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Interest in Slow Light

Intrigue: Can (group) refractive index really be 106?

Fundamentals of optical physics

Optical delay lines, optical storage, optical memories

Implications for quantum information

And what about fast light (v > c or negative)?

Boyd and Gauthier, “Slow and Fast Light,” in Progress in Optics, 43, 2002.





Approaches to Slow Light Propagation
•  Use of quantum coherence (to modify the spectral
    dependence of the atomic response)

e.g., electromagnetically induced transparency

•  Use of artificial materials (to modify the optical
    properties at the macroscopic level)

e.g., photonic crystals (strong spectral variation of
refractive index occurs near edge of photonic
bandgap)







Review of Slow-Light Fundamentals

slow-light medium, ng >> 1

Tg =
L
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Lng
c

ng = n+ ω
dn

dω
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L

c
(ng − 1)

group velocity:  

group index:

group delay:

controllable delay:

vg =
c

ng

L

To make controllable delay as large as possible:
	 •  make L as large as possible (reduce residual absorption)
	 •  maximize the group index



Systems Considerations: Maximum Slow-Light Time Delay

Proposed applications: controllable optical delay lines
optical buffers, true time delay for synthetic aperture radar.

Key figure of merit:
normalized time delay = total time delay / input pulse duration

≈ information storage capacity of medium

“Slow light”:   group velocities < 10-6 c !

Best result to date:  delay by 4 pulse lengths (Kasapi et al. 1995)

But data packets used in telecommunications contain ≈ 103 bits

What are the prospects for obtaining slow-light delay lines with 
103 bits capacity?



Slow Light and Optical Buffers

All-Optical Switch Use Optical Buffering to Resolve 
Data-Packet Contention 

input
ports

output
portsswitch

But what happens if two
data packets arrive 
simultaneously? 

slow-light
medium

Controllable slow light for optical 
buffering can dramatically increase
system performance.  

Daniel Blumenthal,  UC  Santa Barbara;   Alexander Gaeta, Cornell University;  Daniel Gauthier, Duke 
University;  Alan Willner, University of Southern California; Robert Boyd, John Howell, University of Rochester



Challenge/Goal

Slow light in a room-temperature solid-state material.

Solution:  Slow light enabled by coherent population 
	 	 oscillations (a quantum coherence effect that is 
	 	 relatively insensitive to dephasing processes).



Slow Light in Ruby

Recall that ng = n + ω(dn/dω).    Need a large dn/dω.    (How?)

Kramers-Kronig relations:
      Want a very narrow feature in absorption line.

Well-known “trick” for doing so:

Make use of spectral holes due to population oscillations.

Hole-burning in a homogeneously broadened line;  requires T  << T2 1.

1/T2 1/T1

inhomogeneously
broadened medium

homogeneously
broadened medium
(or inhomogeneously 
broadened)

PRL 90,113903(2003).



Spectral Holes in Homogeneously
Broadened Materials

Occurs only in collisionally broadened media (T2 << T1)

Boyd, Raymer, Narum and Harter, Phys. Rev. A24, 411, 1981.

pump-probe detuning (units of 1/T2)



Argon Ion Laser
Ruby
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Slow Light Experimental Setup

7.25-cm-long ruby laser rod (pink ruby) 
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Gaussian Pulse Propagation Through Ruby

No pulse distortion! 

v = 140 m/s

ng = 2 x 106



Matt Bigelow and Nick Lepeshkin in the Lab



Advantages of Coherent Population
Oscillations for Slow Light

Works in solids
Works at room temperature
Insensitive of dephasing processes
Laser need not be frequency stabilized
Works with single beam (self-delayed)
Delay can be controlled through input intensity



Slow Light in SC Quantum Dot Structures

3 ps

PbS Quantum Dots  (2.9 nm diameter)  in liquid solution

Excite with 16 ps pulses at 795 nm;  observe 3 ps delay 

30 ps response time (literature value)



Alexandrite Displays both Saturable and Reverse-Saturable Absorption  

T1,m = 260 µs
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•  Both slow and fast propagation observed in alexandrite

Bigelow, Lepeshkin, and Boyd, Science 301, 200 (2003).

boyd



 Inverse-Saturable Absorption Produces 
Superluminal Propagation in Alexandrite

At 476 nm, alexandrite is an inverse saturable absorber

Negative time delay of 50 ms correponds to a velocity of -800 m/s 

M. Bigelow, N. Lepeshkin, and RWB, Science, 2003



Numerical Modeling of Pulse Propagation
Through Slow and Fast-Light Media

Numerically integrate the paraxial wave equation

∂A
∂z

− 1
vg

∂A
∂t

= 0

and plot A(z,t) versus distance z.

Assume an input pulse with a Gaussian temporal profile.

Study three cases:

Slow light   vg = 0.5 c

Fast light   vg = 5 c   and  vg = -2 c



Pulse Propagation through a Slow-Light
Medium (ng = 2,  vg = 0.5 c)




Pulse Propagation through a Fast-Light
Medium (ng = .2, vg = 5 c)




Pulse Propagation through a Fast-Light
Medium (ng = -.5, vg = -2 c)




Slow and Fast Light in an Erbium Doped Fiber Amplifier

6 ms

outin

•  Fiber geometry allows long propagation length
•  Saturable gain or loss possible depending on
   pump intensity
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Observation of Backward Pulse Propagation
 in an Erbium-Doped-Fiber Optical Amplifier
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We time-resolve the propagation 
of the pulse as a function of 
position along the erbium-
doped fiber.

Procedure
 •  cutback method
 •  couplers embedded in fiber
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Experimental Results:  Backward Propagation in Erbium-Doped Fiber




Observation of Backward Pulse Propagation
 in an Erbium-Doped-Fiber Optical Amplifier
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Observation of Backward Pulse Propagation
 in an Erbium-Doped-Fiber Optical Amplifier

Summary:  

“Backwards” propagation is a realizable physical effect.



Causality and Superluminality

Ann. Phys. (Leipzig)  11, 2002.
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Propagation of a Truncated Pulse through  
Alexandrite as a Fast-Light Medium

Smooth part of pulse propagates at group velocity

Discontinuity propagates at phase velocity (information velocity)



Information Velocity in a Fast Light Medium 

M.D. Stenner, D.J. 
Gauthier, and M.I. 
Neifeld, Nature 425, 
695 (2003).

Pulses are not 
distinguishable 
"early."

vi ≤ c



Information Velocity – Tentative Conclusions

In principle, the information velocity is equal to c for both slow- and 
fast-light situations.  So why is slow and fast light even useful?  

Because in many practical situations, we can perform reliable meaurements
of the information content only near the peak of the pulse.

In a real communication system it would be really stupid to transmit pulses 
containing so much energy that one can reliably detect the very early 
leading edge of the pulse.

which gives better
          S/N?

front

In this sense, useful information often propagates at the group velocity.



Summary

Slow-light techniques hold great promise for applications in 
telecom and quantum information processing

Good progress being made in devloping new slow-light techniques
and applications

Different methods under development possess complementary 
regimes of usefullness





Thank you for your attention!

Our results are posted on the web at:

http://www.optics.rochester.edu/~boyd

And thanks to NSF and DARPA / DSO for support




