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Fourier optics: PREFACE

This monograph on Fourier Optics contains a rigorous treatment of this impor-
tant topic based on Maxwells Equations and Electromagnetic Theory. One need
know only the elements of calculus and vector analysis in order to understand the
contents of this work. In the emerging field of Image Science it is important in
the thinking, creation, design, and understanding of novel or modern optical sys-
tems that one consider the input electric field E(r, t) and its intensity, proportional
to E •E, and its progress through the complete system. The complete system
includes of course the optical front-end, an array-type of photodetector, the com-
puting system, and the output display or function.

Fourier optics is the field of physics that encompasses the study of light at
visible wavelengths but including infrared and ultraviolet portions of the electro-
magnetic spectrum as well. Based upon Maxwell’s equations for the electromag-
netic field and using modern transform mathematics, principally Fourier transform
theory in the solutions, Fourier Optics is particularly well suited to the study of
cascades of lenses and phase masks as are widely used in optical instruments
ranging from microscopes to telescopes, i.e., linear optical systems. Fourier Op-
tics also incorporates the advances in communication theory in the treatment of
coherency topics to permit a rich, full analysis of optical systems that use various
sources of illumination ranging from incoherent or white light to modulated laser
beams. For Physical Optics, systems study of the point-spread-function and the
optical transfer function can be described in a rigorous fashion. General trans-
mission functions for lenses can be formulated and optical-system design that is
valid in the non-paraxial regime is now practical. Fourier Optics places the analy-
ses of linear optical systems on a rigorous theoretical foundation enabling one to
calculate resolution, imaging and other interference phenomena in a careful and
accurate fashion.

This monograph is based on the experience by the author in lecturing on
Electromagnetic Waves and Fourier Optics for over forty years to a talented and
inspiring group of doctoral scholars at the California Institute of Technology and
later at The Institute of Optics, University of Rochester.
– Nicholas George, January 2013, Rochester, New York
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1 Introduction to electromagnetic waves and
Fourier optics

The foundations of the subject of Fourier Optics rest on Maxwell’s equa-
tions, the early studies of interference and interferometry, coherence, and
imaging. Important advances in the mathematics of transform theory lead-
ing to communication theory from 1900 to the present greatly aided our
understanding of these phenomena; the general notion of signal represen-
tations such as HTD exp(iωt) herein, and the Fourier transform for optics,
and the Laplace transform for electronic circuits. Professor P. M. Duffieux
authored “L’integral de Fourier et ses applications à l’optique”, Masson
Editeur, Paris, 1970 with first editions going back to the early forties. “It
represents the first book-length treatment of what is now called Fourier
optics” [1]. At the (1970) meeting of the International Symposium on the
applications of Holography (ICO) in Besçancon, at a Medal awarding ad-
dress, Dr. Duffieux told a charming story of how a mathematics professor
and colleague had told him about the Fourier transform when PMD showed
him some integral forms he had derived in study of the earlier work of Ernst
Abbe.

Interestingly the technological advances in monochromatic sources in
electronics, particularly radio and microwave from 1900 to 1950 lead to
greatly enhanced theoretical studies and many now-classic textbooks, ap-
peared using HTD of amplitudes.

In optics intensity based considerations were more commonly employed.
A notable exception is the brilliant advances in coherence theory leading
to phase contrast microscopy. However, in Optics this situation changes
dramatically with the invention and development of holography and nearly
monochromatic lasers. The theoretical treatment and understanding of
these novel devices were greatly aided by the appearance of now classic
textbooks on Fourier Optics [2, 3].

This article contains a modern complete theoretical treatment of Fourier
Optics based on Maxwell’s equations and current signal representations,
as devised from the subject of communication theory.
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1.1 Maxwell’s equations in real-valued form

The basic equations of electromagnetic theory are briefly reviewed for a
simple linear medium so that the signal representation herein can be care-
fully explained. In this first section, we describe the time-varying real-
valued electric field vector E(r, t) and the time-varying magnetic field vec-
tor H(r, t) in Eq. (1) Faraday’s Law and Eq. (2) the generalized Ampere’s
circuit law including Maxwell’s electric displacement term. Undergraduate
level derivation of these first six differential equations of electrodynamics
and their application across the electromagnetic spectrum appear in many
texts, e.g., [4] Griffiths. This article is written using the SI/mks system of
units. The time-dependent real-valued functions are related as given in
Eqs. (1) through (6):

∇×E(r, t) =−∂B(r, t)
∂ t

(1)

∇×H(r, t) =J (r, t)+
∂D(r, t)

∂ t
(2)

∇•D(r, t) = ρ(r, t) (3)
∇•B(r, t) = 0 (4)

∇•J (r, t) =− ∂
∂ t

ρ(r, t) (5)

∇×∇×E(r, t)+µε
∂ 2

∂ t2E(r, t) =−µ
∂
∂ t

J (r, t) (6)

The field vectors are written in boldface type and the common symbols
are used for divergence (∇•) and curl (∇×). Restricting the media to simple
dielectrics, the constitutive parameters for permittivity ε and permeability
µ also give us

B = µH (7)
and D = εE (8)

An exact solution of Maxwell’s equations is obtained when one has
E(r, t) and H(r, t) that satisfy Eqs. (1) and (2). Other paths to exact solu-
tions are to obtain E(r, t) from Eq. (6) and then use Eqs. (1) and (7) to find
H(r, t). Finally, one can introduce any of a variety of vector potentials that
have been developed for particular cases.
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1.2 Fourier analysis in three dimensions

Consider a scalar function g(x,y, t) with two transverse spatial coordinates
and one temporal coordinate. Now define the Fourier transform G( fx, fy;ν)
by the following equation:

G( fx, fy;ν) =
∞∫∫∫

−∞

g(x,y, t)e−i2π( fxx+ fyy+νt)dxdydt (9)

It is a straightforward exercise to show that the inversion expression is
given by Eq. (10):

g(x,y, t) =
∞∫∫∫

−∞

G( fx, fy;ν)ei2π( fxx+ fyy+νt)d fxd fydν (10)

This notation and sign convention is used throughout this paper. It is
particularly convenient since the sign of the exponents in the transform
kernel are all negative while those of the inversion are all positive.

1.3 Maxwell’s differential equations in temporal trans-
form form

In Sec. 1.2, the notation for Fourier analysis in three dimension has been
presented in order to place in evidence the sign convention to be used.
Now, however, we use the obvious form for the temporal transform alone,
since we wish to compare the resultng equations to “standard” HTD ex-
pressions.

Important integral solutions of Maxwell’s equations are readily obtained
using temporal Fourier transform forms of Eqs. (1) (2) and (6) with the
corresponding results in Eqs. (11) , (12) and (13) , (14) directly below:

∇×E(r;ν) =−iωµH(r;ν) (11)
∇×H(r;ν) = J(r;ν)+ iωεH(r;ν) (12)

∇×∇×E(r;ν)−ω2µεE(r;ν) =−iωµJ(r;ν) (13)

(∇2 + k2)E(x,y,z) = 0 (14)

Equation (14) is valid in a source free region.
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Now these temporal transform equations are exact and rigorous for opti-
cal sources which are transient. Since temporal frequency ν is a variable,
solving the above equations gives us a new path to solving problems in
which there are broadband sources or multi-tone spectra.

