Measurement of the intensity dependent refractive index
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characterization
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The complete knowledge of an optical pulse before and
after 1ts passage through a given material allows the
evaluation of the propertics of the material.

Kerr effect: n=n,+n,l

The intensity dependent refractive index affects
the phase of the optical pulse.

The complete characterization of the optical pulse 1s
performed with a technique based on Spectral Phase
Interferometry for Direct Electric field Reconstruction
(SPIDER): a space-time SPIDER



SPIDER: complete characterization of ultrashort optical pulses

Experimental principle: to characterize a pulse, interfere 1t with a
frequency-shifted replica of itself and measure the spectrum of the
superposition

Measure spectrum
+ | :>
S A

Origmal pulse Frequency and time
shifted replica

Spectral interferogram

SPIDER 1s a shearing interference technique; the spectral interferogram
contains the derivative of the phase with respect to frequency:

o

do+Q)—d(w)= Qa— provides the desired complete characterization
@

C. Iacoms and I.A. Walmsley, Opt. Lett. 23, 792 (1998)



Space-time SPIDER

A spectrally resolved spatial shearing plus
a spatially resolved spectral shearing

Té Spectral shear: obtain Ig(x,0)
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Reconstruct the spatio-spectral phase from the two independent
phase gradients.

C. Dorrer et al., Opt. Lett. 27, 548 (2002)



Record the interference pattern in an imaging spectrometer

Spectral shear: upconvert two replicas with a chirped pulse
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Spatial shear: shear two replicas using a Michelson interferometer
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We study the propagation of a pulse in 1.25 cm of SF59 glass

Wavelength A = 819 nm;
Pulse properties  Energy E =21 uJ
Peak intensity [, = 5.9%10° W/cm?

Input pulse Output pulse
Spatial FWHM 6 =0.21 cm 0 =0.21 cm
Temporal FWHM | 7=0651s 7 =200 fs

The pulse broadens considerably in time; 1t does not broaden
in space.



Contributions to the phase
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The nonlinear phase 1s comparable to the phase given by dispersion.

It 1s somewhat difficult to distinguish the NL phase from
the dispersive phase, when looking at the temporal domain.

Phase differences along the transverse direction depend
on the nonlinearity in a straightforward way:

2 Zi ,
P(x)= B 7, L](z ,x)dz



No diffraction: propagation along straight lines

Intensity

Phase

Phase (x)— —3“’1 _[ I(z', x )dz' along each line
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Numerical evaluation of n,
Solve the (2+1)-D nonlinear Schrédinger equation; this
includes dispersion, diffraction and nonlinearity

Look for the value of n, which gives the least-squares fit
between the observed and simulated transverse phases.

Result of this calculation: n, =50x10"em* /W

Friberg at al., IEEE J. Quant. EL, 23,2089 (1987)  #,=68x10"cm’ /W @ 1 ym

Rivet et al, Opt. Comm., 181, 425 (2000) n, = 40x10" cm” /W @ 800 nm



Transverse phases

—

-

— |nput
— Obs. output
— Sim. output

Phase (rad)
O

1
—

w‘g‘z Transverse output intensities

é‘:? | ' | — Observed
- — Simulated
-

T 1t

2

D

-

D

=

0.5 0.6 0.7 0.8 0.9
Transverse coordinate (cm)

ol
I



Analysis of the method: it 1s necessary to solve the NL

Schréodinger equation

Suppose one calculates the NL phase, gzﬁ(x)— —I’l j Iz, JC)dZ

using an approxmmated expression for the intensﬂy I(z,x)
obtained by neglecting nonlineanty in the propagation equation.

In this case the value of n, that achieves the best fit between
measured and calculated transverse phases is 7, =32x10 " cm® /W

(without dispersion one would obtain

the full calculation gives

1, =20x10" em® /W |-

n, =50x10" cm® /W)




The approximated propagation that neglects nonlinearity
overestimates the pulse intensity;

it therefore overestimates self-phase modulation

Peak intensity along propagation
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Increasing nonlinearnty spreads the pulse;
therefore self-phase modulation 1s not linear 1n n,



Check other pulse properties to validate our fit

Temporal intensities Spectral intensities

Intensity (107 Wicm?)

08

q — |nput pulse — Input pulse
— [fleasured output — M_easured output
—— Simulated output nsl I— Simulated output

Intensity {arbitrary units)
o
N

o
M

1 . D n ) L 2 .
200 400 033 034 035 036 150.3? Q.38 0.39
Time (fs) Frequency (10 Hz)

In the time domain the agreement 1s acceptable
In the spectral domain there are differences.



Advantages of the method

*Conceptually simple
*No assumptions on the pulse shape

+It 1s possible to separate clearly refractive
nonlinear effects from absorptive nonlinear effects
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