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Interest in Slow Light

Intrigue: Can (group) refractive index really be 10°?
Fundamentals of optical physics

Optical delay lines, optical storage, optical memories
Implications for quantum information

What about fast light (v > ¢) and backwards light (v negative)?

Boyd and Gauthier, “Slow and Fast Light,” in Progress in Optics, 43, 2002.



=@ Slow Light and Optical Buffers stoflfLigHT

Use Optical Buffering to Resolve

All-Optical Switch >
Data-Packet Contention

: controllable
nput ., output slow-light
ports ~ " ports j\_/—\_/»\_/\ medium
VIN —F
L4
N —
SN SIS

But what happens if two
data packets arrive

simultaneously? Controllable slow light for optical

buffering can dramatically increase

SV IVJJUL system performance.
SNV IJYJUL

Daniel Blumenthal, UC Santa Barbara; Alexander Gaeta, Cornell University;, Daniel Gauthier, Duke
University; Alan Willner, University of Southern California; Robert Boyd, John Howell, University of Rochester




Some Approaches to Slow Light Propagation

e Use the linear response of atomic systems
or (better)
use quantum coherence (e.g., electromagnetically
induced transparency) to modify and control this response

e Use of artificial materials (to modify the optical
properties at the macroscopic level)

E.g., photonic crystals where
strong spectral variation of
the refractive index occurs
near the edge of the photonic
bandgap

plysyrne hotonic crystal



Slow and Fast Light and Optical Resonances

Pulses propagate at the group velocity given by

g ng g dw

Want large dispersion to obtain extreme group velocities

Sharp spectral features produce large dispersion.

The group index can be large and positive (slow light).
positive and much less than unity (fast light) or
negative (backwards light).



How to Create Slow and Fast Light I —
Use Isolated Gain or Absorption Resonance
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How to Create Slow and Fast Light IT —
Use Dip 1n Gain or Absorption Feature
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Narrow dips in gain and absorption lines can be created by various nonlinear
optical effects, such as electromagnetically induced transparency (EIT),

coherent population oscillations (CPO), and conventional saturation.



Light speed reduction
to 17 metres per second ! 60 MHz 14) = IF =3,
in an ultracold atomic gas =
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Challenge / Goal (2003)

Slow light in a room-temperature, solid-state material.

Our solution:

Slow light via coherent population oscillations (CPO),
a quantum coherence effect related to EIT but which is less
sensitive to dephasing processes.



Slow Light in Ruby

Recall that ng = n + w(dn/dw). Need a large dn/dw.  (How?)

Kramers-Kronig relations:
Want a very narrow feature in absorption line.

Well-known “trick” for doing so:

Make use of spectral holes due to population oscillations.

Hole-burning in a homogeneously broadened line; requires 5 << 7.

1/T5 1/T1
inhomogeneously homogeneously
broadened medium broadened medium
(orinhomogeneously
broadened)

PRL 90,113903(2003).



Slow Light Experimental Setup
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7.25-cm-long ruby laser rod (pink ruby)



Measurement of Delay Time for Harmonic Modulation
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Gaussian Pulse Propagation Through Ruby
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Matt Bigelow and Nick Lepeshkin in the Lab



Alexandrite Displays both Saturable and Reverse-Saturable Absorption

e Both slow and fast propagation observed in alexandrite
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Bigelow, Lepeshkin, and Boyd, Science 301, 200 (2003).
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Inverse-Saturable Absorption Produces
Superluminal Propagation in Alexandrite

At 476 nm, alexandrite is an inverse saturable absorber

Negative time delay of 50 s correponds to a velocity of -800 m/s

M. Bigelow, N. Lepeshkin, and RWB, Science, 2003



Numerical Modeling of Pulse Propagation
through Slow and Fast-Light Media

Numerically integrate the reduced wave equation

and plot A(z,7) versus distance z.
Assume an input pulse with a Gaussian temporal profile.
Study three cases:

Slow light v, =0.5¢

Fast light Vg = 5S¢ and Vg = -2 ¢

CAUTION: This 1s a very simplistic model. It ignores GVD and
spectral reshaping.



