Absorptionless Self-Phase Modulation in a Dark-State Electromagnetically Induced Transparency (DS-EIT) System

Vincent Wong, Robert W. Boyd, C. R. Stroud, Jr., Ryan S. Bennink, David L. Aronstein The Institute of Optics, University Of Rochester

Q-Han Park
Dept. of Physics & Astronomy, University Of Rochester

Mission Objectives:

- Large nonlinearity in the absence of signal field absorption.
- No excited state population = no spontaneous emission noise.

Proposed System

EIT in the Two-Level Atom

Steady state linear and nonlinear response of the signal field in a strongly driven detuned two-level atom .

Goal Achieved:

 Strong Self-Phase Modulation with No Signal Field Absorption.

Goal Not Achieved: • Pump Field is Absorbed Causing:

- Large Excited State Population,
- Shifted Transparency Window.

^{*}Bennink et. al. Phys. Rev. A, **63**, 033804 (2001)

Nonlinear Optics of Coherent Population Trapping

On resonance, linear and nonlinear response of the signal field in a dark state.

$$\begin{array}{ll} \Delta_b T_1 = 0, & \gamma_b T_1 = 3/8, \\ \Delta_c T_1 = 0, & \gamma_c T_1 = 5/8, \\ \Omega_c T_1 = 0. & \Omega_b T_1 = 5. \end{array}$$

$$\gamma_1 T_1 = 0,
\gamma_2 T_1 = 0.$$

 No Absorption But Regrettably No Self-Phase Modulation Either.

The Dark-State EIT System

 $\omega_{b},\,\omega_{c}$ are the pump fields, ω_{s} is the signal field,

 $\delta = \omega_{\text{S}} - \omega_{\text{C}} \quad \text{is the different in detuning between} \\ \quad \text{the signal field and pump C.}$

Density Matrix Equation of Motions

$$\begin{split} \dot{\rho}_{bb} - \gamma_b &= -(\gamma_b + \gamma_2 + \tau_b)\rho_{bb} + (\gamma_1 - \gamma_b)\rho_{cc} + \frac{i}{2}\Omega_b^*\rho_{ab} - \frac{i}{2}\Omega_b\rho_{ba} \\ \dot{\rho}_{cc} - \gamma_c &= -(\gamma_1 + \gamma_c)\rho_{bb} - (\gamma_c - \gamma_2 + \tau_c)\rho_{cc} + \frac{i}{2}\Omega_d^*\rho_{ac} - \frac{i}{2}\Omega_d\rho_{ca} \\ \dot{\rho}_{ab} + \frac{i}{2}\Omega_b &= i\Omega_b\rho_{bb} + \frac{i}{2}\Omega_b\rho_{cc} - \Gamma_{ab}\rho_{ab} + \frac{i}{2}\Omega_d\rho_{cb} \\ \dot{\rho}_{ac} + \frac{i}{2}\Omega_d &= \frac{i}{2}\Omega_d\rho_{bb} + i\Omega_d\rho_{cc} - \Gamma_{ac}\rho_{ac} + \frac{i}{2}\Omega_b\rho_{bc} \\ \dot{\rho}_{bc} &= -\frac{i}{2}\Omega_d\rho_{ba} + \frac{i}{2}\Omega_b^*\rho_{ac} - \Gamma_{bc}\rho_{bc} \\ \dot{\rho}_{ba} - \frac{i}{2}\Omega_b^* &= -i\Omega_b^*\rho_{bb} - \frac{i}{2}\Omega_b^*\rho_{cc} - \Gamma_{ba}\rho_{ba} - \frac{i}{2}\Omega_d^*\rho_{bc} \\ \dot{\rho}_{ca} - \frac{i}{2}\Omega_d^* &= -\frac{i}{2}\Omega_d^*\rho_{bb} - i\Omega_d^*\rho_{cc} - \Gamma_{ca}\rho_{ca} - \frac{i}{2}\Omega_b^*\rho_{cb} \\ \dot{\rho}_{cb} &= \frac{i}{2}\Omega_d^*\rho_{ab} - \frac{i}{2}\Omega_b\rho_{ca} - \Gamma_{cb}\rho_{cb}. \end{split}$$

Radiatively Broadened

- All Goals Achieved: Self-Phase Modulation with No Absorption.
 - No Excited State Population.

Excited State Population

Degree of Coherence $C = \rho_{bc} / \sqrt{\rho_{bb} \rho_{cc}}$

Effect Persists Even Under Laboratory Condition.

Cell Temp = 300 ^OC, Doppler HWHM = 0.9GHz, Collisional HW = 0.6GHz.

$$I_b$$
 = 5.08 W/cm²,
 I_c = 6.58 KW/cm²,
 I_s = 0.66 KW/cm²,
 Δ_b = 0.8 GHz,
 Δ_s = 3.07 GHz.

$$\phi_{NL} = 4.7 \text{ rad.}$$

Conclusion

Goals:

To find a sytem that is suitable for quantum optics applications such as squeezed light generation.

- No signal field absorption but with large self-phase modulation.
- No excited state population.

Explored two-level and three-level atoms.

Both can't satisfy all the goals independently.

Combine them to create a dark-state electromagnetically induce transparency (DS-EIT) system.

Near perfect dark state is created.

Nonlinearity still present.

Experiment effort is underway to verify these predictions.