
Slow, Fast, and “Backwards” Light

Robert W. Boyd
Institute of Optics and

Department of Physics and Astronomy
University of Rochester

Loronzo M. Narducci Memorial Symposium, Drexel University, May 24-25, 2007.

http://www.optics.rochester.edu/~boyd  





Interest in Slow Light

Intrigue: Can (group) refractive index really be 106?

Fundamentals of optical physics

Optical delay lines, optical storage, optical memories

Implications for quantum information

What about fast light (v > c) and backwards light (v negative)?

Boyd and Gauthier, “Slow and Fast Light,” in Progress in Optics, 43, 2002.



Slow Light and Optical Buffers

All-Optical Switch Use Optical Buffering to Resolve 
Data-Packet Contention 

input
ports

output
portsswitch

But what happens if two
data packets arrive 
simultaneously? 

slow-light
medium

Controllable slow light for optical 
buffering can dramatically increase
system performance.  

Daniel Blumenthal,  UC  Santa Barbara;   Alexander Gaeta, Cornell University;  Daniel Gauthier, Duke 
University;  Alan Willner, University of Southern California; Robert Boyd, John Howell, University of Rochester



Some Approaches to Slow Light Propagation

•  Use the linear response of atomic systems 
         or (better) 
    use quantum coherence (e.g., electromagnetically 
    induced transparency) to modify and control this response

•  Use of artificial materials (to modify the optical
    properties at the macroscopic level)

E.g., photonic crystals where 
strong spectral variation of 
the refractive index occurs 
near the edge of the photonic
bandgap

polystyrene photonic crystal



 Slow and Fast Light and Optical Resonances

ng = n + ω
dn
dω

vg = c
ng

The group index can be large and positive (slow light).
positive and much less than unity (fast light) or
negative (backwards light).

Want large dispersion to obtain extreme group velocities

Pulses propagate at the group velocity given by

Sharp spectral features produce large dispersion.
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How to Create Slow and Fast Light I – 
Use Isolated Gain or Absorption Resonance 
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Narrow dips in gain and absorption lines can be created by various nonlinear  
optical effects, such as electromagnetically induced transparency (EIT), 

How to Create Slow and Fast Light II – 
Use Dip in Gain or Absorption Feature

coherent population oscillations (CPO), and conventional saturation.
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Narrow spkies in gain and absorption lines can be created by various nonlinear
optical effects, such as electromagnetically induced absorption (EIA), 

How to Create Slow and Fast Light III – 
Use Spike (Antidip) in Gain or Absorption Feature

coherent population oscillations (CPO), and reverse saturation.



How to Create Slow and Fast Light IV –  Dispersion Management
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M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, Optics Express 13, 9995 (2005).
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Amplification of Light and Atoms in a Bose-Einstein Condensate

S. Inouye, R. F. Löw, S. Gupta, T. Pfau, A. Görlitz, T. L. Gustavson, D. E. Pritchard, and W. Ketterle
Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139
(Received 27 June 2000)

A Bose-Einstein condensate illuminated by a single off-resonant laser beam (“dressed condensate”)
shows a high gain for matter waves and light. We have characterized the optical and atom-optical
properties of the dressed condensate by injecting light or atoms, illuminating the key role of long-lived
matter wave gratings produced by the condensate at rest and recoiling atoms. The narrow bandwidth for
optical gain gave rise to an extremely slow group velocity of an amplified light pulse ( 1 m s).
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FIG. 3. Pulse delay due to light amplification. (a) About
20 ms delay was observed when a Gaussian pulse of about
140 ms width and 0.11 mW cm2 peak intensity was sent
through the dressed condensate (bottom trace). The top trace is
a reference taken without the dressed condensate. Solid curves
are Gaussian fits to guide the eyes. (b) The observed delay t D
was proportional to ln g , where g is the observed gain.
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Challenge / Goal   (2003)

Slow light is a room-temperature, solid-state material.

Slow light via coherent population oscillations (CPO), 
a quantum coherence effect related to EIT but which is less 
sensitive to dephasing processes.

Our solution:  



Slow Light in Ruby

Recall that ng = n + ω(dn/dω).    Need a large dn/dω.    (How?)

