Gang Fan
Assistant Professor of Chemical Engineering
PhD, University of Texas at Austin, 2019
- Office Location
- 4307 Wegmans Hall
- Telephone
- (585) 275-2355
- Fax
- (585) 273-1348
- Web Address
- Website
Research Overview
Microbial engineering involves the manipulation of microbes to develop new uses for them. Chemical engineering plays a pivotal role in the delivery of biological discovery and innovation for the benefit of society. In particular, microorganisms have become an increasingly important platform for the production of chemicals, drugs, and biofuels from renewable resources. Historically, plastics (polymers) were developed to minimize cost, maximize durability, and optimize performance rather than recyclability and reuse potential. Meanwhile, conventional polymerizations often rely on organic solvents and heavy metal catalysts that are contrary to sustainability goals. Our failure to address these issues in the inherent design of plastics combined with our global dependence on them has caused severe pollution and accelerated the depletion of natural resources. For the environmentally-friendly synthesis of polymers with defined sequences, we can take inspiration from microbes, which have synthesized sequence-controlled polymers in the form of proteins, polysaccharides, and nucleic acids for millions of years. The combination of microbial and chemical engineering offers a promising approach to improve the polymer industry and enable the development of greener plastics. This way, we can work towards a more sustainable and circular polymer ecosystem.
Research Interests
- Polymer Chemistry
- Plastic Upcycling
- Bio-inspired Catalysis
- Synthetic Biology
- Metabolic Engineering
- Bioelectrochemistry and Water-remediation
Courses Offered (subject to change)
- CHE 231: Chemical Reactor Design
- CHE 4XX: Biochemical Engineering
Selected Publications
- Fan, G.; Corbin, N.; Chung, M.; Gill, T. M.; Moore, E B; Karbelkar, A. A.; Furst, A. L. Highly Efficient Carbon Dioxide Electroreduction via DNA-Directed Catalyst Immobilization JACS Au 2024, 4, 4, 1413–1421. (https://pubs.acs.org/doi/10.1021/jacsau.3c00823)
- Burke, B.;# Fan, G.;# Wasuwanich, P.; Moore, E B; Furst, A. L. Self-Assembled Nanocoatings Protect Microbial Fertilizers for Climate-Resilient Agriculture. JACS Au2024, 3, 11, 2973–2980. # equal contribution. (https://pubs.acs.org/doi/10.1021/jacsau.3c00426)
- Weiss, T.; Fan, G.; Neyhouse, B; Moore, E; Furst, A. L.; Brushett F. Characterizing the Impact of Oligomerization on Redox Flow Cell Performance. Batteries Supercaps2023, 023, 6, e202300034. (doi.org/10.1002/batt.202300034)
- Karbelkar, A.A.; Ahlmark, R.; Zhou, X.; Austin, K.; Fan, G.; Yang, Y. V.; Furst, A.L., “Carbon Electrode-Based Biosensing Enabled by Biocompatible Surface Modification with DNA and Proteins,” Bioconjugate Chem.2023, 34, 2, 358–365. (doi.org/10.1021/acs.bioconjchem.2c00542)
- Fan, G.; Corbin, N.; Gill, T. M.; Karbelkar, A.A.; Furst, A.L., “DNA-based immobilization for improved electrochemical carbon dioxide reduction,” ChemRxiv,2022. (doi.org/10.26434/chemrxiv-2022-qll2k)
