently, the uncertainty associated with parenchymal
permeability (estimates span several orders of magnitude)
is much larger than the differences in Rart resulting from fac-
tors discussed in this work, including vessel ratio and the
effects of convergence with array size, which change Rart

by less than a factor of three. Before entering the extracellular
space, fluid passes through gaps in astrocyte end feet that
form the outer boundaries of the PVSs [6]. The size of these
gaps is also largely unknown and their resistance may be
dominant or have negligible effect [9,13,24]. However, as
measurements of permeability and the size of endfoot
gaps become more precise, it will become more important
to calculate Rart accurately.

The importance of flow in the parenchyma is a matter of
some debate as described in the recent review from Ray et al.
[20] Despite using very different estimates for the parenchy-
mal permeability κ, Jin et al. [12] and Holter et al. [8] both
conclude that the resistance is so large that flow through
the parenchyma is negligible and that diffusion, rather than
convection, is the dominant mode of mass transport in the
parenchyma. We show that accounting for the presence of
multiple vessels may change their resistance estimates by a
factor of three, but doing so is unlikely to change their
main conclusions. However, Ray et al. estimate ISF velocities
of 7–50mmmin�1 [9]. Additionally, a recent network model
of parenchymal flow estimated ISF velocities of
2–6mmmin�1 [24]. Whether advection or diffusion domi-
nates transport for these velocities depends on the size of
the molecule in question, with the Péclet number quantifying
the relative importance of these two modes of transport.
However, even if advection is not as important as diffusion
for mass transport in the parenchyma, advection is likely to
dominate mass transport in PVSs, as described by Thomas
[5], and because fluid exits PVSs via the parenchyma, par-
enchymal resistances will affect perivascular flows and are
important to include in models of perivascular flows. Advec-
tion clearly plays a role in solute transport at some level since
clearance from the whole brain by diffusion alone would pro-
duce a highly inhomogeneous distribution of solutes with
very high concentrations near the centre of the brain.

The dimensionless resistance Rart can easily be incorpor-
ated into models of flow in the glymphatic system, such as
the hydraulic network model developed by Tithof et al. [24]
or other published models [10,25,26]. We provide three differ-
ent ways to calculate Rart. First, we give Rart in analytical
form in equation (2.3). Second, Rart can be estimated as a
function of vessel density for a given vessel ratio and arrange-
ment using equation (3.1). Third, the dimensionless
resistances calculated based on the vessel locations of ex
vivo data and shown in figures 3 and 9 could be used directly.

Our model considers two-dimensional flow in planes per-
pendicular to an array of straight, parallel arterioles and
venules. As seen in figure 1, these vessels are not completely
straight and are not all parallel: a few even turn enough to
run along the cross-sections. Also, we have assumed the par-
enchyma to be homogeneous and isotropic, while in reality it
is penetrated by a network of capillaries. Qi et al. show that
for blood flow, the network of capillaries can be approxi-
mated as a continuous, homogeneous porous medium [19],
so assuming a homogeneous porous medium for the
parenchyma may also be reasonable when considering per-
fusion of ISF at large scales. Each of these approximations
affects the computed flow field and the hydraulic resistance.

Jin et al. [12] modelled transport of waste in the glympha-
tic system and found that increasing arteriolar density
increases the mass transport. They also found that swapping
the locations of the arterioles and venules decreased the mass
transport. Although they considered both advective and dif-
fusive mass transport, whereas our calculations of the
hydraulic resistance relate only to advective mass transport,
our conclusions are similar: increasing the density of the
vessels decreases the resistance, which leads to increased
advective mass transport.

We calculateRart assuming that the volume flow rate exit-
ing every arteriole is the same and the flow rate entering
every venule is the same. This results in a different pressure
at each arteriole and at each venule. The implications of
this assumption could be explored in future work. An
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Figure 10. Venule–arteriole ratio for the four mice provided by Blinder et al.
[17,18]. On average, mice have a ratio of approximately three venules to one
arteriole, but these data show that the distribution of ratios can span a wide
range, with mouse 2 having ratios ranging from 0.5 to 5.5, which generally
decreases with depth.