Kramers-Kronig relations:
      Want a very narrow feature in absorption line.

Well-known “trick” for doing so:

Make use of spectral holes due to population oscillations.

Hole-burning in a homogeneously broadened line;  requires T  << T2 1.

1/T2 1/T1

inhomogeneously
broadened medium

homogeneously
broadened medium
(or inhomogeneously 
broadened)

PRL 90,113903(2003).



Argon Ion Laser
Ruby

40 cm

Function
Generator

EO modulator

Digital
Oscilloscope

Pinhole

Reference Detector
or

Signal Detector

Slow Light Experimental Setup

7.25-cm-long ruby laser rod (pink ruby) 
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Gaussian Pulse Propagation Through Ruby

No pulse distortion! 

v = 140 m/s

ng = 2 x 106
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Matt Bigelow and Nick Lepeshkin in the Lab



Alexandrite Displays both Saturable and Reverse-Saturable Absorption  
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•  Both slow and fast propagation observed in alexandrite

Bigelow, Lepeshkin, and Boyd, Science 301, 200 (2003).

boyd



 Inverse-Saturable Absorption Produces 
Superluminal Propagation in Alexandrite

At 476 nm, alexandrite is an inverse saturable absorber

Negative time delay of 50 ms correponds to a velocity of -800 m/s 

M. Bigelow, N. Lepeshkin, and RWB, Science, 2003



Numerical Modeling of Pulse Propagation
through Slow and Fast-Light Media

Numerically integrate the reduced wave equation

A
z

1
vg

A
t
= 0

and plot A(z,t) versus distance z.

Assume an input pulse with a Gaussian temporal profile.

Study three cases:
Slow light   vg = 0.5 c

Fast light   vg = 5 c   and  vg = -2 c

CAUTION:  This is a very simplistic model.  It ignores GVD and 
spectral reshaping.

See also Dogariu et al. Opt. Express 8, 344 (2001) and Milonni (2005).



Pulse Propagation through a Slow-Light
Medium (ng = 2,  vg = 0.5 c)




Pulse Propagation through a Fast-Light
Medium (ng = .2, vg = 5 c)




Pulse Propagation through a Fast-Light
Medium (ng = -.5, vg = -2 c)




Slow and Fast Light in an Erbium Doped Fiber Amplifier

6 ms

outin

•  Fiber geometry allows long propagation length
•  Saturable gain or loss possible depending on
   pump intensity
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Schweinsberg, Lepeshkin, Bigelow, Boyd, and Jarabo, Europhysics Letters, 73, 218 (2006).



Observation of Backward Pulse Propagation
 in an Erbium-Doped-Fiber Optical Amplifier
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We time-resolve the propagation 
of the pulse as a function of 
position along the erbium-
doped fiber.

Procedure
 •  cutback method
 •  couplers embedded in fiber

1550 nm laser ISO
80/20

coupler

980 nm laser
WDM

WDM
1550
980

EDF

Ref

Signal

or

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, 
R. W. Boyd,  Science 312, 985 2006.



Experimental Results:  Backward Propagation in Erbium-Doped Fiber

Normalized:  (Amplification removed numerically)




Observation of “Backwards” 
     Pulse Propagation

•  A strongly 
   counterintuitive 
   phenomenon

•  But entirely 
   consistent with 
   established physics

Normalized length |ng|Z (m)
0 0.5-0.5 1x10-1 5

Δt = 0

Δt = 3

Δt = 6

Δt = 9

Δt = 12

Δt = 15

-  laboratory results-  conceptual prediction

•  G. M. Gehring, 
   A. Schweinsberg, 
   C. Barsi,  N. Kostinski, 
   and R. W. Boyd, 
   Science 312, 985 
   2006.



Observation of Backward Pulse Propagation
 in an Erbium-Doped-Fiber Optical Amplifier

Summary:  

“Backwards” propagation is a realizable physical effect.

(Of course, many other workers have measured negative
time delays. Our contribution was to measure the pulse 
evolution within the material medium.)



