MURI Kick-Off Meeting Rochester, June 9-10, 2005

Quantum Imaging

- Entangled state and thermal light

- Foundamental and applications

Optical Projection (Chinese shadow, x-ray, …)

Momentum $(p_1) \implies$ Momentum (p_2)

No image plane is defined.

Optical Imaging:

Point (object Plane) → Point (image plane) Position (x_1) \longrightarrow \implies Position (x_2)

 $\left\{ \begin{array}{c} \text{Geometric optics} \\ \text{Image lens:} \rightarrow \infty \end{array} \right\}$ $\frac{1}{S_0} + \frac{1}{S_1} = \frac{1}{f}$ and $\Delta(x_1 - x_2) = 0$

Spatial Resolution

"Ghost" Imaging with entangled photon pairs

$$
\Delta \vec{x}_1 = \infty \quad \Delta \vec{x}_2 = \infty \quad \Leftrightarrow \quad \vec{x}_1 - \vec{x}_2 = 0
$$

$$
\Delta \vec{k}_1 = \infty \quad \Delta \vec{k}_2 = \infty \quad \Leftrightarrow \quad \vec{k}_1 + \vec{k}_2 = 0
$$

1 $S_{\,0}$ + 1 *S i* = 1 *f* Point x_1 (object plane) \iff Point x_2 (image plane)

"Ghost" Image and "Ghost" Interference EPR Experiment in momentum-position PRL, 74, 3600 (1995); PRA, 52, R3429 (1995).

Classical: never! - classical statistical measurements

$$
\Delta(x_1 - x_2) = \sqrt{(\Delta x_1)^2 + (\Delta x_2)^2} > Max(\Delta x_1, \Delta x_2)
$$

$$
\Delta(p_1 + p_2) = \sqrt{(\Delta p_1)^2 + (\Delta p_2)^2} > Max(\Delta p_1, \Delta p_2)
$$

 $H = H_1 + H_2$; $H_{\text{interaction}} = 0$ Space-like separated measurement events. \ast (1)No interaction between two distant quanta; (2) No action-at-a-distance between individual measurements. \ast

To EPR: the two quanta are independent as well as the measurements, so that

$$
\Delta(x_1 - x_2) = \sqrt{(\Delta x_1)^2 + (\Delta x_2)^2} > Max(\Delta x_1, \Delta x_2)
$$

$$
\Delta(p_1 + p_2) = \sqrt{(\Delta p_1)^2 + (\Delta p_2)^2} > Max(\Delta p_1, \Delta p_2)
$$

Classically correlated systems: one may consider building an ensemble of particle-pairs to force each pair with $p_1 + p_2 = p_0$ and $\Delta p_1 = 0$, $\Delta p_2 = 0$, so that $\Delta(p_1 + p_2) = 0$. In this case, however, $\Delta(x_1 - x_2)$ $\sim \infty$

Quantum: yes! - E P R: if the two quanta are entangled

$$
\Delta(x_1 - x_2) = 0
$$

$$
\Delta(p_1 + p_2) = 0
$$

Although
$$
\left\{\n \begin{array}{ll}\n \Delta x_1 = \infty, & \Delta x_2 = \infty \\
\Delta p_1 = \infty, & \Delta p_2 = \infty\n \end{array}\n \right\}
$$

Can quantum mechanical physical reality be considered complete?

Einstein, Poldosky, Rosen, Phys. Rev. **47**, 777 (1935).

(1) Proposed the entangled two-particle state according to the principle of quantum superposition:

$$
\Psi(x_1, x_2) = \int dp \, \psi_p(x_2) u_p(x_1) \Rightarrow \delta(x_1 - x_2 + x_0)
$$

$$
\overline{\Psi}(p_1, p_2) = \int dx \, \varphi_x(x_2) v_x(x_1) \Rightarrow \delta(p_1 + p_2)
$$

(2) Pointed out an surprising phenomenon: the momentum (position) for neither subsystem is determinate; however, if one particle is measured to have a certain momentum (position), the momentum (position) of its "twin" is determined with certainty, *despite the distance between them!*

The apparent contradiction deeply troubled Einstein.

While one sees the measurement on (p_1+p_2) and (x_1-x_2) of two individual particles satisfy the EPR δ-function and believes the classical inequality, one might easily be trapped into considering either there is a violation of the uncertainty principle or there exists action-at-a-distance.

