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I. INTRODUCTION

Entanglement of photon states carrying orbital angular
momentum �OAM� is a tool in quantum optics. These states
have been experimentally produced by spontaneous paramet-
ric down-conversion �SPDC� �1�. They were predicted �2�
subjected to certain symmetry conditions that are still subject
to some controversy. This work will review those arguments
in detail and will emphasize the importance of azimuthal
symmetry in the SPDC for a complete transfer of OAM from
the pump photons to the SPDC photons. Azimuthal symme-
try breaking will reflect in a poor transfer of OAM. Among
possible cases of asymmetries is the one produced by walk
off in type-II SPDC.

Experimentally, these OAM states can be created under
the condition of a posteriori or a priori OAM imprinting by
appropriated masks or filter converters. For the a posteriori
imprinting, the pump beam does not need to carry OAM, but
an appropriate OAM mode converter l is inserted onto one of
the down converted beams. The conjugate beam is expected
to acquire an OAM of −l. For the a priori imprinting, the
pump beam mode is set in an OAM state, say, l. However, as
discussed in Ref. �2�, the initial OAM l may or may not be
transferred to the SPDC. Discussions about if this transfer of
OAM occurs or not and if special conditions are needed to
have OAM transfer has populated the recent literature some-
times with conflicting answers: “yes,” “no,” “under certain
conditions” �see some references in Ref. �3��. Sometimes,
conclusions derived from particular cases, say, under condi-
tions adequate for low wave vectors or paraxial cases �e.g.,
Ref. �4��, can be mistakenly taken as being general. Part of
this nonuniform understanding on this subject derives from
oversimplified Hamiltonian or wave states considered �sim-
plified “backbone” models�. The difficulties to derive general
conclusions taking into account realistic phase matching and
light-matter coupling through the nonlinear polarizability
tensor sometimes makes these time consuming tasks not ap-
pealing. Therefore, it is common that a single proportionality
constant replaces an involved angular dependence resulting
in a nonrealistic description. Instead of being just technical
details, these more complex dependences may be crucial to a

full understanding of these processes including entanglement
between conjugate photon pairs. Phase matching is also fre-
quently assumed under simplified conditions not sufficient to
treat in detail pump modes with amplitudes more complex
than a simple Gaussian intensity profile.

Although not claiming a complete analysis of this prob-
lem, this paper does not take for granted many of these com-
monly oversimplified assumptions. It tries to discuss the
problem of transfer of OAM between the pump beam and the
SPDC photons with reasonable detail. Phase matching con-
ditions dependent on ��1� are not oversimplified; also detailed
is the dependence of SPDC on ��2�. This should provide the
reader with enough material to help his own work or, at least,
to show fundamental elements necessary in this trade. It may
also stimulate others to improve our understanding in this
area. Certainly, many future applications will demand a care-
ful understanding of the entanglement carried by these non-
linear processes beyond current treatments. Even some small
immediate rewards can be obtained such as a method to ob-
tain the nonlinear coefficients in ��2� by comparison of ex-
periment and theory.

This paper was written trying to give a newcomer to this
field a straightforward view of the involved elements starting
from the wave state amplitude describing SPDC. It describes
all components involved in this amplitude and details aspects
of phase matching including the simplified description of
phase matching in two steps: longitudinal and transverse
conditions. The nonlinear tensor ��2� and the resulting non-
linear polarizability of the medium are discussed, including
their transformations between the crystal reference system
and the laboratory reference system. This way the reader can
dedicated himself to the main aspects presented instead of
having to work out technical details. Certainly, for some,
most of the presented aspects may be trivial and can be
skipped without problems. However, any disagreement be-
tween views may result in an overall enlightenment for all.

II. WAVE STATE

The Hamiltonian describing SPDC can be easily found in
the literature �e.g., Ref. �5��. It describes free propagating
photons from a pump and from the down-conversion process
that occurs due to the nonlinear light-matter interaction oc-
curring in an ideally transparent medium �e.g., crystalline*g-barbosa@northwestern.edu
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medium within the crystal band gap�. A pump photon will
excite the nonlinear medium through a very fast interaction
with virtual electrons and decay either into a similar pump
photon or into two conjugate photons—historically called
signal and idler. These virtual interactions as well as the
propagation of the SPDC photons occur in the nonisotropic
medium with specific symmetries defined by the crystal class
involved. Therefore, medium symmetries are built explicitly
in ��2� and implicitly in ��1�, defining the nonlinear interac-
tion and the light propagation in the medium. The Hamil-
tonian for these processes usually neglect coupling to the
lattice possibly intermediated by electrons. Although the fast
interaction times indicate that this coupling to the lattice
should be negligible, this possibility should not be ruled out
in general.

At this point, one could remind the reader the uncertainty
relationship connecting angular momentum and phase uncer-
tainties �6�

�Lz�� �
�

2
�1 − 2�P��0�� . �1�

It states that a large uncertainty in angle allows Lz to have a
small uncertainty. Consequently, in order to guarantee preci-
sion in Lz, uncertainty in � has to be maximum �7�. Could
the medium symmetries �built in ��2� and ��1�� cause restric-
tions on the photon interactions or propagation that could
somewhat constrain the associated azimuthal angle � and
therefore do not allow its maximum uncertainty to be
achieved? This problem has been discussed in Ref. �2� but it
will be detailed here for clarity.

The interaction Hamiltonian HI gives the wave state
���t��=exp��−i /���t−	

t HI�	��d	���0�, from which successful
spontaneous photon conversion in first order is

���t�� = �
s,s�

	 d3k�	 d3kFs,s��k,k��â†�k,s�â†�k�,s���0� .

