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Premise of Talk
Polarization plays an even more important role in nonlinear optics than
it does in linear optics.

Recall that the material response is related to the applied field
strength by a tensor relation.

P
(1)
i = χ

(1)
ij Ej P

(2)
i = χ

(2)
ijkEjEk P

(3)
i = χ

(3)
ijklEjEkEl

The increasing complexity of the tensor relation with increasing
order of nonlinearity leads to rich polarization dependence of NLO
phenomena.



Example
In an isotropic, non-gyrotropic medium (that is, a medium that is
isotropic under both proper and improper rotations), the dielectric re-
sponse can be expressed by the completely scalar relation

P (1) = χ(1)E.

But the third-order nonlinear response is expressed as (Maker and Ter-
hune, 1965)

P = A(E · E∗)E + 1
2
B(E · E)E∗

where
A = 6χ1122 = 3χ1122 + 3χ1212 B = 6χ1221

which is inherently polarization dependent. The first term is known as
the “grating” contribution to the nonlinear response, and the second
term is known as the “phase conjugating” contribution to the nonlinear
response.



Second-Harmonic Generation and Sum-Frequency Generation

The process of second-harmonic generation ω +ω → 2ω is described by
the second-order nonlinear optical susceptibility χ(2)(2ω, ω, ω).

The more general process of sum-frequency generation ω1 + ω2 → ω3

is described by the second-order nonlinear optical susceptibility
χ(2)(ω3, ω1, ω2).
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Fundamental symmetry considerations show that χ(2) must vanish in
a material that possesses inversion symmetry. For this reason, second-
order NLO interactions are usually studied in crystals.

But liquids consisting of chiral molecules also lack inversion symmetry!



Notation: χιερ is Greek for hand. A chiral molecule is thus one that
possesses handedness. More precisely, if the mirror image of a molecule
cannot be superposed onto the original, the molecule is said to be chiral.

Recall that chiral materials possess the special linear optical prop-
erty know as optical activity, that is, the rotation of the direction of
linear polarization upon propagation through such a medium.



What are the nonlinear optical properties of chiral media?

Chiral media possess unique (almost weird) nonlinear optical
properties. The second-order noninear optical response (to two applied
fields of amplitudes E1 and E2) can be expressed as

PNL = A123 E1 × E2 where Aijk = 1
2
(χ

(2)
ijk − χ

(2)
ikj)

Thus Aijk is the antisymmetric (in the last two indices) part of the
nonlinear susceptibility. Note that PNL vanishes for second-harmonic
generation. Sum-frequency generation can occur only if the two input
fields are orthogonally polarized and non-collinear.
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Is there a linear electrooptic (Pockels) effect in isotropic chiral media?

It would be very important technologically if a linear EO effect could
occur in isotropic media. Such an effect would be described by
χ(2)(ω, ω, 0).

There is no group-theoretical reason why such an effect cannot exist.
However, for a lossless material, it can be shown that A must vanish, as
can be demonstrated from the condition of full-permutation symmetry
(which follows from the fact that the internal energy must be a function
of state in a lossless material) or from explicit quantum mechanical
calculation.

For a lossy medium, there is no fundamental reason why such a linear
EO effect cannot exist. However, lossy materials are described quantum
mechanically in terms of decay constants that are often introduced
phenomenologically. Whether or not a linear EO effect is predicted to
exist thus depends on the details of how decay is added to the model.



To foreshadow the following development, we present here a summary
of the current state of the understanding of this effect.

Buckingham and Fischer (2000); Stedman et al. (2001) conclude that
a linear EO effect does not exist in chiral EO materials. (But it is
not clear if their conclusions hold in general.)

Koroteev (1997) and Kauranen and Persoons (1999) conclude that a
linear EO effect does exist for lossy optical materials if decay is treated
properly.

Agarwal and Boyd (2003) conclude that the linear EO effect vanishes
for radiative damping and is very small for other damping mechanisms.



Is there a linear electrooptic (Pockels) effect in isotropic chiral media?

In detail, Kauranen and Persoons find that each term in the expression
for χ(2) is propertional to iγnm, where γnm is the damping rate of the
transition between levels n and m.

