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We analyze the influence of atmospheric turbulence on the propagation of an optical vortex beam having the
form V(r, 0)=Aye’?. The probability that a detected photon after propagating through the atmosphere has
the same value of the orbital angular momentum as the launched photon is found to be given by (sgy=[1
+(1.845D/r¢)?]"2, where D is the aperture diameter and r is the Fried coherence diameter. These vortex
beams behave very similarly to Laguerre—Gauss beams under the influence of atmospheric turbulence.
These results have important implications for atmospheric laser communication systems that employ quan-

tum encryption. © 2009 Optical Society of America
OCIS codes: 010.1330, 270.5585, 270.5565.

Several proposals have recently been made to use the
orbital angular momentum (OAM) states [1,2] of
light as a basis set for impressing quantum informa-
tion onto single-photon light fields [3-5]. A key moti-
vation for this idea is that the OAM states provide an
infinite basis set for describing the transverse struc-
ture of the beam. In contrast, the often-used polariza-
tion degree of freedom provides only a two-
dimensional Hilbert space. Thus the Hilbert space
accessible using OAM states can be extremely large,
with important consequences for quantum communi-
cations and quantum information processing.

One specific proposed application of OAM states is
in the context of secure communication. In this sce-
nario, quantum information is encoded onto a single
photon, which might be a member of an entangled bi-
photon pair, and this photon is then transmitted
through a free-space communication link to a distant
receiver as shown schematically in Fig. 1. The quan-
tum state of this photon is measured at the receiver,
and secure communications are achieved by means of
one of the standard protocols of quantum key distri-
bution [6], appropriately modified to make use of the
extended Hilbert space.

The integrity of such a communication system
could be badly compromised if the OAM states be-
came scrambled by atmospheric turbulence. For ex-
ample, if a photon containing m#% units of OAM were
transmitted, but as a result of atmospheric turbu-
lence the received photon is measured to carry OAM
of nfi with n #m, the quality of the communications
channel would be degraded. In this Letter, we calcu-
late, as a function of the strength of the atmospheric
turbulence, the probability that the received photon
carries an OAM different from that of the transmit-
ted photon. The results of such a calculation provide
quantitative predictions for the integrity of free-
space quantum communication systems. Related cal-
culations [7-9] considered OAM states in the form of
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Laguerre—-Gauss (LG) modes. Our work differs in
that we consider the case of a pure vortex beam, that
is, a beam with uniform amplitude within the trans-
mitting aperture. We treat this case both because it
offers the opportunity for comparison with LG states
and because pure vortex beams are likely to prove
useful in practice, because these take advantage of
the full aperture of the transmitter.

We assume that the transmitted field at the trans-
mitter can be represented as

A(r) =AW (r/R)e™?, (1)

where A, is the (spatially uniform) field amplitude,
W(x) is the aperture function defined so that W(x)
=1 for |x| <1 and zero otherwise, r and 6 are the ra-
dial and azimuthal coordinates, and m is the OAM
quantum number. We further assume that the field
at the receiver aperture can be represented as

V(r) = A W(r/R)e ™% ™) (2)

where ¢(r) represents the turbulence-induced wave-
front distortion at the receiver.

We next consider explicitly the nature of the angu-
lar momentum scrambling induced by atmospheric
turbulence. We note that we can expand the quantity
expli¢(r)] in an azimuthal Fourier series as
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Fig. 1. Schematic of a free-space quantum communication
link.
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where the expansion coefficients g;(r) are given by
1 2 ) )
s =5 [ anoe @)
27T 0

Similarly, we expand the received field V(r) in an azi-
muthal Fourier series as V(r,0)=2;___V,(r)exp(in6),
where each Fourier component V,(r) is given by

1 2
V,(r) = —f d6V(r, g)e 0. (5)
277 0

Equations (2) and (3) are now substituted into Eq.
(5), which becomes

A o 21 ]
Vn(r>=;iW<r/R>2gz(r> dgein-t-me (6)

[=—o0 0

The integral in this expression is equal to 27 if n—/
—-m=0 and vanishes otherwise. Using this result, the
summation can be performed directly to give

V,(r) = A W(r/R)g,(r), (7)

where we have defined A as A=n-m. This result il-
lustrates the manner in which the azimuthal Fourier
components g,(r) associated with atmospheric turbu-
lence are coupled to the angular momentum state of
the received field. It shows, for instance, that the spa-
tial de component (i.e., A=0) of the azimuthal Fourier
spectrum of e’#") is associated with the amount of ra-
diation that remains in the initial OAM state.

Under many practical situations, one is interested
primarily in determining the power contained in each
OAM state of the received field. The total power col-
lected by the receiver is given by

P=lepc J drW(r/R)V*(x)V(r) = j€clAoP7R2, (8)

where in obtaining the last form we used the field of
Eq. (2). This power is distributed among the various
(orthogonal) OAM modes of the field according to

o R
P= > P, whereP,= 2’7T|A0|2f drrg,(r)ga(r).
A=—o0 0

9)

It is useful to consider the fraction s,=P,/P of the
power contained in each OAM mode given by

2 R
A= 2 fo drrg| (r)ga(r). (10)

For any statistical realization of the atmospheric tur-
bulence, s, gives the probability that the OAM quan-
tum number n of the received photon departs from
that m of the transmitted photon by the amount A
=n-m.