Ex(x,y,z; t) (1)

1

Ex(x,y,z;ν) (1)

1

Vx( fx, fy;z;ν) (1)

1

Fxyt (1)

1

Ft (1)

1

Fxy (1)

1

(or htd e+i2πνt) (1)

1

∇×E = −i2πνB (1)

1

(∇2 + k2)Ex(x,y,z;ν) = 0 (1)

1

∇×E = −∂B(r, t)
∂ t

(1)

∇2Ex = µε
∂ 2Ex

∂ t2 (2)

1

∂ 2Vx

∂ z2 +
�
k2 − (2π fx)

2 − (2π fy)
2�Vx = 0 (1)

1

Vx( fx, fy;z;ν) =

∞��

−∞

dxdy Ex(x,y,z;ν)e−i2π fxx− i2π fyy (1)

Ex(x,y,z;ν) =

∞��

−∞

d fxd fy Vx( fx, fy;z;ν)e+i2π fxx+ i2π fyy (2)

1

�
−−−e−i2πνtdt

1

Figure 1: Signal representations in Electromagnetic Waves and Fourier
Optics

In order to place emphasis on the significance of the result to be in-
ferred from Eqs. (11) through (14), let us observe that Eqs. (11) and (12)
are simply and precisely the harmonic-time-dependence differential equa-
tions for an electromagnetic wave. The reader is cautioned , however, that
our Eq. (9) notation is consistent with an exp(iωt) as in ref. [6].

In Fig. 1 we show the signal representations being used in Sections 1.1
and 1.2 in more detail than is necessary for the paper at hand. However,
we wanted to show the more general usage including angular spectrum as
well as statistical optics in order to explain our preference for the exp(+iωt)
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in the HTD representation and its consistency with our Fourier transform
notation.

2 Propagation into the right-half-space

Maxwell’s equations give us the means to obtain exact solutions of many
optics problems. Both the Hertzian electric dipole and the magnetic dipole
are significant and important and covered in many textbooks [5] - [7]. In
optics, diffraction theory topics such as propagation through screens, slits,
and various apertures were studied extensively for several hundred years.
Also lens trains formed by a cascade of lenses along an optical axis is a
common configuration, as in Sec. 5.

2.1 Rayleigh-Sommerfeld-Smythe solution

Consider a monochromatic electromagnetic wave traveling along the optic
z-axis and incident on an aperture as in Fig. 2. This is a classic prob-
lem in the propagation of waves since the time of Francesco Grimaldi and
Christiaan Huygens.

We assume there are sources of radiation only in the region z < 0
and that we have knowledge of the “field” in the aperture. The radiation
propagates into the right-half-space which is a simple source-free region.
Viewed with today’s understanding, as will be shown, if one views this as
a boundary-value problem, there will be an exact integral form of the radi-
ation at z > 0 for E(r, t) and H(r, t) that converges to the given tangential
electric field ẑ•E(r, t). As is illustrated by the solution, the tangential input
electric field at z = 0 is the necessary and sufficient input specification, as
recognized first by Sommerfeld for the HTD case.

Now to obtain the desired solution for radiation in the right-half-space
one starts with Eq. (14) rewritten for each Cartesian component, viz.,

∇2Ex(x,y,z)+ k2Ex = 0 (15)

∇2Ey(x,y,z)+ k2Ey = 0 (16)

∇2Ez(x,y,z)+ k2Ez = 0 (17)

5



(x′,y′,0)

(x,y,z ≥0)

R1
x

y

z

Figure 2: Radiation into the right-half-space from a circular aperture in the
z = 0 plane

Now consider the use of a Green’s function solution using either Eq. (15)
or (16), as follows. We write

Gs(∇2 + k2)Ex = 0 (18)

Ex(∇2 + k2)Gs =−δ (r− r′)Ex (19)

where r′ is at (x1,y1,z1 ≥ 0) in the right-half-space, as shown in Fig. 3
and the vector operations are at the point r(x,y,z). Moreover, the Green’s
function Gs(x,y,z;x1,y1,z1) has a singularity at r′. Forming the difference
of Eqs. (18) and (19) and integration over the right-half-volume and using
Green’s second identity yield the following intermediate result:

Ex(x1,y1,z1) =
∫∫

RHS

(Gs∇Ex−Ex∇Gs)• n̂outdA (20)

Sommerfeld broke this integration in Eq. (20) into parts asserting that
the integral over the hemisphere in the far zone goes to zero for a finite
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aperture source (see Eq. (22) below).

r(x,y,z)

R1

x

y
z

R2

r′(x1,y1,z1)
r″(x1,y1,_z1)

Figure 3: Notation in the calculation
for Sommerfeld’s Green’s function
with a δ -function at point r′(x1,y1,z1)
in the right-half-space.

R1

x

y
z

R2

r′r″

Figure 4: Sommerfeld’s Green’s
function in Eq. (23) and integration
over the z = 0 plane.

The integration over the plane at z = 0 has two members by a proper
choice of the Green’s function Gs, one can zero out the first member of the
integration over the z = 0 plane, regardless of the non-zero value of ∇Ex
there. Hence by Eq. (18), the scalar component Ex for z≥ 0 is given by

Ex(x1,y1,z1 ≥ 0) =
∫∫

z=0

Ex∇Gs • ẑ dxdy (21)

Moreover summarizing, one has the Sommerfeld radiation condition
that the term S→ 0 where S is given by

S =
∫∫

R1→∞

(Gs∇Ex−Ex∇Gs)• r̂ dA→ 0. (22)

Also, the appropriate choice for Gs(x,y,0;x1,y1,z1) is given by

Gs =
e−ikR1

4πR1
− e−ikR2

4πR2
(23)

in which

R1 = [(x− x1)
2 +(y− y1)

2 +(z− z1)
2]1/2 (24)

and R2 = [(x− x1)
2 +(y− y1)

2 +(z+ z1)
2]1/2. (25)
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In Figs. 3 and 4, one sees that placing r′′ as the image point of r′ in the
z-plane establishes that Gs(x,y,0;x1,y1,z1)= 0 in the z= 0 place as required
to drop out the term in the integral regardless of the value of ∇Ex.

Thus, the Green’s function choice by Sommerfeld in Eq. (23) is the key
to finding an exact solution for Ex in the right-half-space.

A straightforward algebraic calculation on Gs(x,y,z;x1,y1,z1) for

∇Gs • ẑ =
∂Gs

∂ z

∣∣∣∣
z=0

(26)

leads to the important result:

∂Gs

∂ z

∣∣∣∣
z=0

=
e−ikR1

2πR1
(ik+

1
R1

)
z1

R1
. (27)

Substitution of Eq. (27) into Eq. (21) yields the desired result for the
interior scalar electric field component, namely

Ex(x1,y1,z1 ≥ 0) =
∞∫∫

−∞

dxdy Ex(x,y,0)
e−ikR1

2πR1
(ik+

1
R1

)
z1

R1
(28)

in which the distance R1 is given exactly by Eq. (24).
Now, typical of Green’s function solutions, we make a change in coor-

dinates in Eq. (28) in order to have the aperture point labeled (x′,y′,0) and
the interior RHP point (x,y,z) as in Fig. 2. The result of this relabeling in
coordinates leads to the desired final form for

Ex(x,y,z≥ 0) =
∞∫∫

−∞
z=0

dx′dy′Ex(x′,y′,0)
e−ikR1

2πR1
(ik+

1
R1

)
z

R1
(29)

and of course now R1 in Eq. (29) becomes

R1 = [(x− x′)2 +(y− y′)2 +(z−0)2]1/2. (30)

One can complete this derivation by stating that this result can also
be written for Ey(x,y,z ≥ 0). Now using ∇ •E(x,y,z;ν) = 0, we can find an
expression for Ez that stresses its dependence on Ex and Ey. We omit the
details of this calculation until later in Eq. (35) since there is much more
to write about these results using an independent approach in Sec. 2.2
below.
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2.2 Impulse response for propagation into the RHS

In linear optical systems a topic of central interest is to derive an exact
impulse response for propagation into the right-half-space (RHS). In Sec.
2.1 Eq. (29) is presented as a rigorous solution of Maxwell’s equation for
this impluse response. It is applicable over the entire range that Maxwell’s
equations holds from near field optics to telescopes. Hence, in this article
it seemed worthwhile to develop an independent derivation of Eq. (29) and
related material.

