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Quantum Imaging 

- Entangled state and thermal light 
- Foundamental and applications
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Spatial Resolution

So Si Image Plane

Imaging lens: finite size
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“Ghost” Imaging with entangled photon pairs
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“Ghost” Image and “Ghost” Interference 
EPR Experiment in momentum-position 

PRL, 74, 3600 (1995); PRA, 52, R3429 (1995).



Classical: never!
- classical statistical measurements

∆(x1 − x2) = (∆x1)
2 + (∆x2)2 > Max(∆x1, ∆x2)

∆( p1 + p2) = (∆p1)
2 + (∆p2)2 > Max(∆p1, ∆p2)



H = H1 + H2; Hinteraction = 0
Space-like separated measurement events.

*

(1)No interaction between two distant quanta;
(2) No action-at-a-distance between individual 

measurements.

To EPR: the two quanta are independent as well as 
the measurements, so that

*

∆(x1 − x2) = (∆x1)
2 + (∆x2)2 > Max(∆x1, ∆x2)

∆( p1 + p2) = (∆p1)
2 + (∆p2)2 > Max(∆p1, ∆p2)



Classically correlated systems: one may consider 
building an ensemble of particle-pairs to force each 
pair with                      and                           ,  so that   

.  In this case, however,                         
∆p1 = 0, ∆p2 = 0

∆(p1 + p2) = 0
p1 + p2 = p0

∆(x1 − x2) ~ ∞



Quantum: yes!
- EPR: if the two quanta are entangled

∆(x1 − x2) = 0
∆( p1 + p2) = 0

∆x1 = ∞, ∆x2 = ∞
∆p1 = ∞, ∆p2 = ∞

Although { }



Can quantum mechanical physical reality be
considered complete?

Einstein, Poldosky, Rosen, Phys. Rev.  47, 777 (1935).

(1) Proposed the entangled two-particle state according to 
the principle of quantum superposition:

(2) Pointed out an surprising phenomenon: the momentum 
(position) for neither subsystem is determinate; however, if 
one particle is measured to have a certain momentum (posit-
ion), the momentum (position) of its “twin” is determined 
with certainty, despite the distance between them!

Ψ x1,x2( )= dpψp x2( )up x1( )∫ ⇒ δ(x1 − x2 + x0)

Ψ p1, p2( )= dx ϕx x2( )vx x1( )∫ ⇒ δ(p1 + p2)



The apparent contradiction deeply troubled Einstein.

While one sees the measurement on (p1+p2) and 
(x1-x2) of two individual particles satisfy the EPR 
δ-function and believes the classical inequality, 
one might easily be trapped into considering either
there is a violation of the uncertainty principle or
there exists action-at-a-distance.



Violation of the uncertainty principle ?

∆ p1 + p2( )= 0 ∆ x1 − x2( )= 0

Simultaneously !

(p1+p2) and (x1-x2) are not 
conjugate variables !!!!
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1
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1
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Conjugate Variables:

(x1 + x2) ⇔ (p1 + p2)
(x1 − x2) ⇔ (p1 − p2)

⇓
∆(x1 + x2) = ∞ ⇔ ∆(p1 + p2) = 0
∆(x1 − x2) = 0 ⇔ ∆(p1 − p2) = ∞



EPR δ-function:
-- perfect entangled system

∆(x1 − x2) = 0, ∆( p1 + p2) = 0.

Although: ∆x1 ≈ ∞, ∆x2 ≈ ∞, ∆p1 ≈ ∞, ∆p2 ≈ ∞.

EPR Inequality:
-- non-perfect entangled system

∆(x1 − x2) < min(∆x1, ∆x2)
∆( p1 + p2) < min(∆p1, ∆p2)



Then, why Einstein … ?

Observation:

∆(x1 − x2) = 0, ∆( p1 + p2) = 0

Believing:

∆(x1 − x2) > Max(∆x1, ∆x2)
∆( p1 + p2) > Max(∆p1, ∆p2)

Conclusion:

∆x1 = 0, ∆p1 = 0
∆x2 = 0, ∆p2 = 0

(Violation of the …)



The interpretation ?