�2�

The probability amplitude for signal and idler at �k ,k�� is

Fs,s��k ,k��=Ak,s;k�,s�lE
�*��
k�lE

�*��
k��T��
��̃lp��k�. Ak,s;k�,s�
=�1jk

�2� ��ek,s� j
*�ek�,s��k

*+ �ek�,s�� j
*�ek,s�k

*�, �ek ,ek�� are unitary po-
larization vectors for signal and idler photons,

lE
�*��
�=−i
�
 /2��k ,s�, �̃lp��k�=�VI

d3r�lp�r�exp�−i�k ·r�
and �lp is the Laguerre-Gaussian pump field amplitude
in E�r ,� ,z ; t�=�lp�r�ei�kPz−
Pt�ê1. T��
�=exp�i�
�t
−	 /2��sin��
	 /2� / ��
 /2� is the time window function de-
fining the �
 range given the interaction time 	, �
=
k
+
k�−
P, �k=k+k�−kP. Symmetries associated with the

crystalline medium influence Ak,s;k�,s���̃lp��k� through
��2�, ��1� and the polarization vectors �2�.

It was derived in Ref. �2� that in order for a wave state of
a one-photon field ���t��1 to be an eigenfunction of Jz �or Lz

for processes where Sz=0, as will be assumed here� it has to
obey Jz���t��1= l����t��1. This directly gave

���t��1 = �
s
	 d3kg�k
,kz,s;t�eil�a†�k,s��0� . �3�

In this condition one can see that the azimuthal phase should
occur only as a phase term in the wave state and not in its
amplitude. This guarantees that the magnitude square of the
integrand presents complete rotational symmetry in � or,
equivalently, presents a complete uncertainty in �, as re-
quired by Eq. �1�. In SPDC, this condition has to be applied
both to signal and idler photons. This implies that for perfect
OAM transfer from pump photons to SPDC photons, the
probability amplitude Fs,s��k ,k�� in Eq. �2� should contain
the azimuthal angles for signal and idler only as phase terms
eim� and ein��. As a linear superposition of wave functions is
also a wave function, superpositions of expressions similar to
Eq. �2� containing similar phase terms can also represent a
valid solution. However, the superposition coefficients
should not depend on the azimuthal angles.

Starting from the accepted standard wave state for SPDC,
one may expand the most relevant terms to compare with
symmetry restrictions imposed by Eq. �3� and verify if a
specific SPDC process may or may not transfer OAM to the
down converted photons or even if this transfer can be par-
tial. This answer should not be ambiguous and the result
obtained should be general enough to allow direct compari-
son with specific experiments.

III. THE WAVE STATE AMPLITUDE F„ks ,ki…

The wave state amplitude F�ks ,ki� �see Eq. �2�� is the
term that needs to be considered in detail. In principle, this
amplitude contains a wealth of information one could obtain
from the wave state, from efficiency considerations to phase
matching conditions. Of course, one has to assume comple-
mentary information about the crystalline medium including
the light propagation conditions given by the Fresnel equa-
tions. From the wave state amplitude the required conditions
for phase matching emerge naturally.

The term Ak,s;k�,s� will be considered in a separate section
and the time window term T��
� admits easy interpreta-
tions. For example, for a continuous wave �CW� laser where
the interaction time 	 can be made large T��
�→����
�.
The most involved term is the Fourier transform �̃lp��k�. A
careful consideration of this term allows one to derive main
conclusions about the SPDC process in general.

A. The Fourier transform �̃lp„�k…

The Fourier transform �̃lp��k� of �lp��k� can be written

�̃lp��k� = 	
z0−lc/2

z0+lc/2

dz	
0

2�

d�	
0

�

dr�lp�r,�,z�

�e−i��kxr cos �+�kyr sin �+�kzz�, �4�

where
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�lp�r,�,z� =
Alp


1 + �z/zR�2� r
2

w�z�
�l

Lp
l � 2r2

w�z�2�
�exp�− i
 kPr2z

2q�z�
+ l tan−1 y

x
��

�exp�i�2p + l + 1�tan−1 z

zR
� , �5�

and w2=w0
2�1+ �z2 /zR

2�� ,q�z�=z+ izR ,w0
2= �2zR /kP�,z0 gives

the crystal center, r2=x2+y2, and lc is the crystal length
along the propagation direction. Development of integral �4�
in r and � is straightforward although cumbersome:

�̃lp��k� = �Alp
 i

2
�l
 zR

kP
�1+l/2

e−il�/2
k
l Lp

l 
 zR

kP

k

2�
�e−zR
k

2/�2kP�eil tan−1��ky/�kx�

�	
z0−lc/2

z0+lc/2

ei�−1+l+2p�tan−1�zR/z�ei�1+l+2p�tan−1�z/�2zR��

�e−i�kzdz , �6�

where 
k
2=�kx

2+�ky
2=
2+
�2+2

� cos��−���, 
=k sin �

and 
�=k� sin ��.
The remaining z integral can be solved under conditions

favorable to experiments. Conditions z0=0 and lc�zR are
most usual. This gives tan−1�z / �2zR��→0 and tan−1�zR /z�
→� /2; therefore,

�̃lp��k� = − �il+12−lAlp
lc
zR

kP
�ei��p+l tan−1��ky/�kx��

�e−�/2�l/2Lp
l ���

sin� lc

4zR
�4 − 2zR�kz + ���

� lc

4zR
�4 − 2zR�kz + ��� , �7�

where ���zR� kP
�
k

2. It is interesting to observe the presence

of the phase tan−1��ky /�kx� in �̃lp��k�. It gives several pos-
sibilities for entanglement of signal and idler phases � and
�� and is a signature of the complexity connecting signal and
idler photons on the plane transverse to the propagation di-
rection. The probability for unconstrained signal and idler
occurrences �Fs,s��k ,k���2 will be proportional to

��̃lp��k��2 = �24−l�Alp�2
lc
zR

kP
�2

e−��lLp
l ���2

�� sin� lc

4zR
�4 − 2zR�kz + ���

� lc

4zR
�4 − 2zR�kz + ��� �

2

. �8�

Equations �7� and �8� are fundamental for SPDC. Together
with Ak,s;k�,s� they determine probabilities of signal and idler
occurrences and, by state superpositions with arbitrary
phases, interferences. Phase matching are determined by the
loci of maxima of these same equations.