Again consider the setup and notation in Figs. 2 for radiation into the
RHS. Smythe was at least early to write out a detailed existence theorem
for electromagnetic waves in a closed source-free region, and he stressed
the necessary and sufficient need for either the tangential electric field or
the tangential magnetic field, although he did not explicitly cover a region
such as the RHS [8]. Also Smythe was first to write the complete exact
solution for the right-half-space problem in an entirely vector form in his
famous Phys. Rev. (1947) paper [9]. The vector result for the internal field
is given in Fourier optics or HTD form as follows:

E(r;ν) =
1

2π
∇×

∫∫

z′=0

ẑ′×E(r′)
e−ikR1

R1
dx′dy′ (31)

in which the free-space Green’s function G is appropriate as follows:

G(r,r′) =
e−ikR1

4πR1
, (32)

and E(r′) at (x′,y′,0) is the final field in the aperture.
Let me describe some illuminating illustrative exercises for the dedi-

cated reader. Derive the equations below in Eq. (33) to (35) for the com-
ponents.

To verify that this result in Eq. (31) is an exact solution for Maxwell’s
equations, one needs to verify that the vector E(r;ν) is a solution of the
vector wave equation (13) or (14).

It is fascinating to see the impulse responses for propagation into the
RHS for a simple medium. There is no “mixing” of the x and y polariza-
tions. Moreover, both the Ex and Ey are seen to contribute to the Ez com-
ponent. This illustrates very nicely the existence theorem for this situation

9



and Maxwell’s equations. For the RHS problem, one can supply any rea-
sonable functions for the tangential components Ex and Ey (necessary and
sufficient) but any more will likely lead to inconsistent results.

2.3 Summary of impulse response

2.3.1 The Right-Half-Space

Here are the exact solutions of Maxwell’s equations for propagation in the
right-half-space.

The Rayleigh-Sommerfeld-Smythe formulas:

Ex(x,y,z) =
∞∫∫

−∞

dx′dy′Ex(x′,y′,0)
e−ikR1

2πR1
(ik+

1
R1

)
z

R1
(33)

Ey(x,y,z) =
∞∫∫

−∞

dx′dy′Ey(x′,y′,0)
e−ikR1

2πR1
(ik+

1
R1

)
z

R1
(34)

Ez(x,y,z) =
∞∫∫

−∞

dx′dy′{Ex(x′,y′,0)
x′− x

R1
+Ey(x′,y′,0)

y′− y
R1
}e−ikR1

2πR1
(ik+

1
R1

)

(35)

Another exact, useful and readily proven result for the RHS is given by
[10]:

Ex,y(x,y,z) =−
∂
∂ z

∞∫∫

−∞

dx′dy′Ex,y(x′,y′,0)
e−ikR1

2πR1
(36)

They are valid for z≥ 0, and R1 is given by Eq. (30), Fig. 2.
Many scientists have contributed to an understanding of interference

patterns arising as light propagates, e.g., from two pinholes, through an
open aperture, or from an array of coherent sources. Huygens’ princi-
ple stated more than three hundred years ago in the description of the
propagation of a wavefront is among the earliest major contributions. His
asserions are in accord with the theory which we have presented.

For us, today, using Maxwell’s equations and the formula presented on
the previous page, we can see that a diffraction pattern is made up by the
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superposition of radiation from differential elements given by

dx′dy′Ex(x′,y′,0).

These give rise to “secondary waves” which are traveling in the right-
half-space with a very weak angular dependents given by the term z/R1.
The superposition weighting is given precisely in amplitude and phase by
the term:

e−ikR1

2πR1
(ik+

1
R1

)
z

R1

All of the physical details of interference patterns are contained in these
formulas for the radiation in the right-half-space resulting from a given
aperture distribution.

2.3.2 The full 4π-steradian space

In the classic text on electromagnetic wave by Papas [5], there is an ex-
cellent treatment of radiation from monochromatic sources in unbounded
regions, i.e., 4π steradians. He describes two methods of solution: vector
potentials and the dyadic Green’s function. While our emphasis for optics
is on the right-half-space topic, it is important to mention this basic result
for the impulse response for the 4π-steradian or full-space case.

For the same simple medium with constitutive parameters µ, ε, one
has the same group of Maxwell’s equations as our Eqs. (11), (12).

The magnetic vector potential A is defined by

B = ∇×A. (37)

Hence, by Eq.Eq. (11), one can write the E field as

E =−iωA−∇φ . (38)

With the choice of the Lorenz gauge relating A and φ , namely that

∇•A+ iωεµφ = 0 (39)

one can write a wave equation as follows:
for the vector potential A(r;ν):
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∇2A+ k2A =−µJ. (40)

Presenting a Green’s function solution, Papas derives the integral equa-
tion solution for the radiation into free space, 4π-steradians:

A(r) =
∞∫∫∫

−∞

dx′dy′dz′J(r′)
e−ikR1

4πR1
(41)

Equation (41) is the basis equation for radiation of electromagnetic waves
into free space in a spherical configuration. It is particularly useful for ra-
diation of current sources as given by J(r′,ν) where the R1 is given by

R1 = [(x− x′)2 +(y− y′)2 +(z− z′)2]1/2 (42)

It is important to understand these two distinct radiation problems. They
are often confused. First, one has the scalar electric field components
propagating into the right-half-space expressed in terms of source-terms
in the plane at z = 0. The solutions are given in Eqs. (33) to (36).

Secondly, in the radiation into 4π-space, we have the vector potential
A(r;ν) resulting from source currents J(r′;ν), and the resulting impulse
response given by the free-space Green’s function in Eq. (41).

3 Optical diffraction illustrations

The theory of Fourier Physical Optics as presented in the earlier sections
of this article is based on Maxwell’s equations. The precision possible with
rigorous or exact solutions of electromagnetic theory is discussed in some
detail in Jackson [11]. This enormous range includes wavelength or fre-
quency from fractional cycles per second to ultraviolet and of course DC.
It includes power range from 10−20 watts to many megawatts. It also in-
cludes subpulse propagation as well as µµsec transients. Many new fields
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are developing in optics such as computational imaging that are permitting
the solution of many boundary value problems, and near-field optics prob-
lems that were considered inaccessible until rather recently.

3.1 The circular aperture

For a first illustration, it is helpful to start with an important problem in
which a theoretical approach leads to interesting results [10]. Consider a
perfectly conducting, infinitesimally thin conducting plane sheet containing
a circular aperture of radius (a) placed in the (x,y) plane at z = 0, as shown
in Fig. 5. It is illuminated by a plane-polarized monochromatic plane wave
with wave number k = 2π/λ where λ � a so boundary effects can be ig-
nored. Clearly, Eq. (33) or (36) can be used. Let us restrict our solution
to the optic axis z so that we gain an understanding of the different zones
shown. Hence, for a fixed amplitude Eo of the scalar component of electric
field, by Eq. (36), one can write the field along the optical axis Ex(0,0,z;ν)
as

(x′,y′,0)

R1

x

z

(x,y,z)

R0

NZ FZ FAR

2a

0

Figure 5: Uniformly illuminated circular aperture of radius (a) is calculated
on axis to provide clear picture of (NZ) near field, (FZ) Fresnel zone and
the FAR-zone. [10]
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Ex(0,0,z≥ 0) =− ∂
∂ z

∫∫

A

dx′dy′Ex(x′,y′,0)
e−ikR1

2πR1
, (43)

in which the illumination is given in polar coordinates, viz.

