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Abstract

Quantum entanglement has the potential to revolutionize
the entire field of interferometric sensing by providing many
orders of magnitude improvement in interferometer sensitiv-
ity. The quantum-entangled particle interferometer approach
is very general and applies to many types of interferometers.
In particular, without nonlocal entanglement, a generic clas-
sical interferometer has a statistical-sampling shot-noise lim-
ited sensitivity that scales like 1/

√
N , where N is the num-

ber of particles passing through the interferometer per unit
time. However, if carefully prepared quantum correlations are
engineered between the particles, then the interferometer sen-
sitivity improves by a factor of

√
N to scale like 1/N , which

is the limit imposed by the Heisenberg Uncertainty Princi-
ple. For optical interferometers operating at milliwatts of
optical power, this quantum sensitivity boost corresponds to
an eight-order-of-magnitude improvement of signal to noise.
This effect can translate into a tremendous science pay-off for
space missions. For example, one application of this new ef-
fect is to fiber optical gyroscopes for deep-space inertial guid-
ance and tests of General Relativity (Gravity Probe B). An-
other application is to ground and orbiting optical interferom-
eters for gravity wave detection, Laser Interferometer Gravity
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Observatory (LIGO) and the European Laser Interferometer
Space Antenna (LISA), respectively. Other applications are
to Satellite-to-Satellite laser Interferometry (SSI) proposed for
the next generation Gravity Recovery And Climate Experi-
ment (GRACE II).
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1 Introduction

In a conventional optical interferometer, in which light in a coher-
ent state enters via only one port, that the phase sensitivity scales
as 1/

√
n̄, where n̄ is the mean number of photons to have passed

through the interferometer in an integration time [1]. It would seem
that any desired sensitivity could be attained by simply increasing the
laser power and hence n̄. However, since the phase sensitivity scales
only slowly as 1/

√
n̄, the laser power rapidly becomes so large that

the power fluctuations at the interferometers mirrors introduce addi-
tional noise terms that eventually limit the devices overall sensitivity.
Steady improvements in optical laser gyroscope designs indicate that
quantum noise fluctuations such as these will be the dominant effect
limiting laser gyroscope accuracy in the near future. Much of the
early interest in coherent photon-state squeezing centered on over-
coming this signal-to-noise roadblock. In fact, much of the early
work on photon squeezing was motivated by the goal of improving
this power law in the sensitivity scaling in order to make space-borne,
optical interferometric gravity wave detectors.

In 1981 Caves showed that when phase-squeezed coherent states
are fed into both input ports of the interferometer, then phase sensi-
tivity can asymptotically approach 1/n̄ for large mean photon num-
ber n̄, which is proportional to the optical input power [2]. This is a
great achievement in that the total laser power required for a given
amount of phase sensitivity is greatly reduced. For a typical milli-
watt laser gyro or optical interferometer gravity wave detector, this
amounts to about an eight order-of-magnitude increase in rotation
or phase-shift sensitivity of the interferometer from the quadratic in-
crease in the power law alone. On the other hand, in 1986, Yurke
as well as Yuen had considered the question of phase noise reduction
using correlated quantum particles in number states – rather than
squeezed coherent states – also incident upon both input ports of
a Mach-Zehnder interferometer in a highly quantum-entangled fash-
ion [3, 4]. For quantum number states – unlike squeezed coherent
states – there are no number fluctuations. This rules out squeez-
ing in the conventional sense. Nevertheless, Yurke was able to show
that if N particles entered into each input port of the interferometer
in nearly equal numbers – and in a highly correlated and entangled
fashion – then it was indeed possible to obtain the desired asymptotic
Heisenberg-limited phase sensitivity scaling of order 1/N for large N .
This should be compared to the scaling of 1/

√
N that is the best one

can do using uncorrelated particles or only one input port.
Shortly after Yurke’s first paper was published, there appeared

a second, related paper by Yurke, McCall, and Klauder, indicating
how such a Heisenberg-limited (1/N) interferometer might be ob-
tained using correlated photons emanating from a nonlinear, optical
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four-wave mixing device [5]. Since then, there have been a large num-
ber of seemingly independent papers suggesting related ideas of using
correlated number-state photons to make an improved interferome-
ter, using a wide variety of nonlinear optical devices for correlated
photon generation, and different choices of entangled photon input
states. A recent paper by Hall and co-workers suggested that the req-
uisite entangled photons can be produced at high power in a nonlinear
optical parametric oscillator, and then sent into both input ports of
a Mach-Zehnder interferometer to achieve the desired increase inter-
ferometric gyroscopic sensitivity, approaching the Heisenberg limited
quadratically-increased power law of 1/N [6].