IV. PHASE MATCHING

Phase matching conditions with variables �kz and � can

be obtained from ��̃lp��k��2. In principle, polar and azi-

muthal angles that define maxima of ��̃lp��k��2 should be
determined simultaneously, but simplified solutions are fre-
quently used according to the level of detail one requires. For
example, since sin x /x in Eq. �8� is weakly dependent on �,
Eq. �8� can be treated as two independent parts for phase
matching considerations. One part, in form of sin x /x gives
the �kz range and the second or remaining part of the equa-
tion sets the width associated with the variable �. Write

��̃lp��k��2= f long� f transv, where f long= �sin x /x�2 and f transv

=�24−l�Alp�2�lczR /kP�2e−��lLp
l ���2. f long can be considered

non-negligible from �kzmin= �4+�� /2zR�2/zR to �kzmax

= �lc�4+��−4�zR� /2lczR �for x=��. For lc�1, �kz= ±2� / lc.
This sets the polar angles �pm and �pm� for phase matching.
Maxima for f transv will describe azimuthal angles, � and ��,
and �pm and �pm� , that are the polar angle values defined from
�kzmin to �kzmax. These maxima are not hard to find for spe-
cific values of l and p.

Just to exemplify a simplified use of Eq. �8�, one can
calculate the probability for signal and idler occurrences in a
specific Type II case of a uniaxial crystal where the pump
beam carries an l=4 OAM. The calculations are done for a
beta-barium borate �BBO� crystal with the crystal axis in-
clined by �c with respect to the pump beam propagation
direction. Two natural coordinate systems are involved, the
crystal and the laboratory axes. While descriptions of the
linear and nonlinear susceptibilities are usually given in the
crystal reference system, the pump beam and the character-
istic SPDC pattern desired define the laboratory system to be
used. Appropriate coordinate transformations have to be ap-
plied to provide correct answers. Starting with the longitudi-
nal equation for phase matching, some additional informa-
tion needed for its solution will be presented. This additional
information will also be used for the transverse phase match-
ing conditions.

A. Longitudinal condition

Expanding �kz in the longitudinal condition gives the in-
terval where an appreciable contribution is found, �kz
= ±2� / lc. That is to say, for angles bounded by this condi-
tion, there is a good probability to find signal and idler pho-
tons. Let us rewrite this condition in a more tight bound and
expand �kz,

− kP + �k cos � + k� cos ��� �
2�

lc
. �9�
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The wave vectors in the medium are k= �2� /��n= �
 /c�n
and k�= �2� /���n�= �
� /c�n�, where � and �� are vacuum
wavelengths and the refractive indexes n and n� have to be
found using Fresnel’s equations for specific propagation di-
rections and Sellmeier’s equations for the principal refractive
indexes.

1. Fresnel’s equations

Fresnel’s equations can provide the refractive index n of a
uniaxial crystal along an arbitrary propagation direction
specified by the wave vector k= �
n /c�ŝ where the unit vec-
tor is ŝ=sxx̂+syŷ+szẑ. They are derived �10� starting from
Maxwell’s equations written in local variables, ŝ ·H=0,
D · ŝ=0, H� ŝ=D /n, E� ŝ=−H /n, where � was written as
�→ i�
n /c�ŝ. Eliminating H results in D j =n2�E j − ŝ j�ŝ ·E��.
Considering a uniaxial crystal ��ij =�ii�ij� and multiplying
both members by sj one obtains � j jEj −n2Ej =−n2�sj�ŝ ·E��,
which gives 1=−n2sj

2 / �� j j −n2�. Subtracting 1 �=sj
2� from

both sides and writing n2=�, Fresnels’s equations are ob-
tained,

sx
2

1

�
−

1

�x

+
sy

2

1

�
−

1

�y

+
sz

2

1

�
−

1

�z

= 0, �10�

where sx=sin � cos �, sy =sin � sin �, sz=cos � and �x=�y
=�o are the ordinary dielectric constants along the principal
axis and �z=�e is the extraordinary dielectric constant, Eq.
�10�. Using the notation rx=� /�o=ry and rz=� /�e and multi-
plying both members of Eq. �10� by �1−rx�2�1−rz�2, one
obtains

�1 − rx�2�1 − rz�2� �1 − rz��sx
2 + sy

2� + �1 − rx�sz
2

�1 − rx��1 − rz�
� = 0.

�11�

This equation defines that either �1−rx��1−rz�=0, that gives
either �=�o or �=�e �pure ordinary and extraordinary cases�,
or ��1−rz��sx

2+sy
2�+ �1−rx�sz

2�=0. This last equation can be
written as

1

�
=

sx
2 + sy

2

�e
+

sz
2

�o
. �12�

These are the possibilities for light propagation in uniaxial
crystals. Either pure ordinary or extraordinary propagation or
a mixture of ordinary and extraordinary light propagation.
However, these equations define the refraction indexes in the
crystal coordinate system. Obtaining the refractive indexes
on the laboratory coordinate system demands that rotations
are introduced corresponding to the geometrical situation
adopted.