Ex(x′,y′,0) = Eocirc(ρ/a), ρ = [x′2 + y′2]1/2 (44)

and the distance R1 given in polar form is

R1 = [ρ2 + z2]1/2. (45)

Equation (43) is rewritten to yield:

Ex(0,0,z≥ 0) =−Eo
∂
∂ z

a∫

0

e−ik(ρ2 + z2)1/2

(ρ2 + z2)1/2 2πρdρ. (46)

This can be integrated exactly to yield the result:

Ex(0,0,z≥ 0) = Eo{e−ikz− z
d

e−ikd} (47)

where

d =
√

a2 + z2. (48)

First as expected, when z→ 0, the radiation field at the aperture re-
duces to the input Eo. As described in Sec. 2.2, this result is consistent
with the existence theorem for Maxwell’s equations, Eqs. (1) through (4),
extended to the right-half-space and adding Sommerfeld radiation condi-
tion, given by Eq. (22). We see that specification of HTD together with the
tangential electric field at the input plane z = 0.

By Eq. (34) one sees that Ey(x,y,z≥ 0) is identically zero as expected.
And of course, one can calculate Ez by Eq. (35) clearly dependent on the
non-zero tangential electric field, Ex, input.

In order to study the z-dependence of Ex further, it is interesting to think
of the calculation as in the HTD signal representation. By Eqs. (47) and
(48), one can insert the time dependence simply as follows:

Ex(0,0,z; t) = Eo{e−ikz− z√
z2 +a2

e−ik
√

z2 +a2}e+i2πνt . (49)

14



LOG (Z)     (Z IN mm)

AX
IA

L 
FI

EL
D

 S
TR

EN
G

TH
 S

Q
UA

R
ED

FR
ES

N
EL

 R
EG

IO
N

FA
R

 Z
O

N
E

5.0

4.0

3.0

2.0

1.0

0.0
-3 -2 -1 0 1 2 3 4 5

Figure 6: Axial field strength squared w(z) vs log(z) for uniformly illumi-
nated circular aperture, as in Eq. (51) The dashed lines are the envelope
of w(z). The actual value of w(z) is plotted in red in the Fresnel zone for
the first few cycles, but it is too fine scalar to plot accurately.

In order to monitor the optical field along the optical axis, one can use
a single photodiode or a CMOS detector array. Hence, in our illustrative
study, we will use energy density in the Ex electric field. Hence, we define
w as follows

w(z) = |Ex(0,0,z : t)|2. (50)

Hence combining Eq. (47) and (48) with some algebra yields the fol-
lowing form:

w(z) = |Eo|2{1+
z2

z2 +a2 −2
z√

z2 +a2
cosk[

√
z2 +a2− z]} (51)

in which k = 2π/λ .
No approximations have been made in deriving Eq. (51) for the squared

electric field component Ex from the initial solution in Eq. (47). Hence, it is
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useful as an illustration, and it is plotted in Fig. 6.
The plot shows Eq. (51) for w(z) vs. z in mm. The aperture diameter

2a = 1 mm and the optical wavelength λ = 0.5 µm. The envelope for w(z)
is plotted as the dashed lines since the amplitude variations in the optical
field are tiny compared to the z-axis mm scale.

This theoretical problem provides a lovely illustration of the main radia-
tion zones that are so important in diffraction problems. Here we would like
to point out that the far-zone or Fraunhofer zone start at roughly 1 meter
for the one-millimeter aperture. And in this region, the electric field falls off
as 1/z while the intensity falls off as 1/z2.

Coming in closer, one sees the natural occurrence of another zone
called the Fresnel zone, treated in Sec. 3.3 below. Looking at the scale
in Fig. 6, the Fresnel zone comes to an end at about 6 mm. If one goes
in closer, the calculations become very difficult to carry out in closed form
if one goes off-axis. However, they are nicely handled with modern digital
computers and computational imaging.

From Eqs. (33) and (35) as well as the discussion of Eq. (38) for the im-
pulse response of the right-half-space, it is appropriate to discuss the new
field of computational optics. Viewing the main equations for the right-half-
space, we have emphasized the notion that the interior that the interior
fields in a closed volume with no internal sources can be calculated from
a knowledge, say, of the tangential component of the electric field (neces-
sary and sufficient). From the illustration of the simple circular aperture,
Fig. 6, one clearly sees the field Ex(0,0,z) converges to the input tangential
field, Eo. This is generally true for all of the RHP forms.

For near-field optics it is interesting to take note of the two members of
the amplitude impulse response:

p(x,y;x′,y′;ν) =
e−ikR1

2πR1
(ik+

1
R1

)
z

R1
(52)

It is important to notice that the 1/R1 term will be dominant in the overall
integration whenever

|(1/R1)/(ik)| � 1
kR1� 1

R1� λ/8.
(53)
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In the illustration of the circular aperture, of course both terms are in-
cluded in the calculation. An advanced and comprehensive treatment of
the theory of diffraction is provided by Born and Wolf [12].

3.2 The far-zone

Now starting with a more general aperture shape in the z = 0 plane of Fig.
2, we consider that an x-plane polarized scalar electric field Ex(x′,y′,0;ν) is
used as the illustration. Hence, we seek an approximate, more integrable
form of the exact Eq. (33) that is repeated as Eq. (54), i.e.,

Ex(x,y,z : ν) =
∞∫∫

−∞

dx′dy′Ex(x′,y′,0)
e−ikR1

2πR1
(ik+

1
R1

)
z

R1
(54)

The far-zone, also known as the Fraunhofer region, is characterized by
large values of R1. Mainly in this treatment, we would like carefully to point
out the conventional theoretical assumptions in the integration of Eq. (33)
or (54) in the far-zone region.

In the far-zone calculation, however, the situation is vastly different rel-
ative to accuracy for exp(−ikR1). The phase term needs to be accurate to
the order of ±π/8 no matter how large Ro is. For example, if you are mak-
ing measurements at 10 m with an optical wavelength of 0.5 µm, the kRo
is the order of 4π×107 radians; and the tolerance error in R1 is fractionally
well below one part in 107.

Hence, in the far-zone, Eq. (54) can be approximated by

Ex(x,y,z;ν) =
ik

2πRo

( z
Ro

) ∞∫∫

−∞

dx′dy′Ex(x′,y′,0)e−ikR1 (55)

For the illustration problem, consider an open rectangular aperture that
is Lx by Ly length in the conducting metallic sheet at z = 0. We take Lx,y > λ
so that we can study the patterns from slits to large square apertures.
Using the notation in Fig. 5, we already understand that the distance Ro�
λ so only the ik member in Eq. (54) remains for the far-zone.

Moreover, amplitude terms that are approximated in this integration
will cause errors in percentage that are roughly that of the approximation.
Hence if a five-percent accuracy solution is sought, then amplitude terms
need only be accurate to five-percent.
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For the R1 in the phase term (−ikR1), we write

R2
1 = [(x− x′)2 +(y− y′)2 +(z−0)2]1/2 (56)

Since the far-zone term is often used for telescopes, it is useful to have
the expansion valid for large angles θ where

z
Ro

= cosθ (57)

is recognized as the spherical angle coordinate.
Hence, one factors out Ro =(x2+y2+z2)1/2 in the expansion of Eq. (56).

For the Fraunhofer zone, the resulting expression for the distance R1 is
approximated by the following:

R1 ∼= Ro−
xx′+ yy′

Ro
, (58)

Ro�
2x′2

λ
all cases of coordinates, (59)

Ex,y(x,y,z) =
ie−ikRo

λRo

( z
Ro

) ∞∫∫

−∞

dx′dy′Ex,y(x′,y′,0)e
i2π[

( x
λRo

)
x′+

( y
λRo

)
y′]

(60)
In Eq. (60) the integration is only over the aperture and this is included

as a blocking function in the scalar input field Ex,y(x′,y′,0). It is customary in
Fourier optics to write the limits of integration as running over ±∞. Hence
in a cascaded system in which there are many integrals running from ±∞,
and this is to emphasize that the order of integration can be interchanged.
This is a key factor in many calculations.

