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Identification of light modes usually requires careful considerations of the collecting geometry. This is
particularly true for states carrying orbital angular-momentum modes from spontaneous parametric down-
conversion due to the entanglement of the signal and idler fields. A detailed understanding of the generated
modes in a general case allows the design of efficient detection setups. This is true for distinct cases, e.g., when
multiple samplings are performed by repeated state generation or in single-photon cryptography or quantum
computation, where a photon state is generated within a short-time window and a single measurement is
performed. Aspects of nonorthogonality of signal and idler modes and effects of restrictions on the collecting

geometry are discussed in this work.
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States of light carrying orbital angular momentum (OAM)
are defined within spatial regions and their measurements
require a careful probing of these regions to allow state iden-
tification. Sometimes, space limitations are not detrimental
for state identification; in others, they are crucial. Light spin
or circularly polarized light states, for example, needs a
single wave-vector k approximation because “spin” is asso-
ciated with a specific wave vector. Distinctly, OAM states
demand finite regions of space for identification: a bundle of
wave vectors is needed to specify a given mode. While this is
an undisputed statement, sometimes specification of this ge-
ometry it is not a clear task and even the way one defines the
photon concept plays a role. Figure 1 depicts wave vectors
associated to an orbital angular-momentum mode near to a
focal plane. Association of wave vectors with an orbital
angular-momentum spatial mode U,(r,7) can be seen from

the quantized electric field E(+)(r,t) decomposed in the
plane-wave basis,

EX(r.0) =2 [p(K)eydye ™), (1)
k

where e, is the wunitary polarization vector and
lz(K)=—iNiwy/ (2€V). Decompose U,(r,?) in the set of uni-
tary matrices Uy, transforming between the two representa-
tions,

Ul(r9t) = E Uk,lei(k-r_wkl)’ (2)
k

they Obey ElUkJUZk’ = 51(’1(/ . lE(k)ekdk
=21 6 i lp(K')ey dy: and replacing it in E®(r,7), one ob-

tains
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EVr =22 Uzk,lE(k')ek,ak,] [E Uk,lei(km—wkz)]
! k

K’

= > qU/(r.1). (3)
/

In order to guarantee that an annihilated photon belongs to
the spatial mode U/(r,1), the collection setup has to accept
the set of wave vectors defining é,zEk,Uzk,lE(k’)ek/dk/ [or
in U/(r,t)== Uy e'® "] In cases where the experimental
setup constrains the collected photon to a smaller set of wave
vectors, what would be the effect on the distinguishability of
different OAM modes in spontaneous parametric down-
conversion (SPDC)? Understanding the generated modes in
SPDC is necessary to better understanding this problem as
well as the SPDC phenomenon itself. A brief presentation of
SPDC will be done to introduce the necessary definitions and
equations.

The phenomenon of SPDC has been well studied for
some decades; it is described by the wave state [1]
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FIG. 1. (Color online) Wave vectors k and K’ around the focus
in a mode with angular momentum /(#0); they do not cross the z
axis. Collecting a subset of the wave vectors defining the mode may
lead to a poor distinguishability between modes with different /
(e.g., detecting within area A_,;).
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|¢(t)> = |O> + 2 f dsk,f d3kAk,o’;k’,o”lg)(wk)

X 19 () T(Aw) P (AK)GT (K, 0)d (k' ,0)|0),
)

where two down-converted photons are generated in an en-
tangled state. Ak,u’;k',u”:X(li‘}g[(ek,u)j(ek’,v’)z+(ek’,(r’)j(ek,(r)zzl
is the amplitude of the nonlinear polarizability that
depends on the unitary polarization vectors (o polarized)
as well as on the nonlinear susceptibility. T(Aw)
=expliAw(t—t;,/2)]sin(Awt;,,/2)/ (Aw/2) is the time win-
dow function defining the Aw range given the interaction
time t,,, Aw=wy+w,—wp, Ak=k+k’'—Kkp. For t;,,— >,
T(Aw)— 7o(Aw).  ,(Ak)=[y d*riy,(r)exp(-iAk 1) and
¢, is the field amplitude in E(p, ¢,z;1)=,(r)e’“r-orlé.
For a pump beam with orbital angular momentum [ [2], one
has