2. Rotation matrices

One should be aware that rotation angles do not obey a
universal notation and sometimes references for crystal rota-
tion angles may vary even from crystal to crystal in the lit-
erature. In particular, complementary angles may be referred
to in a similar way. Figure 1 shows a convenient laboratory
coordinate system �x ,y ,z� obtained from the crystal axis by
rotation of angle �c around the y axis. Usual crystal rotations
to utilize better geometries to increase the efficiency of the
down-conversion process consist of rotations about, say, one
of the crystal secondary axis followed by a rotation on its
principal axis. These matrix rotations can be written

Rzy = Rz��c�Ry��c�

= � cos �c sin �c 0

− sin �c cos �c 0

0 0 1
��cos �c 0 − sin �c

0 1 0

sin �c 0 cos �c
� .

�13�

The rotation matrix connecting crystal and laboratory co-
ordinate systems adopted in this work is defined by Eq. �13�.
Of course, other commonly used rotation procedures exist.
Rotation by two Euler angles, for example, are written not as
Rzy, but as Ryz, where the azimuthal rotation is applied first.
These resulting rotations are not equal and they do not have
a unique correspondence using just two Euler angles. Al-
though what description to adopt is a matter of taste, it
should be clearly stated to avoid misinterpretations about any
result obtained.

3. Refractive indexes

A wave-vector unitary propagation vector k̂ written in the

laboratory coordinates �� ,��, k̂= �sin � cos � , sin � sin � ,
cos �� is transformed to a vector ŝ in the crystal medium by

ŝ=Rzy · k̂. The resulting pump, signal, and idler unitary wave
vectors could then be plugged into Eq. �12� to provide the
corresponding refraction indexes in a uniaxial crystal such as
the BBO. One obtains

n = no, �14�

x

y

z

�

�

�
c

k
�

c

kz

FIG. 1. �Color online� Decomposition of a wave vector k into
transversal �
� and longitudinal �kz� components in the laboratory
axis �x ,y ,z�. A rotation around the y axis by �c separates the crystal
principal axis from the pump beam propagation direction z.
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n� =
ne�no�


ni�
2�cos �c cos �� + cos �� sin �c sin ���2 + no�

2��cos �� sin �c − cos �c cos �� sin ���2 + sin2 �� sin2 ���
, �15�

nP =
nP,enP,o


nP,e
2 cos2 �c + nP,o

2 sin2 �c

. �16�

It is easy to observe that propagation under eo polarizations
do not present azimuthal symmetry. However, the overall
symmetry for SPDC depend on other terms as well.

4. Sellmeier equations

The refractive indexes in the principal axes, nP,e, nP,o, no,
ne, no�, and ne� are usually obtained experimentally and repre-
sented by parametric equations representative of the micro-
scopic physics involved. These equations, known as Sellmei-
er’s equations, have a wide applicability due to its success to
represent the refraction index of low absorption crystals as a
real function of wavelength. They are based on the form of
an oscillator response to an applied force or, as a microscopic
theory for the response of bound electrons in a solid to an
applied electric field �see Ref. �10�, Sec. 2.3� r=eE / �m�
0

2

−
2�� or P=Ner���1�E���n2−1� /4��E and assumes the
form n2=a+b / ��2−c�−d�2. The constants a to d have to be
experimentally determined for each crystal along ordinary
and extraordinary propagation directions and at every desired
temperature. An experimental fit to this phenomenological
equation may give a very good numerical representation of
the refractive indexes in a quite broad frequency range. The
d term is a first corrective term of a possible series of even
terms in �. The assumption of reality for the fields D and E
and their causal connection imposes the even dependence on
� for a real dielectric constant �11�. This way, the first terms
are

no���2 = a −
b

�2 − c
− d�2, ne���2 = e −

f

�2 − g
− h�2.

�17�

Reference �12�, for example, presents the experimental
values a=2.7405, b=0.0184, c=0.0179,d=0.0155, e
=2.3730, f =0.0128, g=0.0156, h=0.0044 to represent
BBO’s refractive indexes along the crystal axes �� are given
in �m in these equations�.

5. Longitudinal condition

As the refractive indexes are now defined and the wave
vectors k= �2� /��n can be calculated for general angles with
adequate Sellmeier parameters, Eq. �9�,

− kP + �k cos � + k� cos ��� �
2�

lc
,

can be solved. Due to the complexity dependence of the
refractive indexes in the angles, this equation may not be
solved analytically in a general case. Numerical solutions

can be found and will determine the angles where the SPDC
process is more efficient. For a type-II process in BBO, for
example, Fig. 2 shows a plot obtained from the numerical
solutions. The obtained numerical solutions can be even pa-
rametrized for simplicity. This way, polar angles giving
SPDC rings are closely represented by

�s = arcsin„��cos��s − �� + 
cos2��s − �� + ��

+ � exp�− � sin2���s − ��/2��cos�2��s − ���… �18�

and

�i = arcsin���cos �i + 
cos2 �i + ��

+ � exp�− � sin2��i/2��cos 2�i� , �19�

where ��0.034, ��0.797, ��0.0016, ��3.45. These
equations give the thin black lines in Fig. 2.

It has to be emphasized that these angles are described
within the medium. Straightforward application of Snell’s
law gives the angles outside of the crystal.