Thus, the linear EO effect is inherently dependent on the existence of
decay phenomena. Consequently, the predictions of the calculation are
critically dependent on the assumptions made in introducing decay into
the calculation.

For this reason, Agarwal and Boyd decided to treat the case of radiative
broadening. Even though most material systems of interest are unlikely
to be radiatively broadened, the case of radiative broadening is one in
which the calculation can be performed explicitly starting from first
principles.

In brief summary, Agarwal and Boyd agree with the formula of Kau-
ranen and Persoons, but find that the damping rate γnm is really a
function of frequency, and that the relevant damping rate for the elec-
trooptic effect is γnm(ω = 0) which vanishes. This result makes since in
that for radiative damping γnm is equaly to the Einstein A coefficient,
which scales with frequency as ω3.
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A Controversy

Considerable controversy has developed because one of the early theo-
retical treatments of the linear EO effect in chiral media (Andrews et
al. 1998) concludes that the resonance nature of the optical response
(stated for simplicity for the linear resonse) is expressed by

1

ω0 − ω − iΓ
+

1

ω0 + ω − iΓ
(same-sign convention)

rather than the more generally accepted result

1

ω0 − ω − iΓ
+

1

ω0 + ω + iΓ
(opposite-sign convention).

In support of their conclusion, Andrews et al. state that
• Cohen-Tannoudji et al., QM text, agrees with their result
• Weisskopf (1931) agrees with their result



In support of their conclusion, Andrews et al. state that
• Cohen-Tannoudji et al., QM text, agrees with their result
• Weisskopf (1931) agrees with their result

But inspection of Cohen-Tannoudji’s book shows that only the reso-
nant term is displayed, and thus the issue of the correct form of the
antiresonant term is not addressed.

Also, inspection of the Weisskopf paper shows that a simple sign error
(perhaps just a misprint) was introduced into the calculation. Unfortu-
nately, this form of the expression with the wrong sign of the damping
term in the antiresonant contribution has been reproduced (with proper
citation!) in many subsequent treatments.



Buckingham and Fischer (2000) have more recently argued that the
analysis of Andrews et al. is necessarily incorrect in that it leads to
non-physical behavior, namely:

• The same-sign conventione violates the reality condition χ(ω) =
χ(−ω)∗. Thus the physical polarization created by a physical (real)
electric field is complex.

• The same-sign convention violates causality in that it possesses
poles in both the upper and lower half planes.

In response to this criticism, Stedman, Andrews et al. respond that
one obtains the oppposite-sign convention when treating the problem
semiclassically, but obtains the same-sign convention when treating the
problem as a scattering problem using a fully quantum (and presumably
correct) approach. I reserve judgment on this point. But these authors
are entirely correct that response functions, such as susceptibilitities,
are semiclassical concepts.



Interesting Aside
It should also be noted that D. A. Long, The Raman Effect,

Wiley, 2001 presents an appendix that reviews the history of the sign of
the damping terms in the Raman susceptibility. He notes that Placzek
had the signs correct (that is, used the opposite sign convention) in his
original treatment of the problem, but that the sign of the damping
factor in the antiresonant term inexplicably was inverted in many sub-
sequent papers that supposedly relied on the same calcualtion. Long
now (2001) favors the opposite sign convention.

Editorial Comment
This field seems to have become a commedy of errors.



So What Really is the Correct Form for the Linear Susceptibility?

First, a reality check:

Consider first the simple harmonic oscillator with phenomenological
damping.

ẍ + 2γẋ + ω2
0x = (−e/m)Ee−iωt

Let p(t) = −ex(t) = α(ω)Ee−iωt where α is the polarizability. Then

α(ω) =
(e2/m)

ω2
0 − ω2 − 2iωγ

=
e2

2mω0

(
1

ω0 − ω − iγ
+

1

ω0 + ω + iγ

)

The second form is approximate (assumes γ << ω0), but can be made
exact through a redefinition of ω0.

This equation constitutes the standard result (the “opposite sign
convention”).



But Radiative Damping Need Not be Treated Phenomenologically

Let us treat radiative damping in terms of radiation reaction. Let ET

denote the total field that the atom experiences, that is, the sum of the
applied field and the radiation reaction field. The equation of motion
is taken to be undamped of the form

ẍ + ω2
0x = (−e/m)ET e−iωt

The solution can be expressed as

p(ω) = −ex(ω) = α0(ω)ET where α0(ω) =
(e2/m)

ω2
0 − ω2

.