A similar improvement in measurement sensitivity can be achieved
in the determination of frequency standards and spectroscopy. Wine-
land and co-workers first showed that the best possible precision in
frequency standard is obtained by using maximally entangled states
[7]. Similarly, it was shown that this improved sensitivity can be ex-
ploited in atom-laser gyroscopes [8]. In later sections we describe gen-
eral features in interferometric sensors and their quantum enhance-
ment.

2 Quantum limit in phase estimation

Consider an ensemble of N two-state systems in the state:

|ϕ〉 =
1√
2
(|0〉 + eiϕ|1〉) (1)

where |0〉 and |1〉 denote the two basis states. In a Mach-Zehnder
interferometer, the input light field is divided into two different paths
by a beam splitter, and recombined by another beam splitter. The
phase difference between the two paths is then measured by balanced
detection of the two output modes (see Fig. 1). We may think of
the upper and lower paths as the two states in which a single light
quanta can occupy. Then, if the photons enter only into the port
A, the input state can be represented as |0〉. After the 50/50 beam
splitter this transforms to (|0〉+ |1〉)/√2 (up to a certain phase). And
the quantum state |ϕ〉 now represents the single photon state after
the phase shifter.

The phase information can be obtained by measurement of an
observable Â = |0〉〈1| + |1〉〈0|. The expectation value of Â is then
given by

〈ϕ|Â|ϕ〉 = cosϕ . (2)

When we repeat this experiment N times, we obtain 〈ϕR|ÂR|ϕR〉 =
N cosϕ, where |ϕR〉 = |ϕ〉1 . . . |ϕ〉N , and ÂR = ⊕N

k=1Â
(k). Since

Â2
R = 11, the variance of ÂR, given N samples, is readily computed
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Figure 1: An typical Mach-Zehnder interferometer where the input
light is incident on input port A while only vacuum comes into input
port B.

to be (∆AR)2 = N(1 − cos2 ϕ) = N sin2 ϕ. According to estimation
theory[9], we have

∆ϕSL =
∆AR

|d〈ÂR〉/dϕ| =
1√
N

. (3)

This is the standard variance in the parameter ϕ after N trials. In
other words, the uncertainty in the phase is inversely proportional to
the square root of the number of trials. This is called the shot-noise
limit.

With a coherent laser field as the input the phase sensitivity is
given by the shot noise limit N− 1

2 , where N is the average number
of photons passing though the interferometer during measurement
time. When the number of photons is exactly known (i.e., the input
is a Fock state |N〉), the phase sensitivity is still given by N− 1

2 ,
indicating that the photon counting noise does not originate from
the intensity fluctuations of the input beam, but rather from the
Poissonian “sorting noise” of the beam splitter [8].

Now consider a maximally entangled “N00N” state

|ϕN 〉 ≡ 1√
2
|N, 0〉 + eiNϕ|0, N〉 , (4)

where |N, 0〉 and |0, N〉 are collective states of N particles, defined as

|N, 0〉 = |0〉1|0〉2 · · · |0〉N
|0, N〉 = |1〉1|1〉2 · · · |1〉N . (5)

The relative phase eiNϕ is accumulated when each particle in state |1〉
acquires a phase shift of eiϕ. An important question now is—what
do we need to measure in order to extract the phase information?
Recalling the single-particle case of Â = |0〉〈1| + |1〉〈0|, we need an
observable that does what the operator |0, N〉〈N, 0| + |N, 0〉〈0, N |
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does. For the given state of Eq. (4), we can see that this can be
achieved by an observable, ÂN = ⊗N

k=1Â
(k). The expectation value

of ÂN is then
〈ϕN |ÂN |ϕN 〉 = cosNϕ , (6)

where the N -fold increase in oscillation frequency is the origin of
the quantum lithography effect—discussed in Sec. 5, below. Again,
Â2

N = 11, and (∆AN )2 = 1 − cos2 Nϕ = sin2 Nϕ. Using Eq. (3)
again, we obtain the so-called Heisenberg limit (HL) of the minimal
detectable phase:

∆ϕHL =
∆AN

|d〈ÂN 〉/dϕ| =
1
N

. (7)

The precision in ϕ is increased by a factor
√

N over the standard
shot-noise limit. Of course, the preparation of a quantum state such
as Eq. (4) is essential to the given protocol [7].

