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Raman Systems

• Raman scattering is an interaction between a pair of optical fields 
and a pair of states of similar energy

• We consider two ground states coupled by one or more two-photon 
(Raman) transitions:

• Many interesting phenomena involve the formation of coherence 
between the ground states
– ultra-narrow (~10’s of Hz) spectroscopy[1] 

– optical switching[2] via induced transparency (EIT)[3] or absorption (EIA)[4] 

– extremely strong nonlinear optical processes[5-7]
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The Dark/Bright State Basis

• Raman systems can sometimes be understood in terms of a 
“dark state” and a “bright state”

• However, the dark/bright basis is not helpful when
– the two-photon detuning δ is non-zero, or
– multiple excited states provide multiple channels for Raman transitions
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The Goal

Simplify the analysis of Raman systems 
and develop intuition

By developing a basis independent representation 
of two states interacting via two fields

How?
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We represent the density matrix for states |1〉 and |2〉 by a Bloch 
vector[8-10]:

• points on the surface of the unit sphere are pure states
• opposing points on the surface correspond to orthogonal states
• the origin corresponds to a 50/50 incoherent mixture (any basis)
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The Bloch Sphere Representation
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We represent the pair of fields with a “mutual intensity vector”
(analogous to Stokes vector)

• |Ι | = |Ω1|2+|Ω2|2 for mutually coherent fields
• |Ι | < |Ω1|2+|Ω2|2 for partially coherent fields
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The Mutual Intensity Vector
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(             is the total excitation rate)

• describes optical pumping into the dark state
• describes precession of the bright/dark basis
• describes relaxation of the ground states

Equation of Motion for the State Vector

Under conditions of interest*,

d
dt& = (R − R&) + R +"g T % & −"g&

where
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* |δ|̂ |∆+iγ|, Γg^γ, |d /dt|̂ |∆+iγ| Slight changes in the definitions of     and     are also required to 
accommodate saturating fields or mutually incoherent fields.
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The absorption rate is proportional to the projection of    
onto the bright state        . 

From the equation of motion, optical pumping vanishes when
Therefore,

The point        corresponds to the dark state.

Discussion: Bright and Dark states
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Steady-State Solution

& = R + T % (R + T % R)
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• With zero Raman detuning (       ), 
is parallel to the intensity vector 
and has magnitude

• advances (       ) or retards        
(       ) the phase of

• decreases the magnitude 
of      and increases (         ) or 
decreases (         ) the inversion  
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Solutions for Pump-Pump Configuration
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Solutions for Pump-probe Configuration
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Discussion of General Solutions

• circular for weak excitation
• elliptical for strong excitation (    shrinks toward the origin as 

population is removed to the excited state)

• “flat” for ∆ = 0 (only coherence changes with δ)
• tilted for ∆ ≠ 0 (both coherence and inversion change with δ)

• Symmetric about δ = 0 for |Ω1| = |Ω2| or ∆ = 0

• Asymmetric about δ = 0 for |Ω1| ≠ |Ω2| and ∆ ≠ 0
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As parametric functions of δ, the solutions are …



Spectral width of EIT
At single-photon resonance (∆ = 0), the angle φ between    and the dark 

state        is 

Transparency is reduced by ½ when the component along        is reduced by 
½  ⇒ φ = π/4. Therefore, the EIT width is

Threshold for EIT
The peak of EIT occurs at δ = 0.  Then                        The transparency

is reduced by ½ when     is reduced half-way to 0. Therefore, the threshold 
for EIT is 

Example: Quick Results for EIT
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Summary

• The optical properties of a Raman system are largely 
determined by the state of the two ground levels.

• The state of the two ground levels can be represented 
conveniently as a Bloch state vector within a unit sphere.

• Each pair of optical fields which interacts with these two 
levels can be represented by an intensity vector.

• By adiabatically eliminating the excited level(s), a simple, 
direct solution of the state vector can be obtained in terms 
of the intensity vector(s) and the detunings of the fields.

• The solutions take simple geometric forms, allowing one to 
develop intuition about the behavior of Raman systems.

• Fundamental quantities of interest, such as the EIT width 
and field intensity required for transparency, follow easily 
from the direct solution.
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