ol
Vip (p’(lb’z)_\s’1+(z/zR)2 w(z) b w(z)?
p’ }

o] -2

kp*z } }
Xexp) —i| —5 5 + [ arctan(y/x
p{ |: 2(22 + lez) (y )
Xexpli(2p + [+ 1)arctan(z/zg)]. (5)

L? is the associated Laguerre polynomial and p*=x*+y>.
w(z) is the beam waist in a generic position z; zp is the
Rayleigh range. The spectral function J,p(Ak) carries the
specific pump mode that excites the nonlinear crystal. Using
cylindrical coordinates (p,¢,z), where dr’=pdddpdz, the

integrals in (p, @) in le(Ak) are performed giving [3]

~ . i ! 2
l//Ip(Ak) = WAlp(l/z)l(ZR/kP)Hl/ze ll(#/z)PkLﬂ(ZR/kP)Pk]
20+ /2
Xe—zR/kapieil arctan(Aky/Akx)f
2012
% e—iAkzze(—1+l+2p)arctan(zR/z)ei(1+l+2p)arctan[z/(ZzR)]dZ ,

(6)

where /. is the crystal thickness. With the usual condition
Zg> 1., one obtains

l’/;[p(Ak) = mA,(- 1)i(i/2)! (1 zg/kp)e P ™=08%)
sin(/.Ak./2)

Xeil arctan(Ak},/Akx)e—aZé:Z/ZL/lD(é_—) (l v /2) ,
Rz

(7

where &=(zz/kp)pt and p= \r’Ak§+Ak§.

It should be observed that in the wave-vector space, one
could identify arctan(Ak,/Ak,) with an angle ¢, associated
with the signal and idler pair. Differently from the starting
angle ¢=arctan(y/x) associated with the pump mode and
r-space variables, ¢, connects k-space variables from signal
and idler. In some simple cases (e.g., type I, degenerate case)
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o =(p+¢")/2, where ¢ and ¢’ are individual azimuthal
angles for signal and idler in the wave-vector space, respec-
tively, around the pump propagation direction—taken as the
quantization axis.

This is a convenient point to discuss nonorthogonality of
the signal and idler fields. Laguerre modes are orthogonal
satisfying the relation [jLg (x)Li(x)x%e™“dx=0 for m # n; one
could ask, e.g., if LF'(¢) in Eq. (7) can be decomposed into
products of Laguerre modes describing signal and idler as
independent contributions. The negative answer can be
physically understood due to the signal and idler entangle-
ment. From the definitions of Akj and &, it can be seen that
expansion of Lf(£) into products of independent terms in k
and k' cannot be done. Further processing or mode projec-
tions (filtering) of the SPDC generated light have to be ap-
plied to extract signal or idler in pure Laguerre modes [4].

|4h,(AK)|? is directly proportional to the crystal probabil-
ity to generate signal and idler pairs with wave vectors k and
k' given the paraxial incident pump field mode at kp [as
given by Eq. (5)]. In this theory, differently from usual treat-
ments, the outgoing signal and idler fields are not limited to
paraxial cases. It is understood that at each successful down-
conversion event, the excited crystal decays onto a single-
photon pair, along any emission directions k and k' allowed
by conservation laws. These laws define the so-called phase
matching conditions that specify maxima for Eq. (7). Basi-
cally, the maximum of sin(/.Ak./2)/(l.Ak,/2) is given by
values of the longitudinal variables Ak,=(k+k’—kp),, while
maximum of ¢~¥2&2[P(§) is given by values of the trans-
verse variables connected to £=(z/ kp)(Ak§+ Aki). Both Ak,
and ¢ will depend on the azimuthal angles if the refractive
indexes have azimuthal dependence [3]. Whenever this de-
pendence exists, the transfer of OAM from the pump beam
to the down-converted photons may be frustrated as shown
in [3,5]. The situation described in this work is not related to
frustrated OAM transfer.