B. Transverse equations

The equation f transv=�24−l�Alp�2�lczR /kP�2e−��lLp
l ���2 to-

gether with the obtained polar angles given by Eqs. �18� and
�19� define the loci of possibly entangled azimuthal angles
that maximize Fs,s��k ,k��. Finding the analytical maxima for
f transv is not a trivial task and will not be attempted here.
However, for specific values of p and l this is usually a
simple task. For example, Fig. 3 shows a plot of
f transv/ ��24−l�Alp�2�lczR /kP�2� for p=0 and l=4. It is easy to
find the maximum at �04�15.9491. This defines the value

k

2�p=0, l=4�= �kP /zR��04 that maximizes the signal and
idler emissions. From the transverse equation

FIG. 2. �Color online� Signal and idler rings obtained from nu-
merical solutions and thin solid lines obtained from fitting the nu-
merical equations with Eqs. �18� and �19�.
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k
2 = �kx

2 + �ky
2 = 
2 + 
�2 + 2

� cos�� − ��� �

kP

zR
�04,

�20�

and using the polar angle dependence given by Eqs. �18� and
�19� this equation can be solved for the azimuthal angles �
and ��. Figure 4 shows the numerical dependence found
between these angles. While the condition ��=�+� is an
approximated one, some deviations exist that may be mean-
ingful in some applications. These deviations are more ap-
parent near azimuthal angles close to zero. The thin solid
lines in Fig. 4 were obtained by fit, giving Eqs. �21�,

�+� = 3.1836 + 0.3631e−0.4653�2
+ 0.9999� ,

�−� = 3.0996 − 0.3631e−0.4653�2
+ 0.9999� . �21�

The average azimuthal angle from these two equations is

�� =
�+� + �−�

2
= � + � . �22�

Reference �2� pointed out that perfect transfer of OAM
from the pump to the SPDC photons demands azimuthal
symmetry for �Fs,s��k ,k���2 around the pump propagation di-
rection �quantization axis�. Lack of azimuthal symmetry
causes partial transfer of OAM. To illustrate this partial
transfer, Fig. 5 shows transverse coincidence structures ex-
pected for degenerate noncollinear type-II SPDC in a BBO
crystal �see Ref. �9� for a type-II experiment�. Calculated
structures represent the detection probability for signal and
idler photons within small �
�
����������� around
phase matching conditions �here sin x /x→1 and dk
��n /c�d
�,

Pscatt �
1

�Ak,s;k�,s��
2� d3kd3k�

d
d
�d�d��d�d��
Fs,s��k,k���2

�23�

�excluding existing geometric effects given by Ak,s;k�,s��. The
lack of azimuthal symmetry in type-II SPDC is reflected on
the coincidence structures �even with the neglect of
�Ak,s;k�,s��

2� that show highly asymmetric coincidence donut-
like pattern. Asymmetric structures should then be expected
in type-II with OAM. The Ak,s;k�,s� contribution �to be shown
ahead� is non-negligible, but presents no sharp variations for
the structures. Figure 6 shows some polarization vectors
along the signal and idler rings.

V. NONLINEAR POLARIZABILITY

The SPDC efficiency is directly proportional to the non-
linear polarizability vector P=�iAi,�k,s;k�,s��x̂i,cr with compo-
nents Ai,�k,s;k�,s�� given by the product of the tensor �1jk

�2� and
components of the unitary polarization vectors

Ai,�k,s;k�,s�� = �ijk
�2���ek,s� j

*�ek�,s��k
* + �ek�,s�� j

*�ek,s�k
*� . �24�

The interaction energy VI is given by the product of the laser
field polarization and the nonlinear polarizability vector, VI
=EP ·P. Up to now, all equations have been developed using
laboratory coordinates. In order to keep the same reference
system, all quantities in Ak,s;k�,s� have to be referred to the
laboratory coordinate system. Usually, the nonlinear dielec-
tric tensor is given in the crystal axes and a coordinate trans-
formation to the laboratory axes is necessary. Ak,s;k�,s� in-
volves the nonlinear tensor ��2� and the unitary polarization
vectors ek,s. These constitutive elements will be considered
in the following sections. The nonlinear tensor can be written
in the laboratory coordinate system and multiplied by the
components of the unitary polarization vector in the same
reference system or, alternately, �ijk

�2� and the unitary polariza-
tion vectors can be written in the crystal reference system
and the resulting vector component rotated to the laboratory
coordinate system. This last method will be followed.

The susceptibility tensor �qmn
�2� for the class of uniaxial

crystals can be written in a contracted form as �qmn
�2� →�ql

�2�

�2dql as indicated in Table I. This way,

FIG. 3. �Color online� e−��4L0
4���2 as a function of �.
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2222

1111

0000
-3-3-3-3 -2-2-2-2 -1-1-1-1 0000 1111 2222

FIG. 4. �Color online� Idler azimuthal angle versus signal azi-
muthal angle obtained numerically from Eq. �20�. The thin solid
lines were obtained from Eqs. �21�.
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��2� = 2�d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36
� . �25�

To calculate the unitary polarization vectors, one may write
the electric displacement D in the crystal principal axis,
where �ij =�ii�ij results Di=�ii�iiEj =n2�Ei−siskEk� or

�nx
2 − n2�1 − sx

2��Ex + n2sxsyEy + n2sxszEz = 0,

n2sxsyEx + �ny
2 − n2�1 − sy

2��Ey + n2syszEz = 0,

n2sxszEx + n2syszEy + �nz
2 − n2�1 − sz

2��Ez = 0. �26�

This set of equations give the possible electric field ampli-
tudes for specific propagation directions and refractive in-
dexes n. Without developing general solutions, one may look
for a solution for the signal photons propagating with ordi-
nary refraction index no. Writing nx=ny =no and nz=ne for
the idler’s refractive indexes, the electric field components in

the medium are obtained and normalized resulting in

êo,cr = �− sin �cr,cos �cr,0� . �27�

To calculate the unitary polarization vector for extraordi-
nary propagation, one may observe that in the crystal me-
dium the Poynting vector form a set of orthogonal axes with
the electric field and the magnetic field. At the same time, the
electric displacement may not be along with the electric
field, but is normal to the propagation vector in the medium.
Equation �26� can be particularized for this case as well.
However, for simplicity, one may look for field solutions that
give a unitary polarization vector for the extraordinary
propagation êcr� orthogonal both to êcr and to its unitary
propagation vector ŝ�=sx�x̂+sy�ŷ+sz�ẑ. This gives

êe,cr� = �− cos �cr� cos �cr� ,− cos �cr� sin �cr� ,sin �cr� cos �cr� � .