Violation of the uncertainty principle ?

$$
\Delta(p_1 + p_2) = 0 \quad \Delta(x_1 - x_2) = 0
$$

Simultaneously !

 (p_1+p_2) and (x_1-x_2) are not conjugate variables !!!!

$$
\Psi(x_1, x_2) = \frac{1}{2\pi\hbar} \int dp_1 dp_2 \delta(p_1 + p_2) e^{ip_1 x_1/\hbar} e^{ip_2 (x_2 - x_0)/\hbar}
$$

= $\frac{1}{2\pi\hbar} \int d(p_1 + p_2) \delta(p_1 + p_2) e^{i(p_1 + p_2)(x_1 + x_2)/2\hbar}$
 $\times \int d(p_1 - p_2)/2 e^{i(p_1 - p_2)(x_1 - x_2)/2\hbar}$
= $1 \times \delta(x_1 - x_2 + x_0)$

$$
\overline{\Psi}(p_1, p_2) = \frac{1}{2\pi\hbar} \int dx_1 dx_2 \delta(x_1 - x_2 + x_0) e^{-ip_1x_1/\hbar} e^{-ip_2(x_2 - x_0)/\hbar}
$$
\n
$$
= \frac{1}{2\pi\hbar} \int d(x_1 + x_2) e^{-i(p_1 + p_2)(x_1 + x_2)/2\hbar}
$$
\n
$$
\times \int d(x_1 - x_2)/2 \delta(x_1 - x_2') e^{-i(p_1 - p_2)(x_1 - x_2)/2\hbar}
$$
\n
$$
= \delta(p_1 + p_2) \times 1
$$

Conjugate Variables: $(x_1$ $+x_2$) \Leftrightarrow $(p_1$ $+$ $p_2)$ $(x_1 -x_2$) \Leftrightarrow $(p_1 -p_{2})$ ⇓

$$
\Delta(x_1 + x_2) = \infty \iff \Delta(p_1 + p_2) = 0
$$

$$
\Delta(x_1 - x_2) = 0 \iff \Delta(p_1 - p_2) = \infty
$$

EPR δ-function: -perfect entangled system

$$
\Delta(x_1 - x_2) = 0, \quad \Delta(p_1 + p_2) = 0.
$$

Although: $\Delta x_1 \approx \infty$, $\Delta x_2 \approx \infty$, $\Delta p_1 \approx \infty$, $\Delta p_2 \approx \infty$.

EPR Inequality: - non-perfect entangled system $\Delta(x_1 - x_2)$ < min(Δx_1 , Δx_2) $\Delta(p_1 + p_2)$ < min($\Delta p_1, \Delta p_2$)

Then, why Einstein … ?

Observation:

$$
\Delta(x_1 - x_2) = 0, \quad \Delta(p_1 + p_2) = 0
$$

Believing:

$$
\Delta(x_1 - x_2) > Max(\Delta x_1, \Delta x_2)
$$

$$
\Delta(p_1 + p_2) > Max(\Delta p_1, \Delta p_2)
$$

Conclusion:

$$
\Delta x_1 = 0, \quad \Delta p_1 = 0
$$
 (Violation of the ...)

$$
\Delta x_2 = 0, \quad \Delta p_2 = 0
$$

The interpretation ?

Quantum entanglement

Classical: Two Wavepackets **Entanglement:**

A non-factorable 2-D Wavepacket

Biphoton State: Spontaneous Parametric Down Conversion

Two-photon Pure State

The signal (idler) photon can have any energy (momentum), however, if one of the photons is measured at certain energy (momentum) its twin must be at a certain energy (momentum).

$$
|\Psi\rangle = \sum_{s,i} \delta(\omega_s + \omega_i - \omega_p) \delta(\mathbf{k}_s + \mathbf{k}_i - \mathbf{k}_p) \hat{a}_s^{\dagger} \hat{a}_i^{\dagger} |0\rangle
$$

Operational approach:

$$
G^{(2)}(x_1,x_2) = \left\langle E_1^{(-)} E_2^{(-)} E_2^{(+)} E_1^{(+)} \right\rangle
$$