Table 1. Vessel–vessel distances. (Mean ± standard deviation of the
minimum distance between vessels for primates [16] and mice [17,18]
(mice data have been filtered).)

primates mice

all vessels 181.82 ± 37.34 μm 103.51 ± 58.21 μm

arterioles to arterioles 206.52 ± 55.48 μm 212.45 ± 107.22 μm

venules to arterioles 185.00 ± 35.84 μm 158.01 ± 72.71 μm

arterioles to venules 229.34 ± 62.18 μm 128.10 ± 73.16 μm

venules to venules 332.96 ± 66.65 μm 118.95 ± 78.91 μm
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alternative approach would be to specify the same pressure at
each arteriole and at each venule and solve for the flow rates.
This would require a straightforward numerical simulation. It
is reasonable to suppose that physiological flows might fall
somewhere between these two extremes. Which approach
more closely resembles physiological flow will depend in
part on the forces driving the flow; for example, if the flow
is being driven by a steady global pressure gradient between
the pial arterial PVSs and pial venous PVSs, and if most of
the pressure drop occurs across the parenchyma, then speci-
fying the same pressure for each vessel type might be more
appropriate. Alternatively, if the flow is being driven by
local pressure gradients generated by arteriole pulsations,
specifying the same flow rate for each vessel type might be
more appropriate. Flows driven by osmosis, functional
hyperemia, poroelastic pumping or other mechanisms could
each produce different distributions of flows and pressures
among the various vessel boundaries. Which mechanisms
are driving parenchymal flow is still an open question.
Determining how the flows and resistances vary might give
insight into the driving mechanisms, once experimental
measurements of parenchymal flow become available.
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Appendix A. Data for mouse and primate brains

A.1. Filtered penetrating vessel data for mice
The data from Blinder et al. [17,18] are provided as a series of
points distributed along the centrelines of the vessels.
Though penetrating venules and ascending veins are primar-
ily oriented perpendicular to the cortical surface (along the
z-direction), they occasionally deviate from that orientation
and intersect a cross-section at a particular depth more than
once. In those cases, we ‘filter’ the data by including only
the midpoint of the intersections. Both the filtered and the
unfiltered data are provided as the electronic supplementary
material in the accompanying MATLAB file, ‘Blinder_Coordi-
nates.mat’, where mouse 1, mouse 2, mouse 3 and mouse 4
are labelled ‘au’, ‘co’, ‘db’ and ‘av’, respectively. Each
mouse has a set of coordinates for arterioles (‘art’) and
venules (‘ven’) where columns 1, 2 and 3 correspond to X,
Y and Z coordinates. The substructure ‘originalstrands’ con-
tains the vessel strand index for each of the points in the
coordinate set.
A.2. Vessel–vessel distances for mice and primates
The distance between each vessel and its closest neighbour
calculated from the vessel location data for the in vitro
mouse and primate are provided in table 1.

A.3. Mouse vessel ratio
See figure 10.

A.4. Mouse vessel density
See figure 11.
Appendix B. Solution for the velocity and
pressure fields
Slow incompressible viscous flow in a porous medium is gov-
erned by the continuity equation

r � u ¼ 0, (B 1Þ
and Darcy’s Law

u ¼ � k

m
rp, (B 2Þ

where u = [u(x, y), v(x, y)] is the superficial velocity (in Carte-
sian coordinates x, y), p is the pressure, κ is the permeability,

https://neurophysics.ucsd.edu/publications/AOH_Data.zip
https://neurophysics.ucsd.edu/publications/AOH_Data.zip
https://neurophysics.ucsd.edu/publications/AOH_Data.zip
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Figure 11. Vessel density for the four mice provided by Blinder et al. [17].
For all mice, the density decreases with depth, spanning a wide range of
densities. This density (of all vessels) is approximately comparable to the
approximately 1.5 × 107 penetrating arterioles m�2 that Adams et al. find
in the mouse cortex [27]. They also find that the penetrating artery density
is approximately uniform across cortical areas, with a slightly higher density
in the visual cortex relative to the vibrissa.
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and μ is the dynamic viscosity. If we assume that the per-
meability κ and the viscosity μ are uniform, then we can
write Darcy’s Law in the form

u ¼ rf, f ; � k

m
p, (B 3Þ

where ϕ(x, y) serves as a velocity potential for the flow.
Equation (B 1) then requires that ϕ satisfy Laplace’s equation

r2f ¼ 0: (B 4Þ
Using the analogy with potential flow (of an inviscid fluid),
we can introduce the stream function ψ(x, y) such that