3 Quantum Rosetta stone

In a Ramsey spectroscope, atoms are put in a superposition of the
ground state and an excited state with a π/2-pulse (Fig. 2b). After
a time interval of free evolution, a second π/2-pulse is applied to the
atom and, depending on the relative phase shift obtained by the ex-
cited state in the free evolution, the outgoing atom is measured either
in the ground or the excited state. Repeating this procedure N times
determines the phase ϕ with precision 1/

√
N . This is essentially an

atomic clock. Both procedures, the optical Mach-Zehnder interfer-
ometer and the Ramsey spectroscope, are methods to measure the
phase shift, either due to the path difference in the interferometer, or
to the free-evolution time in the spectroscope. When we use entan-
gled atoms in the spectroscope, we can again increase the sensitivity
of the apparatus.

A similar situation can be found in a quantum circuit where a
qubit that undergoes a Hadamard transform H , then picks up a rel-
ative phase and is then transformed back with a second Hadamard
transformation (Fig. 2c). This representation is more mathematical
than the previous two, and it allows us to extract the unifying math-
ematical principle that connects the three systems. In all protocols,
the initial state is transformed by a discrete Fourier transform (beam
splitter, π/2-pulse or Hadamard), then picks up a relative phase,
and is transformed back again. This is the standard quantum finite
Fourier transform, such as used in the implementation of Shor’s al-
gorithm [10]. It is not the same as the classical fast-finite algorithm
in engineering—it is exponentially faster.
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Figure 2: Three distinct representations of a phase measurement: (a)
a Mach-Zehnder interferometer, (b) Ramsey spectroscope, and (c) a
generic quantum logic gate. The two basis states of a qubit, |0〉 and
|1〉, may be regarded as the atomic two levels, or the two paths in
a Mach-Zehnder interferometer. The state |ϕ〉 can be regarded as a
single photon state just before the second beam splitter in the Mach-
Zehnder interferometer, or the single atom state just before the last
π/2-pulse in the Ramsey interferometer.
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As a consequence the phase shift (which is hard to measure di-
rectly) is applied to the transformed basis. The result is a bit flip
in the initial, computational, basis {|0〉, |1〉}, and this is readily mea-
sured. We call the formal analogy between these three systems the
quantum Rosetta stone [11]. These schemes can be generalized from
measuring a simple phase shift to evaluating the action of a uni-
tary transformation Uf associated with a complicated function f on
multiple qubits. Such an evaluation is also known as a quantum com-
putation. The concept of quantum computers is therefore to exploit
quantum interference in obtaining the outcome of a computation of
f . In this light, a quantum computer is nothing but a complicated
multiparticle quantum interferometer [12].

This logic may also be reversed: a quantum interferometer is
therefore a simple quantum computer. Often, when discussing, Heisen-
berg-limited interferometry with complicated entangled states, one
encounters the critique that such states are highly susceptible to noise
and even one or a few uncontrolled interactions with the environment
will cause sufficient degradation of the device and recover only the
shot-noise limit. Apply the quantum Rosetta stone by replacing the
term “quantum interferometer” with “quantum computer” and we
recognize the exact same critique that has been leveled against quan-
tum computers for years. However, for quantum computers, we know
the response—to apply quantum error-correcting techniques and en-
code in decoherence free subspaces. Quantum interferometry is just
as hard (or easy) as quantum computing! The same error-correcting
tools that we believe will make quantum computing a reality, will
also be enabling for quantum interferometry.

4 Heisenberg-limited interferomery

There have been various proposals for achieving Heisenberg-limited
sensitivity, corresponding to different physical realizations of the state
|ϕN 〉 and observable ÂN in Eq. (6). Here, we discuss three different
approaches, categorized according to the different quantum states.

4.1 Yurke states

By utilizing the su(2) algebra of spin angular momentum, in 1986
it was shown that [3, 4, 5] with a suitably correlated input state
the phase sensitivity can be improved to 1/N . Let â†, b̂† denote
the creation operators for the two input modes in Fig. 2a. In the
Schwinger representation, the common eigenstates of Ĵ2 and Ĵz are
the two-mode Fock states |j, m〉 = |j + m〉A|j − m〉B, where

Ĵx = (â†b̂ + b̂â†)/2 ; Ĵy = −i(â†b̂ − b̂â†)/2 ;
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Ĵz = (â†â − b̂†b̂)/2 ; Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z . (8)

The interferometer can be described by the rotation of the angu-
lar momentum vector, where â†â + b̂†b̂ = N = 2j, and the 50/50
beam splitters and the phase shift are corresponding to the operators
eiπĴx/2 and eiϕĴz , respectively.