Noting that the exponent in Eq. (60) is of the form of a Fourier trans-
form in which the spatial frequency variables are ( fx, fy), one can rewrite
Eq. (60) in the following form:

Ex,y(x,y,z) =
ie−ikRo

λRo

( z
Ro

) ∞∫∫

−∞

dx′dy′Ex,y(x′,y′,0)e−i2π[ fxx′+ fyy′], (61)
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in which the spatial frequency variables ( fx, fy) are defined by

fx =−
x

λRo
and

fy =−
y

λRo
.

(62)

It is interesting to use Eq. (59) to estimate the axial distance for which
the above calculation is valid. Assume that the rectangle in the z = 0 plane
is on the order of 1 mm and that λ = 0.5µm. Then, Eq. (59) gives Ro > 4m
as the starting point for the far-zone. This is nicely in accord with our
discussion in connection with the Fig. 6 curve showing somewhat over 1
meter for the circular aperture.

Moreover, we also clearly see the 1/Ro fall off of the electric field corre-
sponding to an inverse R2 power.

Moreover, the error in the phase term involved in the exponent can
be shown to be a maximum at the θ = 0 angle, decreasing as the angle
increases. So factoring out the Ro in the derivation of Eq. (60) is imperative
so that Eq. (58) is good at all angles in the right-half-space; i.e., it is not
paraxially limited.

3.2.1 The rectangular aperture

For the rectangular aperture Lx by Ly in length Eq. (60) can be integrated
directly to yield the following far-zone radiation pattern:

Ex(x,y,z) =
ie−ikRo

λRo

( z
Ro

)
LxLy

sin
(πxLx

λRo

)

(πxLx
λRo

)
sin
(πyLy

λRo

)

(πyLy
λRo

) . (63)

Or in Fourier optics notation, one has

Ex(x,y,z) =
ie−ikRo

λRo

( z
Ro

)
LxLysinc( fxx)sinc( fyy). (64)

3.3 The Fresnel zone

In Sec. 3.1 the illustration of the axial field behavior in the right-half-space
using a circular aperture showed us that there is a near zone, followed by
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a Fresnel zone, and then at larger distances the far-zone. In Sec. 3.2 for
the far-zone, we illustrated the theory and a careful calculation that was
demonstrated to be good in the right-half-space when the overall range
distance Ro � 2x2/λ . Numerically, we estimated that for small millimeter
apertures, one can calculate accurate patterns when Ro & 4 m. We as-
serted that the calculation is excellent at all angles. This calculation is an
easy extension of the material presented.

However, one very important calculation in Fourier optics is to treat
lenses, either a single lens or a cascade of lenses. In this Sec. 3.3 we
describe the Fresnel-zone calculation. It is very important since it can be
used to handle lens cascades where the spacing is generally much smaller
than in the far-zone. As shown for the circular aperture, Figs. 5 and 6,
hopefully we are dealing with several millimeters rather than meters.

For the Fresnel zone, the theory proceeds as in Sec. 3.2. First for
Eq. (33), we need to establish an expansion for the phase term. Using the
notation as in Fig. 5, the exact expression for the distance R1 is given by

R1 = [(x− x′)2 +(y− y′)2 +(z−0)2]1/2. (65)

Factoring z and using the binomial expansion gives the following form:

R1 ∼= z+
(x− x′)2 +(y− y′)2

2z
. (66)

Factoring with removal of z and leaving (x,y) in the series limits one to
a paraxial solution. It is better, however, with regard to axial distance, i.e.,
valid much closer-in. The limitation on primed coordinates (all cases) is
characterized by the following:

z3 &
(x− x′)4

2λ
. (67)

For a 1 mm aperture, this gives an axial distance z ≈ 10 mm when
λ = 0.5µm. For the Fresnel zone case, Eq. (33) can rewritten as

20



Ex(x,y,z;ν) =
iz

λR2
o

∞∫∫

−∞

dx′dy′Ex(x′,y′,0)e−ikR1 , (68)

Ex(x,y,z;ν) =
ie−ikz

λ z

∞∫∫

−∞

dx′dy′Ex(x′,y′,0)e
− iπ

λ z
[(x− x′)2 +(y− y′)2]

. (69)

In many instances of lens design using modern digital computers, one
can use Eq. (68) with the exact exponential. However, Eq. (69) is the
standard form for a Fresnel calculation. The reader is left to use Eq. (67)
to predict the starting point for the Fresnel zone region comparing this
estimate to the exact values of the axial field strength as in Fig. 6 from
Eq. (51).

4 Transmission function theory for lenses

4.1 Review of simple lens models [2]

Most of the theory relative to the right-half-space topic is concerned with
how wavefronts propagate in this region. However, one of the central prob-
lems in Fourier optics is to analyze a cascade of lenses that have been
placed along an optical axis, say, for the formation of an image or to de-
scribe a compound lens. It is important to develop an understanding of
the operation of lenses and an analytical theory that is useful for wave-
fronts. Clearly, too, there is a considerable theory about the design and
performance of lenses, since they date back to our earliest history. We
are careful in the following material to use sign conventions and language
that is consistent with usage in the field of geometric optics, i.e., first-order
or Gaussian optics. Our simple cases are to have light traveling from left
to right in the positive z-axis direction. Convergent lenses have a positive
focal length f . A glass lens with index of refraction n and two positive radii
is shown in Fig. 7.

A simple thin lens of glass with index of refraction n will have a focal
length f given by

1
f
= (n−1)

( 1
R1
− 1

R2

)
, (70)
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!

n

R1 R2

Figure 7: Convergent lens with R1, R2 positive and a positive focal length
as in Eq. (70)

where R1 and R2 are radii of spherical end segments, and the lens is used
in air.

Also a point source at s1 in front of the lens will be imaged at a distance
s′1 given by the lensmaker’s equation:

1
s
+

1
s′1

=
1
f
. (71)

Now in order to bring wavefronts into the picture, as shown in red in
Fig. 8, consider a plane wave entering the lens which is thicker at the
optic axis than at its edges. For a lens that has a spherical segment, the
exiting wavefronts will bend forward as shown. Now the phase delay of the
plane wave between planes I and II can be calculated approximately by
summing ∑kl in a straight ray through the plano-convex structure shown
having positive radius R1 at plane I and an infinite radius at the plane II
exit.

Now defining the amplitude transmission function, T12(ρ), as follows:

T12(ρ) =
Scalar electric field exiting (II)

Scalar electric field entering (I)
(72)

or

T12(ρ) = e−iΦ1 , (73)

we can sum the phase delays:
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Figure 8: Positive lens with rays (upper) and wavefronts (lower).
The converging wavefronts are labelled with phase corresponding to HTD
of exp(iωt) dependence

Φ1(ρ) = ko ∑nln (74)

in which n is the glass index of refraction and ko = 2π/λo, where λo is the
free space wavelength.

Assuming a spherical R1 (which can be refined in the next section), one
can write the departure δ as is well-known:

δ = R1−
√

R2
1−ρ2 (75)

Then the phase delay Φ(ρ) is given by

Φ1(ρ) = koδ +nkoh(ρ). (76)
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Figure 9: Notation for plano-convex lens with central thickness Ho.
Calculation of phase delay at red ray δ in air and h(ρ) in glass.

Combining Eq. (75) and (76) assuming ρ/R1 � 1 yields the approxi-
mate form:

Φ1(ρ) =−ko(n−1)
ρ2

2R1
+nkoHo (77)

in which Ho is the thickness of the lens at ρ = 0.
In Fig. 9 we form a double-convex lens by placing the two lens elements

together. Now in forming the overall transmission function, it is asserted
that this is simply the product of the two transmission functions. The details
follow.