The result presented in Eq. (10) is valid for any re-
alization of atmospheric turbulence. Usually we are

interested in the ensemble average of this quantity,
which is given by an equation of the same form with
s, replaced by (s,) and with gZ(r)gA(r) replaced by
(gZ(r)gA(r», where the angle brackets (...) represent
an ensemble average over the turbulence statistics.
To proceed, Eq. (4) is used to express Eq. (10) in
terms of the random phase associated with atmo-
spheric turbulence. One obtains

R 2m 2m
(sa) =KJ dr,.f dglf d Gy (e~ A0 0=, 09 ) piA(01=0)
0 0 0

(11)

where K=1/(27?R?). The analysis proceeds using
standard methods. Since the aberrations introduced
by atmospheric turbulence are normal random vari-
ables, the ensemble average present in Eq. (11) can
be expressed as

(e~ LA, 00)-(r,0)ly _ o=V2((8(r,00) = S, 0)) (1)
The quantity ((¢(r, 6;)—d(r, 0,)]?) is known as the
phase structure function. It can be evaluated by
means of the Kolmogorov turbulence theory to give
the result

5/3
) (13)

r{—r

([p(ry) — p(ry)]?) =6.88

ro

where ry is Fried’s coherence diameter, which is a
measure of the transverse distance scale over which
refractive index correlations remain correlated.
When Eqs. (12) and (13) are introduced into Eq. (11),
the resulting integral simplifies dramatically. The re-
sult becomes

1 1 2
(sy) = — f dpp f d 08—3.44(D/r0)5/3(p sin 0/2)%/3 cos A#,
™Jo 0

(14)

where we have introduced p=r/R. This integral can
readily be evaluated numerically; some of the results
of this procedure are shown below.

We have found that the integral of Eq. (14) can be
evaluated analytically in the limiting cases of very
small or very large collecting apertures. For a small
receiver aperture (D/r,—0), we expand the exponent
of Eq. (14) in a power series in D/r, and retain only
the first two terms. The resulting integrals can be
performed analytically. We find that

D 5/3
1- 1.01(—)
ro

ra-g) oy
0.142 TN otherwise
r(a+g)\ro

for A=0
(sa) =

(15)

where I'(x) is the usual gamma function. This expres-
sion shows how energy is lost from the transmitted
OAM mode and is gained by the other modes as the
strength of the turbulence increases. The integral
can also be evaluated analytically in the opposite
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Fig. 2. (Color online) Quantity (s,) plotted against the

strength of the atmospheric turbulence as quantified by the
ratio of the telescope diameter D to the Fried parameter r
for several values of A; (s,) is the ensemble average of the
fraction of the received power that is found to be in OAM
mode n=m+A, assuming that the transmitted beam was in
OAM mode m. Solid curves give the predictions based on a
numerical evaluation of the integral in Eq. (14). The
dashed curves, shown only for A=0, give the predictions of
the asymptotic expressions of Egs. (15) and (16).

limit of a very large aperture with D/ry>1. We find

that
121'(8/5) (D\! D\™!
<SA> = W 7‘_0 =0.542 r—o . (16)

This result shows that in the presence of strong tur-
bulence all of the OAM states are populated with
equal probability. Stated differently, all of the infor-
mation content of the transmitted field is lost.

The key results of our analysis are presented in
Fig. 2, in which (s,) is plotted as a function of D/r
for several values of A. The solid curve for A=0 be-
gins at unity and falls asymptotically as the strength
of the turbulence increases. This curve thus provides
a quantitative prediction for how quickly energy is
lost from the mode that is transmitted. The curves
for all other values of A initially increase with in-
creasing turbulence levels and eventually decrease
with further increases. The decrease at high turbu-
lence levels occurs because the optical power is being
spread among more and more OAM modes. Also
shown in Fig. 2 as dashed curves are the prediction of
the asymptotic expressions of Eqs. (15) and (16). To
avoid cluttering Fig. 2, these results are shown only
for A=0. These approximate forms are extremely
good in their respective limits. We have found that
we can piece these forms together to obtain a formula
for (so) that is highly accurate over the entire domain
of D/ry,. We obtain this formula by arguing that the

inverse of (sy) should equal the square root of the
sum of the squares of the inverses of the two
asymptotic forms. In doing so, we take (s;) in the
limit of small D/ry to be equal to unity. This proce-
dure thus leads to the simple expression

(so)=[1+ (1.845D/rq)*] V2. (17)

This expression is remarkably accurate at predicting
the value of the integral in Eq. (14). We find that
there is at most a 0.1% difference between the value
of (sg) given by numerical integration and that pre-
dicted by Eq. (17).

It is instructive to compare our results with those
of Fig. 3 of Paterson in [7]. As mentioned above,
Paterson treats a somewhat different problem, that
of an OAM beam in the form of an LG function. None-
theless, the two calculations lead to very similar pre-
dictions, with the one exception that Paterson’s
curves peak at a considerably smaller value of the ab-
scissa as they are plotted against b/r,, whereas ours
are plotted against D/r,. We conclude that LG beams
and pure vortex beams perform essentially equiva-
lently in terms of robustness against atmospheric
turbulence, although vortex beams may offer some
benefit in that they are often easier to create.

In summary, we present a calculation that quanti-
fies the rate at which quantum information encoded
on the OAM states of individual photons is lost as a
result of propagation through atmospheric turbu-
lence. These results are summarized by the simple
relation of Eq. (17). These results should prove useful
in the design of practical free-space quantum commu-
nication systems.
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