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The quantum uncertainty of light

❚ The quantum nature of light prevents the 
amplitude and phase of an optical field 
from simultaneously having precise values.

❚ This quantum uncertainty is manifest as
photocurrent (shot) noise in optical 
detection. It represents a fundamental 
limit of precision in optical measurement.

❚ Coherent two-photon emission produces 
light whose complex amplitude has less 
quantum uncertainty in one quadrature
than the other. This is squeezed light 1.
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Squeezed light in the lab

❚ Squeezed light holds promise for high-
precision measurements2 (microscopy, 
spectroscopy) and for noiseless image 
amplification3.

❚ Squeezing due to plane wave mixing is easy 
to describe and (conceptually) easy to 
measure.

❚ Existing treatments of squeezing, however, 
are not suited to describe the complex 
quantum correlations produced in realistic 
experiments involving entanglement 
between many modes.

The nonlinear susceptibility which
produced this pattern4 ought also to
produce quantum correlations. In
which component(s) of the pattern

should one look for reduced quantum
noise?
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The Goals

We wish to develop a general theory of multimode squeezing which:

❙ allows one to calculate any desired field correlation function

❙ describes how such correlations are affected by propagation (diffraction 
and linear optical processing)

❙ identifies which measurements of the field will reveal maximum 
quantum noise reduction

❙ provides physical insight!
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Review: single-mode squeezing5

❚ Electric field operator

❚ mode operator

❚ Squeeze operator

❚ Squeeze parameter (= net 
parametric gain)

❚ squeezed mode operator

❚ Squeezed (Xθ) and anti-
squeezed (Yθ) quadrature
operators

❚ Quadrature variances
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Multimode squeezing: pictorial description

❚ When performing parametric downconversion with a pump having multiple 
frequencies and/or wavevectors, each signal(idler) mode becomes partially 
entangled with multiple idler(signal) modes via 2-photon emission:

❚ Do these distributed quantum correlations result in any measureable field 
component having reduced quantum noise? 
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Multimode squeezing: mathematical description6

❚ Multimode squeeze operator 
(for any set of modes—spatial, 
spectral, waveguide)

❚ squeezed mode operators

Ŝ = exp 1
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(& jk
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where

❚ The squeeze matrix Γ is analagous to the single-mode squeeze parameter γ. Γjk is 
the net parametric gain of mode j with mode k.

❚ The noise of any mode depends in a complicated way on many elements of Γ.
❚ No insight is gained!
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â1

§
ân

− sinh&̃ exp(i'̃ )
â1
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Eigenmode decomposition of the squeeze matrix

❚ The squeezing matrix can be diagonalized by a unitary transformation:

❚ Since the transformation is unitary, this corresponds to a physical change of basis for 
the field:

❚ These field modes are the eigenmodes of the squeezing.
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Multimode squeezing in the eigenbasis

❚ In the eigenbasis of the squeezing, the expression for the squeezed mode operators
reduces to

❚ Each eigenmode of the squeezing has the statistics of a single squeezed mode.
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❚ The eigenvectors of the squeezing matrix are the 
squeezed modes of the field, and the eigenvalues are the 

corresponding squeeze parameters.
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Eigenmodes and Measurement

❚ The photocurrent in homodyne detection is simply expressed in terms of the squeezing
eigenvalues and the overlap between the local oscillator (LO) and each eigenmode.
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spatiotemporal profile of the jth eigenmode of the squeezing

❚ Overlap of the local oscillator with 
the pth eigenmode

❚ photocurrent noise

❚ The maximum squeezing is observed when the mode of the local oscillator is 
matched to that of the eigenmode having the largest eigenvalue.
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Properties of the eigenmodes/eigenvalues of 
squeezing

❚ The eigenmodes are the optimal basis in which to measure quantum noise 
reduction

❚ The number of non-zero eigenvalues is the number of squeezed modes 
(pixels, channels) available for quantum imaging or communication 