For the second lens, let us be careful with signs, i.e.,

Φ2 =−ko(n−1)
ρ2

−2|R2|
+nkoHo. (78)

And since R2 itself is negative. we rewrite Eq. (78) as follows:
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Φ2 =−ko(n−1)
ρ2

2R2
+nkoHo. (79)

Hence, by the defining expression in Eq. (72), we form the product of
the transmission functions corresponding to Eqs. (77) and (79). Moreover,
the thin lens approximation is to set Ho = 0. Hence, the sum of Eqs. (77)
and (79) yields the thin lens approximation for the plase delay. The cor-
responding transmission function for the double-convex lens is given by
substitution of Eqs. (77) and eqrefeq79 with Ho = 0 into Eq. (73). Thus, the
derivation yields the transmission function as follows:

T (ρ) = e
iko

(n−1)
2

ρ2( 1
R1
− 1

R2

)
(80)

With the positive lens one needs to have a positive focal length. From
Eq. (80) and comparing to Eq. (70), clearly one has

1
f
= (n−1)

( 1
R1
− 1

R2

)
and

T (ρ) = e
+

ikoρ2

2 f .

(81)

Lets look at the sign in Eq. (81). It tells us that the phase of the ”forward-
curved” wave in the output is bent forward as is clear from Fig. 8. This sign
for the transmission function is in accord with an exp(iωt) notation.

4.2 Generalized transmission function for aspheres

The transmission model for a lens as given in Sec. 4.1 is based on a
mixture of ray and wave optics. It has the advantage of building a good
physical understanding of the performance of a lens, but it does not give
much insight into what would constitute an ideal shape for a lens nor on
what would lead to a lens of idealized performance. For Fourier optics
one needs a more abstract definition of a lens that is based on diffraction
theory. This formulation also should not be based on the assertion of sim-
ple spherical surfaces. With today’s knowledge we understand that some
aspherical surface is needed if one is planning excellent performance.
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Figure 10: Transmission function for imaging the point source with an as-
phere, see Eqs. (82) to (85)

For the Fourier optics model, we prefer to start with a result or founda-
tion based on Maxwell’s equations. So assume a monochromatic plane-
polarized light from a laser of wavelength λ . From Eq. (33) for a delta
function input point source at a distance s1 from the lens in Fig. 10, one
can immediately write the expanding wavefront at plane I, Ex(ρ) given by

exp(−ik
√

s2
1−ρ2) where apodization is dropped.

Now a few example and some reflection leads one to an answer of the
following question. What exiting wavefront will lead to a point source at a
distance s′1 from plane II? Of course it will likely be blurred by diffraction.

The answer is that the exiting wavefront from plane II needs to have a

wavefront given by exp(ik
√

s′21 +ρ2). Again we have neglected the possi-
bility of using apodization.

The transmission function for a lossless aspheric lens T (ρ) is then de-
fined with a phase delay or sag factor Φ(ρ), as follows:
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T (ρ) =
Scalar electric field exiting plane II
Scalar electric field entering plane I

(82)

T (ρ) = e−iΦ (83)

T (ρ) =
e+ik[(s′21 +ρ2)1/2− s′1]

e−ik[(s2
1 +ρ2)1/2− s1]

, (84)

in which the radius ρ =
√

x2 + y2 in the transverse plane as in Fig. 10. We
have made the lens thin by introducing the subtraction terms s′1 and s1, in
the numerator and denominator, respectively. The transmission of Eq. (84)
is expanded in terms powers of (ρ/s′1)

2m and (ρ/s1)
2m using G & R: 1.112

to yield

Tb(ρ) = e
ik

(
s′1

[
1
2

( ρ
s′1

)2
− 1

8

( ρ
s′1

)4
+

1
16

( ρ
s′1

)6
− 5

128

( ρ
s′1

)8
+ · · ·

]
+

+s1

[
1
2

( ρ
s1

)2
− 1

8

( ρ
s1

)4
+

1
16

( ρ
s1

)6
− 5

128

( ρ
s1

)8
+ · · ·

])
(85)

Eq. (85) is a complete specification for an asphere in a power series
expansion. While a complete discussion of this transmission function is
beyond the scope of this article, more details can found in the literature
[13]. Detailed aberration theory references are also cited [12, 14, 15].

4.3 Illustrative design of the tailored asphere

In optical system design it is commonplace to design aspheric lenses us-
ing modern digital computer software. Large apertures are readily han-
dled. Moreover, a lens specification in terms of phase delay as the φ(ρ)
in Eq. (82) to (85) is readily manufactured. This specification based on
Fourier optics and wavefronts makes an important connection of Fourier
optics to geometric optics or optical system design.

Axicons are lens elements having the property of transforming a point
source of light into an axial segment, i.e., increasing the depth of field. In
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such an application one typically has a range of focal lengths to accom-
modate, call it f (ρ). If one proposes to create a lens design with a radially
symmetric aspheric lens, it is necessary to establish an appropriate phase
delay Φ(ρ) and a corresponding transmission function, Ta(ρ) for the lens
maker.

(a)

I II

z

! R1

z

!

Figure 11: Aspheric lens Φ(ρ) between planes I - II with plane wave inci-
dent. Ray (a) has an effective focal length shown as z.

In the following paragraphs of this section, we describe the design of an
asphere given a desired radial variation in focal length using Fourier optics
wavefront notions. More specifically, we wish to establish the relationship
between φ(ρ) and the corresponding radially varying focal length f (ρ), as
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in Fig. 11. This is a basic question.
Consider the asphere is between planes I, II. A plane polarized plane

wave in incident. Rays at different heights are refracted to the optical axis
crossing at different values z for each ray. Clearly the problem is ideally
suited to our Rayleigh-Sommerfeld-Smythe formulation.

Choosing Eq. (33) and recognizing that the phase term exp(−ikR1) is
controlling, we write the reduced form for the axial field, Ex:

Ex(0,0,z;ν) = ik
∫

II

Ex(ρ,z;ν)
e−ikR1

R2
1

zρdρ (86)

in which R1 = (ρ2 + z2)1/2. Clearly the exiting Ex is given by

Ex(ρ,z : ν) = T (ρ)Eo or

Ex(ρ,z : ν) = Eoe−iφ(ρ) (87)

Substitution of Eq. (87) into Eq. (86) yields the following integration:

Ex(0,0,z;ν) = ikEo

∫

II

e−i(φ(ρ)+ kR1)

R2
1

zρdρ (88)

Stationary phase is used to evaluate this integration and to find the
z = f (ρ) for the ray (a) in Fig. 9. Hence, one has

dφ(ρ)
dρ

+
kρ

(ρ2 + z2)1/2 = 0. (89)

Substitution of z = f (ρ) into Eq. (89) gives a basic result:

dφ(ρ)
dρ

=
−kρ

(ρ2 + f 2)1/2 . (90)

Clearly, if one is given a specification for the focal length of the lens,
Eq. (90) is readily integrated, say numerically, to find the φ(ρ) as required.

When one wishes to find the focal length f (ρ) given the slope in the
phase delay, φ ′(ρ), Eq. (90) is readily rewritten, as follows:

f (ρ) =±
[( kρ

φ ′(ρ)
)2−ρ2

]1/2
(91)
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As a practical point about this synthesis procedure, it is remarked that
physically one can in general develop a specification f (ρ) and then com-
pute φ(ρ) for the lens design. Tailoring the design by directly adjusting
φ(ρ) is not practical since the total phase is very large, say 1000 radians,
and the tailoring needed is small [13].

4.4 The paraxial approximation for a lens transmission
function

In Sec. 4.2 the ideal transmission function is defined by Eq. (82) and (84).
Then, neglecting possible apodization means, we describe an ideal lens
by the transmission function, Eq. (85) using the Maxwell based results for
propagation into the right-half-space. It is particularly important to take
note of the fact there is no paraxial limit in any of this.