A normalized wave state describing any entangled photon
pair from SPDC can be written [3]

_ (.p)
(&) = f &k J &k’ = [Tl Ter),
k ! ,
\/ f &k J KA
k k
®)

. ' 7y sin(lAk/2
Agﬂ;{’g:ﬂ—l)le‘f’z 51/2 L';’( §) il arctanAk, (kk")/ Ak, (k k ) sin(l Ak./2) K

1,Ak/2)

will be specified by phase matching a(ccordi)ng to
k’=kp+Ak—-k where Ak is taken at the value that maxi-
mizes Aglrfp) . OAM indexes for signal and idler photons are
not present in |1y) (say, ) or |1,/) (say, /;). An OAM mode
with index / has a mode signature distinct from a single
plane-wave signature. In Eq. (8) the effect of the nonlinear
polarizability Ay .k, has been neglected; it provides only
smooth contributions along the down-converted rings.

In optical systems used to transmit or collect SPDC
states, cases range from free-propagation geometry, where
in a distance of, say D=10 km, the wave-front dimension
for a coincidence donutlike structure will spread by
~D tan 0.01 ~ 100 m and telescopic guidance is necessary
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FIG. 2. (Color online) Used fraction of the scattered light as a
function of &, for /=0,1,2,3,4.

(e.g., [6] with a simple =0 case), Dove prisms [7] to select
OAM modes (I#0), and cases of small optical structures
where microguidance is necessary [8] (I#0).

In spherical coordinates k=k(k, ¢, ); imposing geometri-
cal restrictions Ak, Ag, and A@ on the detected light field
may lead to a poor mode distinguishability. Rough estimates
can be done without specifying particular cases and involves
direct considerations over ¢ and Ak.. However, it is hard to
use this approach to map it onto specific cases. The variables
& and Ak, are related to structures in the signal and idler
wave-vector space [3]. £ connects variables (k,k',¢,¢’) and
constrains them by phase match in the nonlinear medium
(see Ref. [3]). A detecting system that restricts too much the
collection area (e.g., see area A, in Fig. 1) is not able to
reveal the orbital angular-momentum value / associated to
the incoming mode. An estimate of restrictions on the range
of wave vectors collected is sketched in Fig. 2 for / values
ranging from /=0 to /=4. This plot represents the magnitude
square of the amplitude in Eq. (8) integrated from 0 to an
arbitrary value of {=§&,,. This gives a good idea of the effect
of a wave-vector cutoff. However, it should be emphasized
that the calculation for specific geometries needs specific
wave-vector boundaries and cannot be done with the com-
pact & coordinate. A complementary view is shown in Fig. 3
where the abscissa axis gives the [ values for the same range
of &, values.

While Fig. 1 shows a general collecting area, particular
shapes are involved in an experiment. Restriction in the col-
lecting geometries may be exemplified by stops with azi-

1.0

0.8

0.6

0.4

Used Fraction

0.2

0.0

FIG. 3. (Color online) Used fraction of the scattered light as a
function of / for some values of &, up to &.,,=30.
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FIG. 4. (Color online) Stop with azimuthal symmetry.

muthal symmetry (see Fig. 4) or sector shapes that break this
symmetry (see Fig. 5).