❚ The distribution of eigenvalues is unchanged by
❙ lossless (paraxial) diffraction
❙ lossless beam splitting
❙ passage through lossless refractive or diffractive optics 

❚ The statistics of any field mode can be simply expressed in terms of the 
squeezing eigenvalues

❚ The number of squeezed modes and their degrees of squeezing are a 
fundamental, invariant (under lossless linear manipulation) property 

of the field.
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Spectrally multimode squeezing in a degenerate 
OPA/OPG

❚ Consider an OPA/OPG pumped by a short (spectrally broad) pulse: 

Ĥ = i®c
2 %jk Gjk

& âjâk exp(−i$k jkz) + H.c.

d
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❚ Propagation equation

❚ Solution

where S is a multimode squeeze operator with Γ determined by 
G and the degree of phase mismatch

Gjk = parametric gain coefficient for mode pair j, k

$k jk = k(! j +!k) − k(! j) − k(! k)
= phase mismatch
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pump signal+idler
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The squeezing matrix (net parametric gain) for 
pulse-pumped OPA/OPG

❚ With no phase mismatch, the 
squeezing matrix (net parametric 
gain) is just GL

❚ Phase velocity mismatch reduces 
the effective bandwidth of the 
nonlinear response

❚ Group velocity mismatch reduces 
the effective bandwidth of the 
pump T

k

The magnitudes of
the squeezing matrix
elements Γjk as a
function of the mode
frequencies.
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The eigenmodes of squeezing in a pulse-pumped 
OPA/OPG

❚ The spectral amplitudes of the eigenmodes are (depending on the impulse 
response function of the nonlinearity) approximately Hermite-Gauss functions

The spectral amplitudes of the first three eigenmodes of the
squeezing (solid lines) and of a pulse derived from the pump

(dashed line). ∆k=0 and ∆ωTχ=0.1.
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The eigenvalues of squeezing in a pulse-pumped 
OPA/OPG

❚ With perfect phasematching, the squeeze parameter of the most-squeezed
eigenmode is nearly equal to the gain-length product at the peak of the pump

❚ Both phase and velocity mismatch reduce the maximum degree of squeezing
❚ Phase velocity mismatch tends to reduce the effective number of squeezed modes
❚ Group velocity mismatch tends to increase the effective number of squeezed modes

The ten largest eigenvalues of the squeezing
for a pump pulse long compared to the
nonlinear response time (∆ωTχ=0.1) and with
an intensity such that the gain-length product
at the peak of the pump is 4. For the case of
phase velocity mismatch, ∆kL was chosen to
be 2π . For the case of group velocity
mismatch, the pump and downconverted fields
were given a difference in group delay of
60Tχ.
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Measured squeezing is improved significantly by 
matching the LO to the first eigenmode

❚ Matching the LO to the first eigenmode allows for the full squeezing present in the 
field to be observed, whereas a “common sense” choice for the LO results in many 
dB less observed squeezing.

Comparison between the measureable
amounts of squeezing in homodyne
detection when the local oscillator is
matched to first eigenmode (red) and to a
pulse harmonically related to the pump
(blue, green). Blue: ∆ωTχ=0.1; green:
∆ωTχ=0.5.

❚ Matching the LO to the eigenmodes of the squeezing can improve the 
measured amount of squeezing significantly
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Summary

❚ A general theory of multimode squeezing based on an eigenmode
description was developed

❚ The theory is widely applicable: PDC in bulk media, waveguides, spatial 
and/or temporal domains

❚ The eigenmodes of the squeezing define a basis for the field which is
❙ unique
❙ physical
❙ optimal for measurement of reduced quantum noise

❚ Any field correlation is easily calculated from the eigenvalues of the 
squeezing

❚ The number of squeezed modes and their degrees of squeezing are 
invariant under diffraction and lossless linear optical processing

❚ Knowledge of the squeeze eigenmodes allows a measurement of squeezing 
which is several dB better than possible with “common sense” mode-
matching strategies
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