A simple binomial expansion in terms of (ρ/s)2 is known to converge
when this term is less than unity. Thus, in high quality diffraction-limited
design, it is not unusual to go out to the tenth power of (ρ/s). Practical
examples of combining modern lens design software with Fourier optics
techniques occur in the literature [13].

For an introduction to Fourier optics, it is typical to base the deductions
mainly on illustrations drawn from far-zone and Fresnel thinking. Hence,
herein, we would like to make this connection as well.

Clearly as ρ/s1 and rho/s′1 become small, Eq. (85) can be approxi-
mated by retaining only the first members. Hence, the paraxial form for
the transmission function is given by

Tp(ρ) = e
i
k
2

ρ2( 1
s1
− 1

s′1

)
(92)

Equation (92) provides a nice confirmation of the signs seen in Eqs. (80)
and (81).

5 Cascade of lenses & impulse response

The cascade of lenses shown in Fig. 12 is one of the central topics in
Fourier optics. For definiteness in this linear system, consider four sim-
ple thin lenses (1 to 4) with an input transparency (0) illuminated by a
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FOURIER PHYSICAL OPTICS - SUMMARY

CALCULATION OF OUTPUT WAVES

LIGHT IS PROPAGATING FROM LEFT TO RIGHT

TRANSMISSION THRU LENS ... PRODUCT
FREE SPACE PROPAGATION ... CONVOLUTION

INPUT OUTPUT
0 1 2 3 4 5

T4T3T3T1T0

z

* * * * * * * * * *

Figure 12: Cascade of 4 lenses for imaging input to plane 5. This is a
central topic in Fourier optics to compute the impulse response p05 for the
cascade

monochromatic plane wave with its electric field along the x-axis. Prop-
agation of light in the open spaces 0 to 1, 1 to 2, ... and 4 to 5 can by
analyzed by repeated applications of the Sec. 3.3 Fresnel zone means
or by Eq. (33) the exact expression. The double asterisks stand for the
two-dimensional convolutions over the transverse planes. And of course
the transmissions through each lens are treated by products using T1(ρ),
T2(ρ) and so on, as described in Sec. 4.
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I II III
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y
z

r1 r2

r

s

U

INPUT TRANSFORM
Ey(x,y,0)
EI(x,y)

Ey(r,s,0)
EIII(r,s)

V

T(u,v)

Figure 13: The optical Fourier transform configuration.
From two Fresnel zone calculations, one finds an ideal Fourier transform
in plane III for the input EI(x,y).

6 The optical Fourier transform

Consider the configuration with an illuminated picture in plane I (x,y), a lens
of focal length F in plane II (u,v), and an output plane III (r,s) as shown in
Fig. 13. The Fresnel zone calculation is given in detail with a color code
corresponding to the figure. The reader is invited to fill in the missing
details in this computation after a careful study of the color code in Fig. 13
compared with Eqs. (93) through (97). Equation (96) is a major result.

For the Fresnel zone calculation:

EII = e
ik(u2 + v2)

2F ike−ikF

2πF

∞∫∫

−∞
I

dxdy EI(x,y)e
− ik

2F
[(u− x)2 +(v− y)2]

(93)
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EIII =
ike−ikF

2πF

∞∫∫

−∞
II

dudv EII(u,v)e
− ik

2F
[(u− r)2 +(v− s)2]

(94)

Integrate using
∞∫

−∞

due
− ik

2F
[u− (r+ x)]2

= (1− i)
(πF

k

)1/2 (95)

EIII =
ie
−i

2π2F
λ

λF

∞∫∫

−∞
I

dxdyEI(x,y)e
i2π

1
Fλ

[rx+ sy]
(96)

in which fx =
−r
Fλ

and fy =
−s
Fλ

. (97)

7 The optical transform hybrid processor

As shown in Fig. 13 and Sec. 6, the F to F spacing provides an ideal
Fourier transform in amplitude of the scalar electric field, Ex in Eq. (96).
There is a phase delay due to the propagation distance (2F). This config-
uration has a singular position in Fourier optics, since it enables, the study
and visualization of the optical Fourier transform of various complicated
objects.

In learning Fourier transform theory, the function g(x,y) and its asso-
ciated pair G( fx, fy) are studied, but there is no ”alignment” described be-
tween axes x,y with those in transform space, i.e., with fx, fy. Mathemati-
cally, this is a correct point of view, since the function space (x,y) and the
Fourier space ( fx, fy) are not in the same domains.

However practice develops some handy points of view; and in opti-
cal transform configurations, the x,y plane is generally parallel to the fx, fy
plane; and the respective axes are collinear, i.e., x with fx and y with fy.
The handy rules of thumb which we use on patterns in function space
in order to describe their corresponding patterns in transform space are
summarized in Fig. 14. These rules have proven very helpful in the devel-
opment of diffraction pattern sampling. Several optical-transform-hybrid
processors have been developed using a front-end lens and some form
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WHAT IS A DIFFRACTION PATTERN

•  EDGES YIELD SPIKES
•  EDGE ANGLE CORRELATIONS RETAINED
•  INVERSE SPACE-FREQUENCY RELATIONSHIP
•  TRANSLATIONAL INVARIANCE

G(fx,fy,) =     dxdy g(x,y,)e-i2π(fxx+fyy)
∞

-∞

∞

-∞

x

LENS SCREEN

fx

OBJECT

DIFFRACTION PATTERN

Figure 14: The basis of diffraction-pattern-sampling for pattern recognition
in optical-electronic processors is summarized in 4 rules

of photodetector array placed in the back focal plane. Commonly used
are the linear photodiode array, the CCD, the CMOS, and the ring-wedge
detectors [16, 17].

One more practical point to mention is that photodetectors are sensitive
to the energy density in the electric field, i.e., proportional to E•E∗. This
includes vision, film cameras, and the digital cameras. So in Eq. (96) of
Sec. 6, the |EIII|2 is reading the Fourier transform squared. The practical
laboratory point is that in an optical setup with a laser illumination if you
find one position where there is a broad spot of illumination followed by
another position where the illumination narrows to a tiny point, you have
found excellent positions for an object transparency and its optical Fourier
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transform intensity, respectively. There are scale factors involved, and you
might make up a problem set to find them. They have been purposely
omitted in the equation of Fig. 14. In practice the object is slid along the
optical axis and the transform pattern recorded at the detector becomes
smaller as the distance decreases.

7.1 The ring-wedge photodetector [16]

For sampling the Fourier transform intensity, an interesting hybrid proces-
sor uses a photodiode array that is divided into two 180◦ portions. In one
portion, there are 32 pie-shaped wedges; and on the other half, there
are 32 annular rings. These choices were based on providing as fine a
sampling as is necessary for pattern recognition of very fine grained pho-
tographs or for particulate analysis.

With particulate analysis the quantitative study did not progress very
well using lasers due to the difficulties with speckle. As the understanding
of speckle progressed, it became clear that the annular detector rings are
ideally suited for averaging out the variations caused by speckle and excel-
lent for measuring histogram-like patterns even with complicated mixtures
of size distributions.

In pattern recognition it is an interesting question to wonder why would
one use a Fourier transform base of data rather than the original object’s
pixel data. There is probably no simple answer; but clearly system-wise,
one method of approach may be vastly simpler. Also if one can get data
down early in the system, as from one-million pixels to thirty-two, that is
likely to be advantageous [17].

In Fig. 15, the three illustrations on this page show (left) the optical
transform of a sharp hypodermic needle, (middle) a hypodermic needle
with a defective tip, and (right) the optical transform to the defective needle.
Commercially, this sensitivity of the transform pattern to edge and tip de-
fects is used as the basis for production testing of dosposable hypodermic
needles. The commercial system can make operator-independent quality
assessment at the rate of one inspection per millisecond. Moreover, the
testing is non-destructive and it can be done in a clean-room.