Even using a correct OAM filter (e.g., a proper OAM
mask) but with a K-restricting collection optics, some degree
of indistinguishability appears. For simplicity, assume that
one of the detecting systems (either signal or idler) detects
the correct mode while the other has a restrictive collection
optics as depicted in Figs. 4 and 5. Consider that a perfectly
absorbing stop is being used in front of a detection system
blocking a range of wave vectors from the generated SPDC.
In a simplified way, the accepted fraction can be written

(Lp)

A
|<P1p(§)>n = J kd3kf k’d3k’ = |1k>
VI,

&k f &K' [ALD[

X|]k’>’ (9)

where the symbol [ indicates a partial integration represent-
ing wave vectors allowed by the stopper (this simplification
just tries to avoid OAM decomposition to describe the wave
vectors reaching the detector). A measure of the overlap be-

tween these states is
f wdk f wd KA

F(pg.py) = Kpjlp) = :
f &’k f &k |ALD?
k k'

(10)

amp

The fraction represented by Eq. (10) represents the best pos-
sible identification of the generated wave state due to partial
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FIG. 5. (Color online) A stop without azimuthal symmetry.
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FIG. 6. (Color online) A x@ crystal is pumped by a uv laser
mode at \p=3511 A, with OAM /=2. Type I signal and idler rings
and the calculated coincidence structure at the idler position (wave-
vector space) given that a signal photon has been detected at k. The
coincidence structure corresponds to OAM /=2. The ring angles are
at §,=0.49 rad and 6;=0.54 rad.

detection imposed by the detecting geometries. As a simple
example, assume that a nonlinear crystal has been excited by
a laser mode carrying OAM [ and a down-converted signal
photon has been detected at a particular wave vector k. It is
also assumed that this interaction has azimuthal symmetry by
considering type I SPDC [5]. The assumption of a specific k
vector (a plane wave) implies that this photon has ;=0 and,
therefore, the idler photon has to carry the OAM [;=[ [5].
However, the detecting system for the idler photon has to
allow detection of a range of wave vectors that, in principle,
could reveal that the single idler photon could belong to an
OAM mode. Restrictions on the wave vectors collected will
be imposed by the use of stoppers either with azimuthal sym-
metry (see Fig. 4) or without azimuthal symmetry (see Fig.
5). As an example, a type I crystal potassium titanium oxide
phosphate (KTP) is chosen with ordinary refractive indexes
for signal and idler photons, pump-laser wavelength
Ap=3511 A with OAM [=2, signal \,=6328 A and idler
\;=6870 A;and /,=0.2 cm and zz=10 cm. Angles internal
to the medium will be considered for simplicity (Snell’s law
easily give external angles). Polar angles 6 and 6’ for signal
and idler that maximize the amplitude Aff’nf’g can be found
numerically. They give the position of the signal and idler
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FIG. 7. (Color online) Overlap due to idler wave-vector restric-
tions. In these examples, annular or sector openings allow light
collection and block outside the openings.

rings at their maximum amplitudes. Choosing ¢=0 around
the signal ring as the wave-vector position where a signal
photon is found and looking around the ¢’'=m on the idler
ring, the coincidence structure given by |Afiln;"p) | is calculated.
Figure 6 shows the signal and idler rings and the calculated
coincidence structure at the idler position. Figure 7 shows F
for a stopper allowing light within annular rings centered
around the idler ring as a function of spreads A@ and for a
stopper allowing light in sectors with openings A¢. Figure 7
summarizes the obtained results, where the overlap F' repre-
sents the maximum allowable information that can be ob-
tained due to geometrical restrictions. Differently from iden-
tifying polarization states, OAM states demand that a set of
wave vectors could be detected to allow reasonable identifi-
cation of the precise OAM value attached to the mode. This
is the case when repeated mode preparations are possible or
even when a single sampling is allowed [9]. In Ref. [9], no
detail on geometrical restrictions can be extracted and
were—in fact—of no interest, differently from the results of
the present Brief Report. A study of modifications introduced
by the use of spatial light modulators on the detection path of
SPDC can be seen in [10] aimed to the study of Fourier
relationship between angle and angular momentum. These
results call the attention to the fact that when designing a
collecting system for OAM modes, a careful consideration of
the range of wave vectors has to be taken into account. Ap-
plication for any other / value is straightforward.
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