Pulse Propagation through a Fast-Light
Medium (ng =.2, Vg = 5¢)
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Pulse Propagation through a Backwards-
Light Medium (n, = -3, Vg =-2¢)
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Slow and Fast Light in an Erbium Doped Fiber Amplifier

e Fiber geometry allows long propagation length Adva|”‘|36=°'32 me

e Saturable gain or loss possible depending on
pump intensity
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Schweinsberg, Lepeshkin, Bigelow, Boyd, and Jarabo, Europhysics Letters, 73,218 (2006).



Observation of Backward Pulse Propagation
in an Erbium-Doped-Fiber Optical Amplifier
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G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski,
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Experimental Results: Backward Propagation in Erbium-Doped Fiber

Normalized: (Amplification removed numerically)
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Observation of “Backwards”

Pulse Propagation

- conceptual prediction - laboratory results
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Observation of Backward Pulse Propagation
in an Erbium-Doped-Fiber Optical Amplifier

Summary:
“Backwards” propagation is a realizable physical effect.
(Of course, many other workers have measured negative

time delays. Our contribution was to measure the pulse
evolution within the material medium.)



Causality and Superluminal Signal Transmission

G. Nimtz and A. Haibel, Basics of Superluminal Signals 169
\ vw=0.75¢
¢ x=ct - t X’

Fig.6 Coordinates of two inertial
observers A (0,0) and B with O(x,t)
and O'(x',) moving with a relative
velocity of 0.75¢. The distance L be-
tween A and B is 2000000 km. A
makes use of a signal velocity v; = 4c
and B makes use of v, =2c. The
numbers in the example are chosen
arbitrarily. The signal returns —1 s in
> the past in A.

Ann. Phys. (Leipzig) 11, 2002.



Propagation of a Truncated Pulse through
Alexandrite as a Fast-Light Medium
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Smooth part of pulse propagates at group velocity
Discontinuity propagates at phase velocity

Information resides in points of discontinuity

Bigelow, Lepeshkin, Shin, and Boyd, J. Phys: Condensed Matter, 3117, 2006.
See also Stenner, Gauthier,and Neifeld, Nature, 425, 695, 2003.



How to Reconcile Superluminality with Causality

emitted waveform pulse front

transmitter _/\ ‘ — receiver

vacuum propagation
transmitter _/\ | receiver

fast-light propagation

transmitter receiver

Gauthier and Boyd, Photonics Spectra, p. 82 January 2007.



Information Velocity — Tentative Conclusions

In principle, the information velocity is equal to ¢ for both slow- and
fast-light situations. So why is slow and fast light even useful?

Because 1in many practical situations, we can perform reliable meaurements
of the information content only near the peak of the pulse.

In this sense, useful information often propagates at the group velocity.

In a real communication system it would be really stupid to transmit pulses
containing so much energy that one can reliably detect the very early
leading edge of the pulse.

«— Wwhich gives better

S/N?
e

/

front



Interferometry and Slow Light

» Under certain (but not all) circumstances, the sensitivity of an interferomter is
increased by the group index of the material within the interferometer!

- Sensitivity of a spectroscopic interferometer is increased

Typical interferometer:

Beam Splitter #1

Slow Light Medium

Tunable
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Beam Splitter #2

We use CdSxSe1-x as our slow-light medium

Beam expander Beam profiler
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Slow- Ilght medlum

Here is why it works:

dA_qb: d (wnL)

dw dw C

Shih et al, Opt. Lett. 2007
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High-Resolution Slow-Light Fourier Transform Interferometer

Conventional FT Interferometer

Slow-light FT Interferometer
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Tunable Delays of up to 80 Pulse Widths in Atomic Cesium Vapor

There 1s no delay-bandwidth product limitation on slow light!