�28�

See Fig. 6 for an example of unitary polarization vectors in.
BBO type II

A. Nonlinear polarizabilities in the crystal reference system

Calculation of the nonlinear polarizability components
Ai,�k,s;k�,s�� demands specification of ��ek,s� j

*�ek�,s��k
*

+ �ek�,s�� j
*�ek,s�k

*� for all SPDC possible cases. The question

TABLE I. Contractions for tensor indexes.

Indexes Contractions

mn 11 22 33 23,32 31,13 12,21

l 1 2 3 4 5 6

xxxxk

yyyyk

oooonnnnsignal ( )signal ( )signal ( )signal ( )

o eo eo eo en'n'n'n' −−−−idler ( )idler ( )idler ( )idler ( )

φ 'φ

FIG. 6. �Color online� Polarization vectors �pairs� along the sig-
nal and idler rings in SPDC type II.
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FIG. 5. �Color online� Calculated transverse coincidence-count structures on s ring with point detector on i ring. All angles are laboratory
angles, but inside the crystal. The crystal is tilted with the laser beam at �c=49.7° ��c=0� from the crystal c axis. The laser wavelength is
�P=3511 Å �ê1= x̂� and the principal refractive indexes are nP,o=1.707, nP,e=1.578, no=no�=1.665, ne�=1.548.
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mark in Eq. �29� represents the need for these choices. The
possible cases �o ,o�, �e ,e�, �o ,e�, and �o ,e� are detailed in
the Appendix,

P = �A1,�k,s;k�,s��

A2,�k,s;k�,s��

A3,�k,s;k�,s��
� = 4�d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36
�

��
e1e1�

e2e2�

e3e3�

e2e3� + e3e2�

e1e3� + e3e1�

e1e2� + e2e1�

�
?

. �29�

Using the appropriate polarization cases the signal and
idler nonlinear polarizability Poo, Pee, Peo, and Poe are cal-

culated �see Appendix�. These nonlinear polarizabilities
cover all possibilities of light excitation in uniaxial crystals.

B. Nonlinear polarizabilities in the laboratory reference
system

For SPDC it is usual to have the crystal rotated by con-
venient angles referred to the laboratory reference system
x ,y ,x ,� ,� instead of xcr ,ycr ,xcr ,�cr ,�cr. A laser with ampli-
tude EP polarized along direction ê will define the light mat-
ter interaction to be analyzed. In this work it is chosen to
have the nonlinear polarizability P rotated to the laboratory
reference system; this transforms P→Plab.

Equations �A5�, �A6�, �A8�, and �A10� can be written in
the laboratory coordinate system under rotation given by
Rzy

−1; P��;lab=Rzy
−1 ·P�� ���=oo ,ee ,eo ,oe�. For an example,

one can choose a laser amplitude EP=EPx̂ and obtain for o ,e
polarizability

VI,oe = − EPx̂ · �Rzy
−1 · Poe� = cos �c cos �c�− d14 cos �cr sin �cr� + d12 cos �cr� cos �cr sin �cr� − d11 cos �cr� cos �cr� sin �cr

+ d15 sin �cr� sin �cr + d16�cos �cr� cos �cr� cos �cr − cos �cr� sin �cr� sin �cr�� − cos �c sin �c�− d24 cos �cr sin �cr�

+ d22 cos �cr� cos �cr sin �cr� − d21 cos �cr� cos �cr� sin �cr + d25 sin �cr� sin �cr + d26�cos �cr� cos �cr� cos �cr

− cos �cr� sin �cr� sin �cr�� + sin �c�− �d34 cos �cr sin �cr� � + d32 cos �cr� cos �cr sin �cr� − d31 cos �cr� cos �cr� sin �cr

+ d35 sin �cr� sin �cr + d36�cos �cr� cos �cr� cos �cr − cos �cr� sin �cr� sin �cr�� . �30�

For a crystal where the dominant coefficients are d11, d22,
and d15 �e.g., BBO�, VI,oe simplifies to

VI,oe = − �d22 cos �c cos �cr� cos �cr sin �c sin �cr� �

+ cos �c cos �c�− d11 cos �cr� cos �cr� sin �cr

+ d15 sin �cr� sin �cr� . �31�

Replacing �cr� ��cr�cr� ��cr in Eq. �31� gives VI,eo for BBO.
Crystal to laboratory reference system. If one wishes to

have VI,oe �or any other interaction energy term� written un-
der laboratory angles �� ,��, the connection between angles

in these two systems have to be found. Given a unitary
vector v= �sin � cos � , sin � sin � , cos �� in the laboratory
reference system, the rotation Rzy brings it to the crystal co-
ordinate system �or the inverse rotation to move the refer-
ence system�. Assuming that vector components in the
crystal reference system can be written as v=vcr
= �sin �cr cos �cr , sin �cr sin �cr , cos �cr�, a connection be-
tween the medium and the laboratory angles can be found.
This way

�cr = arccos�cos �c cos � + cos � sin �c sin �� , �32�

�cr = arccos� 
n1 + n2 + n3

�− 1 + cos �c cos � + cos � sin �c sin ���1 + cos �c cos � + cos � sin �c sin ��

� , �33�

where

n1 = − 1 + cos �2 sin �c
2 sin �2 + cos �c

2�cos �2

+ cos �2 sin �2 sin �c
2� , �34�

n2 = �cos � sin �c sin �c + cos �c sin � sin ��2, �35�

n3 = 2 cos �c cos �c cos � sin ��cos � cos �c sin �c

− sin � sin �c sin �� . �36�
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Replacing in VI,oe the appropriate angle given by the �cr
or �cr above, VI,oe is determined in terms of the laboratory
angles. The procedure is straightforward but the resulting
expression is quite long.

