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Quantum Optical Coherence Tomography
= Axial imaging (ranging) by use of:
1) 2-photon light in an entangled state,

2) a quantum interferometer,

3) a photon coincidence detector
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Two-Photon light
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= a state of exactly two photons in multimodes (spatial/spectral/polarization)
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non-separable function = entangled state

Entanglement: Spatial (momentum)
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Measurement of Two-Photon light
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Two Configurations for Metrology / Imaging
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H = Spatial, spectral, or polarization system
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A. Applications of Direct 2-Photon Imaging

H

Q@ C

0]

1. Absolute Measurement
2. Ghost Imaging (transverse)
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2-photon absorber

3. 2-Photon Microscopy (transverse)

4. 2-Photon Lithography (transverse)



B. Applications of Interferometric 2-Photon Imaging
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Axial Imaging/Ranging Spectral Modes
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Dispersion-Cancellation

Hong-Ou-Mandel Interferometer Abouraddy et al. PRA, 053817, 2002



Experimental Setup for Hybrid OCT & QOCT

Nasr et al. PRL, 91, August 2003




Two Boundaries + dispersive layer

5-mm ZnSe \ Air 90 um fused silica

53 um




Four Boundaries + dispersive medium in-between
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M. B. Nasr et al., Opt. Express 12, 1353-1362 (2004)




Four Boundaries + dispersive medium in-between
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Goals

Design and build new QOCT system with performance
competitive with OCT for acquisition of dispersion-
cancelled B-scan images

« Improve efficiency (reduced run time)
e Improve axial resolution
* Include transverse effects & nonplanar samples

Approach

 New source (PPLN)
* New detectors ( )

* Improved layout (miniaturization)
« Study of transverse effects

immp Sergienko
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Transverse Effects

Focusing in Conventional OCT

Single reflector sample _ _
Lens in sample Lens in sample

& reference arms arm only
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Focusing in QOCT

Single reflector sample
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Compensation using two lenses in

reference arm
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Depth of Focus
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Vary Position of Mirror

Variation of Axial Position of Sample Mirror in Dual 4-f Lens
System in QOCT
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QOCT with Chirped-QPM Crystal
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After Carrasco et al., Opt. Lett. 29, 2429-2431 (2004)



Experimental Demonstration of Submicron OCT
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The Promise of Q-OCT

d Q-OCT promises x2 improved axial resolution in comparison
with conventional OCT for sources of same spectral bandwidth

 Self-interference at each boundary is immune to GVD
Introduced by upper layers

 Inter-boundary interference is sensitive to dispersion of inter-
boundary layers; dispersion parameters can thus be estimated

 Preliminary experiments demonstrated viability of technique
 Technique can be extended to transverse imaging (Q-OCM)
 Technique can be extended to polarization-sensitive Q-OCT



Q-OCT: Challenges & Plans

] State-of-the-art linewidth is not sufficiently large
(Axial resolution is only 19 pm).

 Two-photon flux is low. Duration of experiment is too long.

A better 2-photon source is needed!
Faster broadband single-photon detector is needed!

 Applications to scattering media (e.g., tissue).
Theoretical & experimental research is necessary.
 Algorithms for data processing need to be developed.
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