For spin-1/2 fermions, the entangled input state (which we call
the ‘Yurke state’) |ϕN 〉Y is given by

|ϕN 〉Y =
1√
2

[∣∣j = N
2 , m = 1

2

〉
+

∣
∣j = N

2 , m = − 1
2

〉]

=
1√
2

[∣∣N+1
2 , N−1

2

〉
AB

+
∣
∣N−1

2 , N+1
2

〉
AB

]
, (9)

where the notion of |j, m〉 follows the definition given in Eq. (8) and
the subscripts AB denote the two input modes. For bosons, a similar
input state, namely |j = N/2, m = 0〉 + |j = N/2, m = 1〉, has been
proposed [5, 4]. The measured observable ÂN is given by Ĵz . After
evolving the state |ϕN 〉Y (in the Ramsey spectroscope or the Mach-
Zehnder interferometer with phase shift ϕ), the phase sensitivity ∆ϕ
can be determined to be proportional to 1/N for special values of
ϕ. Although the input state of Eq. (9) was proposed for spin-1/2
fermions, the same state with bosons also yields the order of 1/N
phase sensitivity [8].

4.2 Dual Fock states

In 1993 Holland and Burnett proposed the use of so-called dual Fock
states |N〉A⊗|N〉B for two input modes A and B of the Mach-Zehnder
interferometer in order to achieve Heisenberg-limited sensitivity [13].
Such a state can be generated, for example, by degenerate parametric
down conversion, or by optical parametric oscillation [6].

To obtain increased sensitivity with dual Fock states, some special
detection scheme is needed. In a conventional Mach-Zehnder inter-
ferometer only the difference of the number of photons at the output
is measured. Similarly, in atom interferometers, measurements are
performed by counting the number of atoms in a specific internal
state using fluorescence. For the schemes using dual Fock-state in-
put, an additional measurement is required since the average in the
intensity difference of the two output ports does not contain infor-
mation about the phase shift. One measures both the sum and the
difference of the photon number in the two output modes [13]. The
sum contains information about the total photon number, and the
difference contains information about the phase shift. Information
about the total photon number then allows for post-processing the
information about the photon-number difference. A combination of
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a direct measurement of the variance of the difference current and a
data-processing method based on Bayesian analysis was proposed [6].

For atom interferometers a quantum nondemolition measurement
is required to give the total number of atoms [15]. In a similar context,
Yamamoto and co-workers devised an atom interferometry scheme
that uses a squeezed π/2 pulse for the readout of the input state
correlation [14].

Due to its simple form, the dual Fock-state approach sheds new
light on Heisenberg-limited interferometry. In particular, exploit-
ing the fact that atoms in a Bose-Einstein condensate can be rep-
resented by Fock states, Bouyer and Kasevich, as well as Dowling,
have shown that the quantum noise in atom interferometry using dual
Bose-Einstein condensates can also be reduced to the Heisenberg limit
[15, 8, 16].

4.3 Maximally entangled states

The third category of states is given by the maximally entangled
states. It was shown by Wineland and co-workers [7] that the optimal
frequency measurement can be achieved by using maximally entangled
states, which have the following form:

|ϕN 〉 =
1√
2

(|N, 0〉AB + |0, N〉AB) . (10)

This state has an immediate resemblence with the state in Eq. (6)
after acquiring a phase shift of eiNϕ.

In terms of quantum logic gates, the maximally correlated state
of the form of Eq. (10) can be made using a Hadamard gate and a se-
quence of C-NOT gates. Note that one distinctive feature, compared
to the other schemes described above, is that the state of the form
Eq. (10) is the desired quantum state after the first beam splitter in
the Mach-Zehnder interferometer, not the input state as discussed
in Sec. 2. In that the desired input state is described as the inverse
beam-splitter operation to the state of Eq. (10).

All the interferometric schemes using entangled or dual-Fock in-
put states show a sensitivity approaching 1/N only asymptotically.
However, using the maximally correlated states of Eq. (10), the phase
sensitivity is equal to 1/N , even for a small N . On the other hand, for
atom interferometers using Bose-Einstein condensates, it is recently
pointed out that the dual Fock state is superior to the maximally
correlated states when losses are present [16].