C. A method for determination of nonlinear coefficients

Knowing the precise rotation angles between the crystal
reference system, the laboratory system, and phase matching
angles, it was shown that all elements to determine the signal
and idler scattering probabilities �wave state amplitude, Eq.
�7�� can be obtained in detail. From these information, trans-
verse coincidence structures can be calculated �see Ref. �9��
and by integration over the angle variables for signal �or
idler� the angular dependence of the idler �or signal� intensity
can be obtained. Aside from obtaining a detailed picture of
SPDC process, it should be pointed out that use of these
equations allows one to obtain directly through simple inten-
sity measurements �14� the nonlinear coefficients dij. This
can be done by fit of the existing experimental angle depen-
dence to the theoretical elements presented, including nu-
merical integrations indicated. Although this analysis is not
the object of this work, it is interesting to observe that con-
sidering just an integration over the nonlinear polarizability,

neglecting the contribution from �̃lp��k�, leads to azimuthal
asymmetries. For example, on the transverse plane �x ,y�,
normal to the pump laser,

Poe,x,y = �cos �c�d15 cos �c sin �cr� sin �cr

− cos �cr� �d22 cos �cr sin �c sin �cr�

+ d11 cos �c cos �cr� sin �cr��,

�d22 cos �cr� cos �c cos �cr sin �cr�

+ �− �d11 cos �cr� cos �cr� � + d15 sin �cr� �

�sin �c sin �cr,0� , �37�


	
0

2�

Poe,x,yd�cr� �2

= 4d15
2 �2 sin2 �cr� sin2 �cr� cos2 �c cos2 �c

+ sin2 �c� . �38�

The �simplified� azimuthal dependence indicated by Eq. �38�
shows a variable intensity for the SPDC rings �see experi-
mental result in Ref. �14��.

D. Modulation by external fields

Extending our knowledge about the microscopic behavior
of the light-matter interactions in SPDC would help us to
examine other possibilities to use entangled photon pairs.
External generalized fields can be added to allow modula-
tions to be applied to these systems. Pressure, electric and
magnetic fields are natural candidates to exert different
modifications on the optically nonlinear medium. The virtual
character of the SPDC process do not allow direct access to
energy levels involved ��t→0 leads to �E→�� but, never-
theless, it does not exclude one to observe important effects
related to these virtual processes. For example, a magnetic

field may modify electronic levels with detectable effects on
SPDC �type I or type II�. Induced defects can also be used to
probe for local symmetry variations in crystals �8�. Several
tools can be used to explore this fundamental problem of
OAM transfer by a nonlinear medium and may lead to a
better understanding of the underlying microscopic physics.
Future quantum applications of OAM entanglement, such as
quantum computation or teleportation, may depend on a deep
understanding of these OAM transfer process to achieve a
very efficient use and control of quantum entanglements.

VI. CONCLUSIONS

Explicit calculation of the equations determining SPDC
processes when OAM is involved were provided for crystals
of uniaxial symmetry. The light-matter nonlinear polarizabil-
ity components Ai,�k,s;k�,s�� were calculated giving the com-
plete angular dependence in the crystal reference system as
well as in the laboratory system. The Fourier transform

�̃lp��k� was analytically calculated and approximations used
were discussed. Phase matching conditions were obtained
and it was shown that spatial transverse coincidence struc-
tures can be calculated. In Ref. �2� it was shown that when-
ever �F�ks ,ki��2 �see Eq. �2�� lacks azimuthal symmetry, an
expansion of F�ks ,ki� in terms of the azimuthal angles re-
veals that—despite the energy conservation condition—the
initial orbital angular momentum l connected with a photon
in the incoming mode may not be transmitted to the SPDC
pair. Either the energy and momentum goes back as a pump
photon or the momentum transfer may be partial �phase cor-
relation loss�, with the signal and idler carrying the OAM
value l�� l. The obtained equations for Ai,�k,s;k�,s�� and

�̃lp��k� allows one to make these expansions to study spe-
cific cases. It is expected that the explicit treatment of the
probability amplitude given in this work may allow further
developments in the study of quantum images in SPDC pro-
cess involving OAM. Analytical tools are then provided to
indicate whether a specific SPDC process may or may not
transfer OAM to the conjugate photons. Straightforward ex-
tensions of this work can also be done such as to obtain
output profiles in second harmonic generation where one or
both of the input beams are in OAM states. The symmetry
properties of the light-matter interaction will be revealed by
the up-converted beam.
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APPENDIX

