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Motivation: Maximum Slow-Light Time Delay

“Slow light”: group velocities < 100 ¢ !

Proposed applications: controllable optical delay lines
optical buffers, true time delay for synthetic aperture radar.

Key figure of merit:
normalized time delay = total time delay / input pulse duration
~ Information storage capacity of medium

Best result to date: delay by 4 pulse lengths (Kasapi et al. 1995)

But data packets used in telecommunications contain = 103 bits

What are the prospects for obtaining slow-light delay lines with
103 bits capacity?



Review of Slow-Light Fundamentals

[ ————>
: C \ slow-light medium, n, >> 1
group velocity: vg = —
Mg
. dn
group index: ng =n+ W
group delay: T, = L — Lng
Vg C

L
controllable delay: Tyt = Ty — L/c = —(ny,— 1)
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To make controllable delay as large as possible:
[0 ¢ make L as large as possible (reduce residual absorption)
[0 ¢ maximize the group index



Generic Model of EIT and CPO Slow-Light Systems
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Limitations to Time Delay
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Limitation 1: Residual absorption limits L:

Normalized induced delay

Solution: Eliminate residual absorption

Limitation 2: Group velocity dispersion

A short pulse will have a broad spectrum and thus a range of values of

There will thus be a range of time delays, leading to a range of delays and pulse spreading
Insist that pulse not spread by more than a factor of 2. Thus
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Limitation 3: Spectral reshaping of pulse (more restrictive than limitation 2)

Pulse will narrow in frequency and spread in time

from T) to T where T2 — T[f . fﬂ{JLf’TE- absorption
Thus puls
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Note that ~7;, can be arbitrarily large!



Summary: Fundamental Limitations to Time Delay

* [f one can eliminate residual absorption, the maximum relative time delay is
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which has no upper bound.

* But to achieve this time delay, one needs a large initial (before saturation)
optical depth given by

agL = (4/3)(Tae1/T0) 2 ux-

* For typical telecommunications protocols, the bit rate B is approximately T},
and the required transparency linewidth must exceed the bit rate by the relative

delay
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Numerical Example Showing Large Relative Delay
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Specific Example: Electromagnetically Induced Transparency
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* The reponse to the probe field in the presence of the strong coupling field is given by
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* The width of the transparency window displays power broadening: ~ =
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* For (f—1) the normalized delay ( d{‘tf)
max

can be arbitrarily large T,



Modeling of Slow-Light Systems

We conclude that there are no fundamental limitations
to the maximum fractional pulse delay [1]. Our model
includes gvd and spectral reshaping of pulses.

However, there are serious practical limitations,
primarily associated with residual absorption.

Another recent study [2] reaches a more pessimistic
(although entirely mathematically consistent)
conclusion by stressing the severity of residual absorption,
especially in the presence of Doppler broadening.

Our challenge is to minimize residual absorption.

[1] Boyd, Gauthier, Gaeta, and Willner, Phys. Rev. A 71, 023801, 2005.
[2] Matsko, Strekalov, and Maleki, Opt. Express 13, 2210, 2005.



Slow Light via Coherent Population Oscillations
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* Ground state population oscillates at beat frequency o (for o < 1/T7).

® Population oscillations lead to decreased probe absorption
(by explicit calculation), even though broadening 1s homogeneous.

® Rapid spectral variation of refractive index associated with spectral hole
leads to large group index.

e Ultra-slow light (ng > 10) observed in ruby and ultra-fast light
(ng =—4 X 10°) observed in alexandrite by this process.

* Slow and fast light effects occur at room temperature!

PRL 90,113903(2003); Science, 301, 200 (2003)



Prospects for Large Fractional Delays Using CPO
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Materials for Large Fractional Delays Using CPO

Material systems under considerations:
O Semiconductors (SC), SC heterostructures, dye molecules, atomic vapors.

UC Berkeley group has seen slow light in SC heterostructures
(but only at low temperatures) by using an excitonic transition.*

We are presently studying CPO in band-to-band transitions in a SC
quantum well structure. We believe that for this system CPO and
slow light will persist at room temperature.
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* Ku et al., Optics Letters, 29, 2291 (2004).



DARPA/DSO Project on Applications of Slow Light in Optical Fibers
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3 Approaches:

Photonic Crystal Fiber | Stimulated Scattering Population Oscillations

- Utilize EIT effects in - Raman/Brillouin effect - Pumped Er-doped fiber
gas-filled fiber. produces gain/delay. with control beam to
provide gain/delay.

Our Team:

Daniel Blumenthal, UC Santa Barbara; Alexander Gaeta, Cornell University;
Daniel Gauthier, Duke University; Alan Willner, University of Southern California;
Robert Boyd, John Howell, University of Rochester



Slow Light and Optical Buffers

All-Optical Switch
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But what happens if two
data packets arrive
simultaneously?
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Use of Optical Buffer for
Contention Resolution
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Controllable slow light for optical
buffering can dramatically increase
system performance.


Robert W.  Boyd
Note


Summary

There are no fundamental limitations to the maximum
normalized pulse delay.

However, there are serious practical limitations,
primarily associated with residual absorption.

Exciting possibilities exist for optical buffering and
other photonics applications if normalized time delays
in the range of 10 — 1000 can be achieved.
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