2 _ 1.0 spectrum
6 P3/2 A A F=2,34,5 c (275 ps pulse)
optional 205 /
signal optical pumping =
fields 5 0
= -3
625 . '— F=4 1X(10 | — 01
/2 y F=3 y N °
1 O 7;@

group index approximately 10 to 100 B J \ vy /
1L ‘ -0

e coarse tuning: temperature -5 0 5
signal detuning (GHz)

” Air 275 ps pulses

a

* fine tuning: optical pumping

increasing S
temperature ps pulses

\» pump off—»>

]

1.0 ns+

Pulse intensity

<«— pump on

AN

0 2 4 6 8 | | |
time (ns) 4 6 8
Camacho, Peck, Howell, Schweinsberg, Boyd, PRL 98, 153601 (2007) time (ns)




Summary — Progress in Slow-Light Research
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Historical Summary
Measurements of the Velocity of Light

Michelson (1926); Improved time of flight method.
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Determination of the Velocity of Light
Laboratory Methods

VOLUME 29, NUMBER 19 PHYSICAL REVIEW LETTERS 6 NOVEMBER 1972

Speed of Light from Direct Frequency and Wavelength Measurements
of the Methane-Stabilized Laser

K. M. Evenson, J. S. Wells, F. R. Petersen, B. L. Danielson, and G. W. Day
‘Quantum Electvonics Division, Nalional Buveau of Standards, Bouldev, Colovado 80302

and

- R. L. Barger* and J. L. Hallf
National Buveau of Standavds, Boulder, Colorado 80302
(Received 11 September 1972)

The frequency and wavelength of the methane-stabilized laser at 3.39 um were direct-
ly measured against the respective primary standards. With infrared frequency syn-
thesis techniques, we obtain v=88,376 181 627(50) THz, With frequency~-controlled in-
terferometry, we find A=3,392231376(12) um. Multiplication yields the speed of light
¢ =299792456.2(1.1) m/sec, in agreement with and 100 times less uncertain than the
previously accepted value. The main limitation is asymmetry in the krypton 6057-A
line defining the meter.
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Linear Pulse Propagation in an Absorbing Medium

S. Chu and S, Wong

Bell Laboratories, Murray Hill, New Jersey 07974
(Received 30 November 1981)

The pulse velocity in the linear regime in samples of GaP:N with a laser tuned to the
bound A-exciton line is measured with use of a picosecond time-of-flight technique. The
pulse is seen to propagate through the material with little pulse-shape distortion, and
with an envelope velocity given by the group velocity even when the group velocity exceeds
3% 10'% cm/sec, equals £« , or becomes negative. The results verify the predictions of
Garrett and McCumber.
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VOLUME 85, NUMBER 20 PHYSICAL REVIEW LETTERS 13 NOVEMBER 2000

Amplification of Light and Atoms in a Bose-Einstein Condensate

S. Inouye, R. F. Low, S. Gupta, T. Pfau, A. Goérlitz, T. L. Gustavson, D. E. Pritchard, and W. Ketterle

Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139
(Received 27 June 2000)

A Bose-Einstein condensate illuminated by a single off-resonant laser beam (“dressed condensate™)
shows a high gain for matter waves and light. We have characterized the optical and atom-optical
properties of the dressed condensate by injecting light or atoms, illuminating the key role of long-lived
matter wave gratings produced by the condensate at rest and recoiling atoms. The narrow bandwidth for
optical gain gave rise to an extremely slow group velocity of an amplified light pulse ( ~1 m/s).
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FIG. 3. Pulse delay due to light amplification. (a) About

20 ms delay was observed when a Gaussian pulse of about

140 ms width and 0.11 mW/cm? peak intensity was sent

through the dressed condensate (bottom trace). The top trace is

a reference taken without the dressed condensate. Solid curves

are Gaussian fits to guide the eyes. (b) The observed delay t 4225
was proportional to (Ing), where g is the observed gain.
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Slow Light via Coherent Population Oscillations

e Ultra-slow light (ng > 109) observed in ruby and ultra-fast light
(ng =—4 X 10°) observed in alexandrite at room temperature.

® Slow light in a SC optical amplifier
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