Quantum entanglement



Two-photon is not two photons !

2 ≠1+1

Classical: 
Two Wavepackets Entanglement: 

A non-factorable 
2-D Wavepacket



Biphoton State: Spontaneous Parametric Down Conversion 

Two-photon Pure State

The signal (idler) photon can 
have any energy (momentum), 
however, if one of the 
photons is measured at 
certain energy (momentum) its 
twin must be at a certain 
energy (momentum). 

Ψ = δ(ωs + ω i −ω p )
s,i
∑ δ(k s + k i − k p ) ˆ a s

+ ˆ a i
+ 0



Operational approach:

G(2)(x1,x2) = E1
(−)E2

(−)E2
(+)E1

(+)

Pure state:

G(2)(x1,x2)
= Ψ E1

(−)(x1)E2
(−)(x2)E2

(+)(x2)E1
(+)(x1) Ψ

= 0 E2
(+)(x2)E1

(+)(x1) Ψ
2



SPDC 
A biphotonΨ(t1,t2)≡ 0 E2

(+)(t2)E1
(+)(x1) Ψ

Effective Two-photon
wavefunction

Ψ(t1,t2) = Ft1 +t2
{ f (ωp −ωp0)} Ft1−t2

{g(ωs −ωs0)}e−iωs 0t1 e−iωi 0t2



Two-photon imaging

Field Operators:

  E j
(+)(r j ,t j ) = dkT dω a∫∫ (ω,kT ) e−iωt j g j (ω,kT ;z j ,

G
ρ j )

  g j (ω,kT ;z j ,
G
ρ j ) :  Green’s function (optical transfer function).

determined by the experimental setup.

  G
(2) = Ψ(

G
ρ 1,

G
ρ 2) 2

⇓

The calculation of G(2) is lengthy but straightforward:

  ∆(
G
ρ 1 −

G
ρ 2)EPR ~ 0

It is the two-photon coherent superposition made it possible!



Although questions regarding fundamental 
issues of quantum theory still exist, quantum 
entanglement has indeed brought up a novel 
concept or technology in nonlocal position-
ing and timing measurements with high 
accuracy, even beyond the classical limit.



Question:

Can “ghost” image be simulated classically ?

⇑
Image but not projection!!!



Yes 
Experimentally 

Thermal Light Imaging
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Magic Mirror and Ghost Imaging
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Experimental Result: Ghost image of a double-slit.

A. Valencia, G. Scarcelli, M. D'Angelo, and Y.H. Shih, Phys. Rev. Lett. 94, 063601 (2005).
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Two-photon thermal light Imaging:
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Magic Mirror ?
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It is useful !



A “Ghost” Camera in Space
(Nonlocal)

Space Station

Laboratory
CCD
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A “Magic Mirror” for X-ray 3-D Imaging
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It is fundamentally interesting !!

50% momentum-momentum, position-position EPR correlation

Where it comes from ?
Remember: thermal light is chaotic !



It comes from Hanbeury Brown - Twiss … ???

It comes from “photon bunching” … ???

We are not satisfied !



The physics behind ???
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Correlated
Lasers
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x1, x2

G(2) = G(2)(x1) × G(2)(x2) 

A product of two independent first-order-pattern.



SPDC
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Quantum lithography
(ultra-resolution: beyond classical limit)
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TwoTwo--photon diffraction and quantum lithographyphoton diffraction and quantum lithography
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Experiment: M. D’Angelo, et al, PRL, 87, 013602 (2001).

Theory: A.N. Boto, et al. PRL 85, 2733 (2000).



Experimental Data Experimental Data 
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It is the result of two-photon coherent superposition.
It measures the second-order correlation between the 
object plane and the image plane, defined by the 
Gaussian thin lens equation.

The published measurement was on the Fourier transform plane (far-field).       
PRL, 87, 013602 (2001).



Super-resolution:
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““GhostGhost”” Shadow (Projection)Shadow (Projection)

ˆ ρ cl = dk1∫ dk2∫ P(k1)δ(k1 + k2) ρ1
(k1 ) ⊗ ρ2

(k 2 )

Bennink et al. PRL   89, 113601 (2002)