5 Quantum interferometric lithography

Quantum correlations can also be applied to optical lithography. In
recent work it has been shown that the Rayleigh diffraction limit in
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optical lithography can be circumvented by the use of path-entangled
photon number states [17]. The desired N -photon path-entangled
state, for N -fold resolution enhancement, is again of the form given
in Eqs. (4) and (10).

Consider the simple case of a two-photon Fock state |1〉A|1〉B,
which is a natural component of a spontaneous parametric down-
conversion event. After passing through a 50/50 beam splitter, it
becomes an entangled number state of the form |2〉A|0〉B + |0〉A|2〉B.
Quantum interference suppresses the probability amplitude of |1〉A|1〉B.
According to quantum mechanics, it is not possible to tell whether
both photons took path A or B after the beam splitter.

When parametrizing the position x on the surface by ϕ = πx/λ,
the deposition rate of the two photons onto the substrate becomes
1 + cos 2ϕ, which has twice better resolution λ/8 than that of single-
photon absorption, 1 + cosϕ, or that of uncorrelated two-photon ab-
sorption, (1+cosϕ)2. For N -photon path-entangled state of Eq. (10),
we obtain the deposition rate 1 + cosNϕ, corresponding to a resolu-
tion enhancement of λ/(4N).

It is well known that the two-photon path-entangled state of
Eq. (10) can be generated using a Hong-Ou-Mandel (HOM) inter-
ferometer [18] and two single-photon input states. A 50/50 beam
splitter, however, is not sufficient for producing path-entangled states
with a photon number larger than two [19].

The maximally correlated state of the form of Eq. (10) can be
made using a Hadamard gate and a sequence of N consecutive C-
NOT gates. However, building optical C-NOT gates normally re-
quires large optical nonlinearities. Consequently, in generating such
states it is commonly assumed that large χ(3) nonlinear optical com-
ponents are needed for N > 2. Knill, Laflamme, and Milburn pro-
posed a method for creating probabilistic single-photon quantum
logic gates based on teleportation. The only resources for this method
are linear optics and projective measurements [20]. Probabilistic
quantum logic gates using polarization degrees of freedom have been
demonstrated by Franson and co-workers [21, 22]. These works make
linear optics a viable candidate for quantum computing. Using the
concept of projective measurements, we have previously demonstrated
that the desired path-entangled states can be created when condi-
tioned on the measurement outcome [23, 24].

6 Conclusion

There are certain optical decoherence processes that will serve to
prevent sensors from operating at the 1/N Heisenberg limit. Chief
among these are noise terms in the nonlinear photon production and
random photon loss from the interferometer in transit, due to the
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inefficiency of the detectors. We now begin to see the relationship
between the problems of quantum computing and that of Heisenberg-
limited interferometry. In the case of quantum computing, interfer-
ence and quantum entanglement are used to compute a result that can
not be obtained on a classical computer. In the case of the quantum
sensor, interference and quantum entanglement are used to obtain a
sensitivity that can not be gotten on a classical device. In both cases,
decoherence in the actual physical device introduces errors that de-
grade the outcome of the measurement away from the desired ideal
result. What is different between these two fields, up until now, is
that quantum error correction schemes and circuits have been devel-
oped for quantum computers to overcome the losses to decoherence,
but such schemes have yet to be worked out for the interferometric
setting of the quantum sensor-interferometer.

Quantum computing in its current state of infancy presents two
extremes: mind-boggling computational potential, which requires
daunting theoretical and engineering problems to be solved [25]. These
two philosophical poles seem to also be present in quantum sensing,
but to a much lesser extreme. For instance, the quantum-computing
problem of factoring a 200-digit number seems to require a large-scale,
universal, programmable, quantum-digital computer. However, the
simple quantum error-correcting circuits needed to obtain improved
sensors may turn out to be more technologically feasible “analog”
quantum devices that carry out a much simpler task. Since the quan-
tum sensor requires highly entangled and correlated particles for the
input state, this technological problem has many of the same diffi-
cult drawbacks in making a universal digital quantum computer, but
at a much smaller analog scale. Even in the presence of quantum
noise and decoherence, the recent simulations indicate a substantial
improvement over classical sensors can be obtained—at least for a
particular choice of correlated input states [6, 16]. The challenge
then is to see if quantum error correction and coherence protection
can be implemented on top of these or similar schemes in order to
approach the 1/N quantum Heisenberg limit.
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