u ¼ @c

@y
, v ¼ � @c

@x
, r2c ¼ 0, (B 5Þ

and the complex potential

wðzÞ ¼ fðx, yÞ þ icðx, yÞ, (B 6Þ
where z ¼ xþ iy, i ¼ ffiffiffiffiffiffiffi�1

p
. For the boundary condition u =

v = 0 at infinity, the complex velocity potential of a line
source or sink is given by

wðzÞ ¼ q
2p

lnðzÞ, (B 7Þ

where q is the volume flow rate per unit length, with q > 0 for
a line source and q < 0 for a line sink. Laplace’s equation is
linear and homogeneous, so we can superimpose solutions
and represent the flow owing to an array of J = na + nv arter-
ioles and venules, at positions ζj = (xj, yj), by the complex
potential

wðzÞ ¼ wðz0Þ þ
XJ
j¼1

qj
2p

ln
z� zj

z0 � zj

 !
, (B 8Þ

where w(ζ0) is an assigned value at some reference point
ζ0 = (x0, y0), subject to the condition that there be no net
mass flux owing to the array,

XJ
j¼1

qj ¼ 0: (B 9Þ

The corresponding expressions for the velocity potential,
stream function, velocity components and pressure field are

fðx, yÞ ¼ fðx0, y0Þ

þ
XJ
j¼1

qj
4p

ln
ðx� xjÞ2 þ ðy� yjÞ2
ðx0 � xjÞ2 þ ðy0 � yjÞ2

 !
, (B 10Þ

cðx, yÞ ¼ cðx0, y0Þ

þ
XJ
j¼1

qj
2p

tan�1 y� yj
x� xj

� �
� tan�1 y0 � yj

x0 � xj

� �� �
,

(B 11Þ

uðx, yÞ ¼
XJ
j¼1

qj
2p

x� xj
ðx� xjÞ2 þ ðy� yjÞ2
 !

, (B 12Þ

vðx, yÞ ¼
XJ
j¼1

qj
2p

y� yj
ðx� xjÞ2 þ ðy� yjÞ2

 !
(B 13Þ

and

pðx, yÞ ¼ pðx0, y0Þ

� m

k

XJ
j¼1

qj
4p

ln
ðx� xjÞ2 þ ðy� yjÞ2
ðx0 � xjÞ2 þ ðy0 � yjÞ2

 !
:

(B 14Þ

Streamlines of the flow are the family of curves ψ(x, y) =
const.
Appendix C. Alternative boundary conditions
The solutions presented above are valid when pressure
and velocity go to zero at infinity, but other boundary con-
ditions can also be useful. We can instead consider a finite,
rectangular domain of width w and height h, taking its
boundaries either to be impenetrable or to be locations of
zero pressure. Solutions for those two additional cases can
readily be constructed via the method of images. For impene-
trable boundaries, all sources and sinks are repeated and
mirrored about the boundaries. For zero-pressure bound-
aries, inverted sources and sinks are repeated and mirrored
about the boundaries. Thus, both solutions have complex
potential

wðzÞ ¼ wðz0Þ þ
XM

m¼�M

XN
n¼�N

XJ
j¼1

bm � bn

� qj
2p

ln
z� ½nwþ ð�1Þnxj þ iðmhþ ð�1ÞmyjÞ�
z0 � ½nwþ ð�1Þnxj þ iðmhþ ð�1ÞmyjÞ�
� �

,

(C 1Þ
where b = 1 for impenetrable boundaries and b =−1 for zero-
pressure boundaries. The solution is exact when M =N =∞;
for finite M and N, larger values provide greater accuracy.
When b = 1, the solution is identical to that provided by
Ding & Wang [28]. When b=−1, the assignment of vessels as
sources or sinks is flipped. The corresponding dimensionless
resistance is
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Rart ¼ na
4p

XM
m¼�M

XN
n¼�N

XJ
j¼1

bm � bn

�
Xna
a¼1

1
na � Sj ln

½x0 � ðnwþ ð�1ÞnxjÞ�2 þ ½y0 � ðmhþ ð�1ÞmyjÞ�2
½xa þ rart � ðnwþ ð�1ÞnxjÞ�2 þ ½ya � ðmhþ ð�1ÞmyjÞ�2

 

�
Xnv
v¼1

1
nv � Sj ln

½x0 � ðnwþ ð�1ÞnxjÞ�2 þ ½y0 � ðmhþ ð�1ÞmyjÞ�2
½xv þ rven � ðnwþ ð�1ÞnxjÞ�2 þ ½yv � ðmhþ ð�1ÞmyjÞ�2

!
: (C 2Þ
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