Related literature appears on diffraction pattern sampling in white light
[18] and the ring-wedge detector and neural networks [19], particulate siz-
ing [20] and image quality [21].
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Figure 15: Rapid, millisecond testing of quality of sharpness of hypodermic
needles (2.5 billion needles per year) is accomplished with the ring-sedge
optical transform
hybrid: (left) excellent quality; poor needle; poor transform.

8 Canonical optical processor - the 4F system

In Fourier optics, the Fourier optical transform configuration is a corner-
stone of the subject both as a theoretical achievement and a practical sys-
tem that is application relevant. Equally central to Fourier optics is the
cascade of two Fourier transform configurations. As shown in Fig. 16, at
the close of this section, we have used a focal length F1 for the first lens,
then a stop and filter transparency P(u,v) at plane II followed by a second
lens of focal length of focal length F2 and an output plane III(r,s). Separate
labeling of the transverse coordinates has been used for clarity.

Clearly for a two lens cascade, we can analyze it for the output at plane
III. With just a circular stop in plane II, we need first to recognize that
the output plane III is an image plane of I. And the image is inverted and
magnified in the ratio of −F2/F1.

Study of this system is useful in the explanation of imaging and diffrac-
tion limitations in imaging simply by considering rect or circ function aper-
tures for the transmission function P(u,v). This system is shown at the end
of this section in Fig. 16, together with final equations resulting from the
derivation of the following paragraphs. Also, the fundamental concepts of
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optical information processing can be learned by considering the various
filtering operations that are possible with appropriate choices of the mask
P(u,v).

Using the results of the calculation for a single Fourier-section in Sec.
6, we can immediately write an expression for the scalar component in
plane III, E3(r,s), in terms of the input at plane I: E1(x,y) and the transmis-
sion mask P(u,v). The notation for the transverse plane coordinates is I
(x,y), II (u,v), and III (r,s). These coordinates are chosen with different
symbols so that the integrals over planes I and II can be regrouped, as
shown, without confusion.

With monochromatic illumination and for an arbitrary input [both incor-
porated in the function E1(x,y)], we see that the output E3(r,s) is obtained
by completing a convolution-like integration of E1(x,y) with an impulse-
response kernel. To make this linear system form more evident, we define
the impulse response p(r +F2x/F1,s+F2y/F1) by Eqs. (98) and (99), as
follows:

p(r+
F2

F1
x,s+

F2

F1
y)=

e
−i

4π
λ

(F1 +F2)

F1/F2

∞∫∫

−∞

d frd fs P(u,v)e
−i2π[ fr(r+

F2

F1
x)+ fs(s+

F2

F1
y)]

(98)
in which the spatial frequency variable fr, fs are

fr =
−u
F2λ

and fs =
−v
F2λ

(99)

The output E3(r,s) is given in terms of the impulse response p(r,s) as fol-
lows in Eq. (100):

E3(r,s) =
∞∫∫

−∞

dxdy p(r+
F2

F1
x,s+

F2

F1
y) E1(x,y). (100)

In this manner we derived the important linear system result which ex-
presses the output of the lens-filter-lens cascade in the convolution-like
form of the input E1(x,y) with the impulse response p(r,s). Moreover, we
have obtained an explicit formula for the function p(r,s) in terms of the lens-
filter configuration.
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Impulse Response: The following illustrative example serves to clarify
the language impulse-response. Consider the canonical processor to be
illuminated by a delta-like pinpoint of light at the position x = xo, y = yo.
What is the output in plane III? From the general result, substitution of
E1(x,y)= δ (x−xo,y−yo) and integration yield the result shown in Eq. (101),
viz.,

E3δ (r,s) = p(r+
F2

F1
xo,s+

F2

F1
yo) (101)

The system is said to be space-invariant.

Spatial-Frequency Scaling: For simple pupil-like masks in plane II, the
canonical processor will form an image in plane III of an object in plane I
with a magnification of (−F2/F1). In the derivation above, frequency scal-
ing is with respect to the output plane III.

In general, however, spatial frequency scaling can be done either with
respect to output plane coordinates using Eq. (102):

fr =
−u
F2λ

and; fs =
−v
F2λ

(102)

or with respect to input plane coordinates using Eq. (103):

fx =
−u
F1λ

and; fy =
−v
F1λ

(103)

From Eq. (100) to (103) we write the output scalar electric field in terms
of the input. This result is accurate to the Fresnel zone accuracy with
all phase terms retained in Eqs, (104) and (105). With all phase terms
retained, as before:

E3(r,s) =
−e
−i

4π
λ

(F1 +F2)

λ 2F1F2

∞∫∫

−∞

dxdy E1(x,y)•

•
∞∫∫

−∞

dudv P(u,v)e
i2π
[ u

λF2
(r+

F2

F1
x)+

v
λF2

(s+
F2

F1
y)
]

(104)
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CANONICAL OPTICAL PROCESSOR

I.  OBJECT PLANE E1(x,y;v)
II.  TRANSFORM PLANE P(u,v;v)
III.  IMAGE PLANE E3(r,s;v)

F1
I II III

x

y

r

s

u

v

F1 F2 F2

FILTER & STOP P(u,v)

Figure 16: The 4-F optical processing provides both an idealized space-
invariant image as well as a perfect optical Fourier transform. It is useful
both in theoretical calculations and in laboratory.

or

E3(r,s) =
∞∫∫

−∞

dxdy E1(x,y)
{−e
−i

4π
λ

(F1 +F2)

F1/F2
•

•
∞∫∫

−∞

d
( u

λF2

)
d
( v

λF2

)
P(u,v)e

i2π
[ u

λF2
(r+

F2

F1
x)+

v
λF2

(s+
F2

F1
y)
]}

(105)

From Eqs. (100) to (103) we write the output scalar electric field in terms
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of the input. This result is accurate to the Fresnel zone accuracy with all
phase terms retained in Eqs. (104) and (105).

9 Summary

The article on Fourier optics and electromagnetic waves provides a readable,
concise, and rigorous treatment that will be clear and understandable without
particular experience or background. There are 8 separate sections starting with
a discussion of Maxwell’s equations in real-valued time dependent form. Then
in Sec. 1.2, the standard notation of the Fourier transform and its inversion is
defined. The signal representation is explained and summarized in Fig. 1.

Section 2 treats the central problem of propagation into the right-half-space.
The rigorous explanation of the integral expression goes by the name Rayleigh-
Sommerfeld-Smythe. The addition of the Smythe name is mine (N. George) be-
cause his rigorous theory has clarified what is often confusing in the optics litera-
tures. The basic equations are summarized in Eq. (33) to (36).

To make the material readable and interesting for the theorist who is not ex-
perienced with Optics, we are very careful with the choice of the first illustrative
problem. In Sec. 3.1, it is the exact calculation of the radiation along the optical
axis [10] from a circular aperture. As an exact calculation, it serves as an ex-
cellent choice for the student to really think about, There is little or no jargon as
well.

Then, in Sec. 2 the far-zone is treated using the far-zone approximation that is
not paraxially limited. Section 3.3 has the standard Fresnel zone coverage. Sec-
tion 4 contains a thorough discussion of lenses from the wavefront point of view.
This is Sec. 4.2. Fairly recent thinking about aspheres is presented together with
an explanation of how to go from wavefront delay φ to focal length f in Eq. (90).
Whenever possible the Fourier optics or wavefront presentation is made without
paraxial approximations. It does seem that future applications with the use of dig-
ital computers will greatly expand the practicality of optical system design using
Fourier optics.

In the later sections of the article, we describe some important illustrations of
Fourier optics. This includes the ideal F to F optical Fourier transform and then
the 4F canonical processor. If you see errors or mistakes, my apologies, please
send me an email: ngeorge@optics.rochester.edu.
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