By the standard treatment of radiation reaction, we know that ET =
E0 + 2

3
iω̃3p, where ω̃ = ω/c, and by definition we know that p(ω) =

α(ω)E0. By combining these equations we find that

α(ω) =
(e2/m)

ω2
0 − ω2 − 2

3
i(e2/mc3)ω3 .

This is the exact (within the context of the present model) result. Note
that the damping is explicitly frequency dependent. It also is non
causal.



Radiative Damping Modeled through Radiation Reaction

We can rewrite our result as follows:

α(ω) =
(e2/m)

ω2
0 − ω2 − 2

3
i(e2/mc3)ω3

=
e2

2mω′
0

[
1

ω′
0 − ω − iγ(ω)

+
1

ω′
0 + ω + iγ(ω)

]
.

where γ(ω) = 1
3
(e2/mc3)ω3 and ω′

0 =
√

ω2
0 − γ2.

This result has the form of the opposite-sign convention, but with
frequency-dependent damping.



Conclusions

In general, the damping factor γ is frequency dependent. Only close
to resonance can one take γ to be a constant. It is in this case that
phenomenological damping models are expected to be reliable.

In any case, a linear EO effect has not yet been observed in isotropic
chiral materials. The anaylsis of Kauranen and Persoons suggest that
the best oportunity to observe such an effect is afforded by lossy ma-
terials.



Magnetochiral Birefringence

Although the linear EO effect has not yet been observed, magnetochiral
birefringence is a nonlinear effect that relies on the properties of chiral
material and has been observed (Vallet et al., PRL 87, 183003, 2001).

It has been shown by Baranova and Zeldovich (1979) that the dielectric
constant of a collection of chiral molecules for right hand (−) and left
hand (+) polarized light can be represented as

ε±(ω,k,B) = ε(ω) ± aF(ω)B ± aOA(ω)k + aMC(ω)(B · k)

where aF(ω), aOA(ω), and aMC(ω) are the coefficients of the Faraday
effect, optical activity, and the magnetochiral effect respectively. This
last term changes sign as one changes between the two enantiomers of
a chiral medium.

By a generalization of the Becquerel formula, one finds that

aMC(ω) =
e

2mc

d

dω
aOA(ω)

Numerically, one predicts that ∆n ≈ 2 × 10−11



Active Interferometer



Observation of magnetochiral birefringence

� ∆ n = 10±1.6) x10-11 ( B  =  1300 G)

� approx. agreement with Zel’dovich (~ 2x10-11 )

� proportional to O.A.

� independant of the direction of polarization





Interest in Slow Light

Fundamentals of optical physics

Intrigue: Can (group) refractive index really be 106?

Optical delay lines, optical storage, optical memories

Implications for quantum information



Challenge/Goal

Slow light in room-temperature solid-state material.

•   Slow light in room temperature ruby

(facilitated by a novel quantum coherence effect)

•    Slow light in a structured waveguide



Slow Light in Ruby

Need a large dn/dw.    (How?)

Kramers-Kronig relations:
      Want a very narrow absorption line.

Well-known (to the few people how know it
well) how to do so:

Make use of “spectral holes” due to
population oscillations.

Hole-burning in a homogeneously
broadened line;  requires T2 << T1.

1/T2 1/T1

inhomogeneously 
broadened medium

homogeneously 
broadened medium
(or inhomogeneously 
broadened)

PRL 90,113903(2003); see also news story in Nature.
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Spectral Holes in Homogeneously
Broadened Materials

Occurs only in collisionally broadened media (T2 << T1)

Boyd, Raymer, Narum and Harter, Phys. Rev. A24, 411, 1981.





Argon Ion Laser
Ruby

f = 40 cm

Function Generator

EO modulator

Digital

Oscilloscope

f = 7.5 cm

Diffuser

Reference Detector

Experimental Setup Used to Observe Slow Light in Ruby

7.25 cm ruby laser rod (pink ruby)
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No pulse distortion! 

v = 140 m/s

ng = 2 x 106



Matt Bigelow and Nick Lepeshkin in the Lab



Thank you for your attention. 

 