Causality and Superluminal Signal Transmission

Ann. Phys. (Leipzig)  11, 2002.
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Propagation of a Truncated Pulse through
Alexandrite as a Fast-Light Medium

Smooth part of pulse propagates at group velocity
Discontinuity propagates at phase velocity
Information resides in points of discontinuity

Bigelow, Lepeshkin, Shin, and Boyd, J. Phys: Condensed Matter, 3117, 2006.

See also Stenner, Gauthier, and Neifeld, Nature, 425, 695, 2003.



transmitter receiver

vacuum propagation

transmitter receiver

transmitter receiver

fast-light propagation

emitted waveform

How to Reconcile Superluminality with Causality

pulse front

Gauthier and Boyd, Photonics Spectra, p. 82 January 2007.



Information Velocity – Tentative Conclusions

In principle, the information velocity is equal to c for both slow- and 
fast-light situations.  So why is slow and fast light even useful?  

Because in many practical situations, we can perform reliable meaurements
of the information content only near the peak of the pulse.

In a real communication system it would be really stupid to transmit pulses 
containing so much energy that one can reliably detect the very early 
leading edge of the pulse.

which gives better
          S/N?

front

In this sense, useful information often propagates at the group velocity.



Interferometry and Slow Light

•  Under certain (but not all) circumstances, the sensitivity of an interferomter is
   increased by the group index of the material within the interferometer!
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•  Sensitivity of a spectroscopic interferometer is increased

Typical interferometer:

Here is why it works:

We use CdSxSe1-x as our slow-light medium

Our experimental results
ng ≈ 4 

Shi, Boyd, Gauthier, Dudley, Opt. Lett., 32, 915, 2007.
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Tunable Delays of up to 80 Pulse Widths in Atomic Cesium Vapor

• coarse tuning:  temperature

• fine tuning: optical pumping

Camacho, Peck, Howell, Schweinsberg, Boyd, PRL 98, 153601 (2007). 



Fundamental Limits on Slow and Fast Light

Slow Light:  There appear to be no fundamental limits on how
much one can delay a pulse of light (although there are very
serious practical problems).*
Fast Light:  But there do seem to be essentially fundamental limits
to how much one can advance a pulse of light.
Why are the two cases so different?**

* Boyd, Gauthier, Gaeta, and Willner, PRA 2005

** We cannot get around this problem simply by invoking causality, first
because we are dealing with group velocity (not information velocity),
and second because the relevant equations superficially appear to be
symmetric between the slow- and fast-light cases.

We have identified two mechanisms that distinguish these two cases!   



Why is there no limit to the amount of pulse delay?
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At the bottom of the dip in the ab-
sorpton, the absorption can in prin-
ciple be made to vanish.  There is 
then no limit on how long a propa-
gation distance can be used. 

But this “trick”works only for
slow light.

infinite propagation 
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Why?  Because for a system based
on gain, the gain cannot become 
too large at any frequcncy, or else 
ASE will occur.
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Why can one delay (but not advance) a pulse 
by an arbitrarily large amount?

Two crucial differences between slow and fast light
(1)  First, note that we cannot use gains greater than approximately 
exp(32) at any frequency to avoid ASE.  And we cannot have absorp-
tion larger than T = exp(-32) at the signal frequency, so signal can be 
measured.  (Of course, the argument does not hinge on the value 32.)  
When examined quantitatively, these constraints impose a limit of at 
most several pulse-widths of delay or advancement.

One can overcome these constraints by using a deep hole in an absorp-
tion feature, but this trick works only for slow light, as we have just 
seen.

(2) Spectral reshaping of the pulse is the dominant competing effect in 
most slow/fast light systems.  This also behaves differently for slow and 
fast-light systems, as we shall now see.
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Numerical Results:  Propagation through a Linear Dispersive Medium

Fast light: 
     Lorentzian 
     absorption line
     T = exp(-32)
     vary line width
      to control advance

Slow light:   
     Lorentzian 
        gain line
     T = exp(+32)
      vary  line width to 
        control delay

Same Gaussian input 
     pulse in all cases
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Summary

Slow-light techniques hold great promise for 
applications in telecommunications

Good progress being made in devloping new 
slow-light techniques and applications

Backwards and superluminal propagation are 
strongly counterintuitive, but are fully explained
by standard physics.





Thank you for your attention! 
 

 
     