Expansion of the vector products give the cases �o ,o�,
�e ,e�, �o ,e� and �o ,e�:
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�
e1e1�

e2e2�

e3e3�

e2e3� + e3e2�

e1e3� + e3e1�

e1e2� + e2e1�

�
o,o

=�
eo,1eo,1�

eo,2eo,2�

eo,3eo,3�

eo,2eo,3� + eo,3eo,2�

eo,1eo,3� + eo,3eo,1�

eo,1eo,2� + eo,2eo,1�

� =�
sin �cr sin �cr�

cos �cr cos �cr�

0

0

0

− cos �cr sin �cr� − sin �cr cos �cr�

� , �A1�

�
e1e1�

e2e2�

e3e3�

e2e3� + e3e2�

e1e3� + e3e1�

e1e2� + e2e1�

�
e,e

=�
ee,1ee,1�

ee,2ee,2�

ee,3ee,3�

ee,2ee,3� + ee,3ee,2�

ee,1ee,3� + ee,3ee,1�

ee,1ee,2� + ee,2ee,1�

� =�
cos �cr cos �cr� cos �cr cos �cr�

cos �cr cos �cr� sin �cr sin �cr�

sin �cr sin �cr�

− sin �cr cos �cr� sin �cr� − cos �cr sin �cr sin �cr�

− cos �cr cos �cr sin �cr� − sin �cr cos �cr� cos �cr�

cos �cr cos �cr� �cos �cr sin �cr� + sin �cr cos �cr� �
� , �A2�

�
e1e1�

e2e2�

e3e3�

e2e3� + e3e2�

e1e3� + e3e1�

e1e2� + e2e1�

�
e,o

=�
ee,1eo,1�

ee,2eo,2�

ee,3eo,3�

ee,2eo,3� + ee,3eo,2�

ee,1eo,3� + ee,3eo,1�

ee,1eo,2� + ee,2eo,1�

� =�
− cos �cr cos �cr sin �cr�

cos �cr sin �cr cos �cr�

0

− sin �cr cos �cr�

sin �cr sin �cr�

cos �cr cos �cr cos �cr� − cos �cr sin �cr sin �cr�

� , �A3�

�
e1e1�

e2e2�

e3e3�

e2e3� + e3e2�

e1e3� + e3e1�

e1e2� + e2e1�

�
o,e

=�
eo,1ee,1�

eo,2ee,2�

eo,3ee,3�

eo,2ee,3� + eo,3ee,2�

eo,1ee,3� + eo,3ee,1�

eo,1ee,2� + eo,2ee,1�

� =�
− sin �cr cos �cr� cos �cr�

cos �cr cos �cr� sin �cr�

0

− cos �cr sin �cr�

sin �cr sin �cr�

cos �cr cos �cr� cos �cr� − sin �cr cos �cr� sin �cr�

� . �A4�

For the collinear and degenerate propagation, these vectors
give the particular cases described in Ref. �13�.

The nonlinear polarizabilities are obtained in a straight-
forward way, giving

Poo = �sin �cr� �d11 sin �cr − d16 cos �cr�

+ cos �cr� �d12 cos �cr − d16 sin �cr�,

sin �cr� �d21 sin �cr − d26 cos �cr�

+ cos �cr� �d22 cos �cr − d26 sin �cr�,

sin �cr� �d31 sin �cr − d36 cos �cr�

+ cos �cr� �d32 cos �cr − d36 sin �cr�� , �A5�

Pee = �Pee,xcr,Pee,ycr,Pee,zcr� , �A6�

where

Pee,xcr = sin �cr� �d13 sin �cr − cos �cr�d15 cos �cr + d14 sin �cr��

+ cos �cr� �− sin �cr�d15 cos �cr� + d14 sin �cr� �

+ cos �cr�d11 cos �cr� cos �cr + d16 cos �cr sin �cr�

+ d16 cos �cr� sin �cr + d12 sin �cr� sin �cr�� ,

Pee,ycr = sin �cr� �d23 sin �cr − cos �cr�d25 cos �cr + d24 sin �cr��

+ cos �cr� �− sin �cr�d25 cos �cr� + d24 sin �cr� �

+ cos �cr�d21 cos �cr� cos �cr + d26 cos �cr sin �cr�

+ d26 cos �cr� sin �cr + d22 sin �cr� sin �cr�� ,

Pee,zcr = sin �cr� �d33 sin �cr − cos �cr�d35 cos �cr + d34 sin �cr��

+ cos �cr� �− sin �cr�d35 cos �cr� + d34 sin �cr� �

+ cos �cr�d31 cos �cr� cos �cr + d36 cos �cr sin �cr�

+ d36 cos �cr� sin �cr + d32 sin �cr� sin �cr�� . �A7�
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Peo = �Peo,xcr,Peo,ycr,Peo,zcr� , �A8�

where

Peo,xcr = sin �cr�− d14 cos �cr� + d15 sin �cr� �

+ cos �cr�cos �cr� �d16 cos �cr + d12 sin �cr�

− sin �cr� �d11 cos �cr + d16 sin �cr�� ,

Peo,ycr = sin �cr�− d24 cos �cr� + d25 sin �cr� �

+ cos �cr�cos �cr� �d26 cos �cr + d22 sin �cr�

− sin �cr� �d21 cos �cr + d26 sin �cr�� ,

Peo,zcr = sin �cr�− d34 cos �cr� + d35 sin �cr� �

+ cos �cr�cos �cr� �d36 cos �cr + d32 sin �cr�

− sin �cr� �d31 cos �cr + d36 sin �cr�� . �A9�

Poe = �Poe,xcr,Poe,ycr,Poe,zcr� , �A10�

where

Poe,xcr = sin �cr� �− d14 cos �cr + d15 sin �cr�

+ cos �cr� �cos �cr�d16 cos �cr� + d12 sin �cr� �

− �d11 cos �cr� + d16 sin �cr� �sin �cr� ,

Poe,ycr = sin �cr� �− d24 cos �cr + d25 sin �cr�

+ cos �cr� �cos �cr�d26 cos �cr� + d22 sin �cr� �

− �d21 cos �cr� + d26 sin �cr� �sin �cr� ,

Poe,zcr = sin �cr� �− d34 cos �cr + d35 sin �cr�

+ cos �cr� �cos �cr�d36 cos �cr� + d32 sin �cr� �

− �d31 cos �cr� + d36 sin �cr� �sin �cr� . �A11�
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