Pure state:

$$
G^{(2)}(x_1, x_2)
$$

= $\langle \Psi | E_1^{(-)}(x_1) E_2^{(-)}(x_2) E_2^{(+)}(x_2) E_1^{(+)}(x_1) | \Psi \rangle$
= $|\langle 0 | E_2^{(+)}(x_2) E_1^{(+)}(x_1) | \Psi \rangle|^2$

$$
\Psi(t_1, t_2) \equiv \langle 0|E_2^{(+)}(t_2)E_1^{(+)}(x_1)|\Psi\rangle
$$
 A biphoton
Effective Two-photon
wavefunction

$$
\Psi(t_1, t_2) = F_{t_1 + t_2} \{ f(\omega_p - \omega_{p0}) \} F_{t_1 - t_2} \{ g(\omega_s - \omega_{s0}) \} e^{-i\omega_{s0}t_1} e^{-i\omega_{i0}t_2}
$$

 $t1-t2$

Two-photon imaging

Field Operators:

$$
E_j^{(+)}(\mathbf{r}_j, t_j) = \int d\mathbf{k}^T \int d\omega \, a(\omega, \mathbf{k}^T) \, e^{-i\omega t_j} \, g_j(\omega, \mathbf{k}^T; z_j, \vec{\rho}_j)
$$

 $g_{\,j}^{}(\pmb{\omega},\pmb{\mathrm{k}}^{T}%)\rho_{j}^{\ast}(\pmb{\omega},\pmb{\omega})$ \cdot ; z_j , $\vec{\rho}_j$): Green's function (optical transfer function). determined by the experimental setup.

$$
G^{(2)} = \left| \Psi(\vec{\rho}_1, \vec{\rho}_2) \right|^2
$$

The calculation of $G^{(2)}$ is lengthy but straightforward:

$$
\Delta(\vec{\rho}_1-\vec{\rho}_2)_{EPR} \sim 0
$$

It is the two-photon coherent superposition made it possible!

Although questions regarding fundamental issues of quantum theory still exist, quantum entanglement has indeed brought up a novel concept or technology in nonlocal positioning and timing measurements with high accuracy, even beyond the classical limit.

Question:

Can "ghost" image be simulated classically ? ⇑Image but not projection!!!

Thermal Light Imaging

Magic Mirror and Ghost Imaging

 $M = 2.15$ ($M_{\text{theory}} = 2.16$); $V = 12\%$ ($V_{\text{theory}} = 16.5\%$)

Experimental Result: Ghost image of a double-slit.

A. Valencia, G. Scarcelli, M. D'Angelo, and Y.H. Shih, Phys. Rev. Lett. **94**, 063601 (2005).

Measurement on the image plan.

Two-photon thermal light Imaging:

 $G^{(2)} = \sum G_k^{(2)}$ $\sum G_k^{(2)}$ *k*Incoherent imaging: $G^{(2)} = \sum G_k^{(2)} = \sum [G_{11}^{(1)} G_{22}^{(1)} + G_{12}^{(1)} G_{21}^{(1)}]$ *k*

Magic Mirror ?

Measurement on the mirror plan.

It is useful !

A "Ghost" Camera in Space (Nonlocal)

A "Magic Mirror" for X-ray 3-D Imaging

It is fundamentally interesting !!

50% momentum-momentum, position-position EPR correlation

Where it comes from ?

Remember: thermal light is chaotic !

It comes from Hanbeury Brown - Twiss … ???

It comes from "photon bunching" ... ???

We are not satisfied !

The physics behind ???

A product of two independent first-order-pattern.

$$
G^{(2)} \propto 1 + \text{sinc}^2 \left[\frac{\pi af}{\lambda} (x_1 - x_2) \right] \cos^2 \left[\frac{\pi bf}{\lambda} (x_1 - x_2) \right]
$$

Quantum lithography

(ultra-resolution: beyond classical limit)

Two-photon diffraction and quantum lithography photon diffraction and quantum lithography

Experiment: M. D'Angelo, et al, PRL, **87**, 013602 (2001).

Theory: A.N. Boto, et al. PRL **85**, 2733 (2000).

Experimental Data Experimental Data

It is the result of two-photon coherent superposition. It measures the second-order correlation between the object plane and the image plane, defined by the Gaussian thin lens equation.

The published measurement was on the Fourier transform plane (far-field). PRL, **87**, 013602 (2001).

"Ghost" Shadow (Projection) Shadow (Projection)

$$
\hat{\rho}_{cl} = \int d\mathbf{k}_1 \int d\mathbf{k}_2 P(\mathbf{k}_1) \delta(\mathbf{k}_1 + \mathbf{k}_2) \rho_1^{(\mathbf{k}_1)} \otimes \rho_2^{(\mathbf{k}_2)}
$$

Bennink *et al***. PRL 89, 113601 (2002)**