- Wasuwanich, P.#; Fan, G.#; Burke, B.; Furst, A.L., “Metal-phenolic networks as tuneable spore coat mimetics,” J. Mater. Chem. B,2022, 10, 7600-7606. # equal contribution. (doi.org/10.1039/D2TB00717G)
- Fan, G.; Cottet, J.; Rodriguez-Otero, M.R.; Wasuwanich, P.; Furst, A.L., “Metal–Phenolic Networks as Versatile Coating Materials for Biomedical Applications,” ACS Appl. Bio Mater.,2022, 5, 4687–4695. (doi.org/10.1021/acsabm.2c00136)
- Fan, G.; Wasuwanich, P.; Rodriguez-Otero, M.R.; Furst, A.L.,”Protection of anaerobic microbes from processing stressors using metal-phenolic networks,” J. Am. Chem. Soc.,2022, 144, 2438–2443. (doi.org/10.1021/jacs.1c09018)
- Zamani, M.; Yang, V.; Maziashvili, L.; Fan, G.; Klapperich, C.M.; Furst, A.L., “Surface Requirements for Optimal Biosensing with Disposable Gold Electrodes,” ACS Meas. Sci. Au,2022, 2, 91–95. (doi.org/10.1021/acsmeasuresciau.1c00042)
- Fan, G.; Wasuwanich, P.; Furst, A.L., “Biohybrid Systems for Improved Bioinspired, Energy‐Relevant Catalysis,” ChemBioChem,2021, 22, 1-16. (doi.org/10.1002/cbic.202100037)
- Fan, G.; Furst, A.L., “How Far Can Electromicrobial Production Go?” Joule,2020, 4, 2079-2081. (doi.org/10.1016/j.joule.2020.09.012)
- Fan, G.; Graham, A.J.; Kolli, J.; Lynd, N.A.; Keitz, B.K., “Aerobic Radical Polymerization Mediated by Microbial Metabolism,” Nature Chemistry ,2020, 12, 638-646. (doi.org/10.1038/s41557-020-0460-1)
- Fan, G.; # Dundas, C.M.; # Graham, A.J.; Lynd, N.A.; Keitz, B.K., “Shewanella oneidensis as a Living Electrode for Controlled Radical Polymerization,” Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18), 4559-4564. # equal contribution. (doi.org/10.1073/pnas.1800869115)
- Fan, G.; Dundas, C.M.; Zhang, C.; Lynd, N.A.; Keitz, B.K., “Sequence Dependent Peptide Surface Functionalization of Metal-Organic Frameworks,” ACS Applied Materials & Interfaces,2018, 10(22), 18601–18609. (doi.org/10.1021/acsami.8b05148)
- Yu, Y.; Fan, G.; Fermi, A.; Mazzaro, R.; Morandi, V.; Ceroni, P.; Smilgies, D.-M.; Korgel, B.A., “Size-Dependent Photoluminescence Efficiency of Silicon Nanocrystal Quantum Dots,” Journal of Physical Chemistry C,2017, 121(41), 23240-23248. (doi.org/10.1021/acs.jpcc.7b08054)
- Fan, G.; Lin, Y.-X.; Yang, L.; Gao, F.-P.; Zhao, Y.-X.; Qiao, Z.-Y.; Zhao, Q.; Fan, Y.-S.; Chen, Z.; Wang, H., “Co-self-assembled Nanoaggregates of BODIPY Amphiphiles for Dual-Color Imaging of Live-Cells,” Chemical Communications,2015, 51(62), 12447-12450. (doi.org/10.1039/C5CC04757A)
- Yang, L.; Fan, G.; Ren, X.; Zhao, L.; Wang, J.; Chen, Z., ”Aqueous Self-assembly of a Charged BODIPY Amphiphile via Nucleation-Growth Mechanism,” Physical Chemistry Chemical Physics2015, 17(14), 9167-9172. (doi.org/10.1039/C5CP00207A)
- Fan, G.; Yang, L.; Chen, Z., “Water-Soluble BODIPY and aza-BODIPY Dyes: Progress of Synthesis and Applications,” Frontiers of Chemical Science and Engineering, 2014, 8(4), 405-417. (doi.org/10.1007/s11705-014-1445-7)
Honors
- ACS PMSE Future Faculty Scholar (2022)
- Chemical Engineering Research Grant, MIT (2021-2022)
- Procter & Gamble Poster Competition Award: First Place, UT Austin (2019)
- Finalist for Excellence in Graduate Polymer Research, AIChE (2018)
- Paper of the Year Award, UT Austin (2018)