Professor Allison Lopatkin

Allison J. Lopatkin

Assistant Professor of Chemical Engineering

Assistant Professor of Microbiology and Immunology

Assistant Professor of Biomedical Engineering

PhD, Duke University, 2017

Office Location
4303 Wegmans Hall
Telephone
(585) 275-6858
Fax
(585) 273-1358
Web Address
Website

Selected Honors and Awards

NSF CAREER Award (2025)
Pew Biomedical Scholars (2024)
Edward Mallinckrodt Jr. Foundation Award (2023)
NIH R35 Maximizing Investigators’’ Research Award (MIRA) (2023)
NIH R15 Research Enhancement Award (REA) (2021)
NSF Research in Undergraduate Institutions Award (2021)
Keewaunee Student Achievement Award, Duke University (2017)
ACS Synthetic biology second place poster prize, Winter qBio (2015)
Howard G. Clark Graduate Research Grant, Duke University (2014 – 2015)

Courses

CHE 116: Numerical Methods and Stats

CHE 436: Introduction to Systems and Synthetic Biology

Recent Publications

Ahmad, M.; Prensky, H.; Balestrieri, J.; ElNaggar, S.; Gomez-Simmonds, A.; Uhlemann, A.C.; Traxler, B.; Singh, A.; Lopatkin, A.J., "Tradeoff between lag time and growth rate drives the plasmid acquisition cost," Nature Communications, 2023, doi.org/10.1038/s41467-023-38022-6

Palomino, A.; Gewurz, D.; DeVine, L.; Zajmi, U.; Moralez, J.; Abu-Rumman, F.; Smith, R.P.; Lopatkin, A.J.,"Metabolic genes on conjugative plasmids are highly prevalent inEscherichia coliand can protect against antibiotic treatment," Nature ISME Journal, 2022. doi.org/10.1038/s41396-022-01329-1

Gomez-Simmonds, A.; Annavajhala, M.K.; Tang, N.; Rozenberg, F.D.; Ahmad, M.; Park, H.; Lopatkin, A.J.; Uhlemann, A.C., “Population structure of blaKPC-harbouring incN plasmids at a New York City medical center and evidence for multi-species horizontal transmission,” Journal of Antimicrobial Chemotherapy, 2022. doi: 10.1093/jac/dkac114

Persons, J.; Abhilash, L.; Lopatkin, A.J.; Roelofs, A.; Bell, E.V.; Fernandez, M.P.; Shafer III, O.T., “PHASE: A MATLAB based program for the analysis of Drosophila phase, activity, and sleep under entrainment,” bioRxiv, 2021. doi: 10.1101/2021.12.14.472617

Koong, J.; Johnson, C.; Rafei, R.; Hamze, M.; Myers, G.S.A.; Lopatkin, A.J.; Hamidian, M., “Phylogenetic analysis of two antibiotic susceptible non-clinical Acinetobacter baumannii strains belonging to global clone 1 reveals close relationship with multiply-antibiotic resistant clinical strains,” Microbial Genomics, 2021. doi: 10.1099/mgen.0.000705

Shoen, M.E.; Jahne, M.A.; Garland, J.; Ramirez, L.; Lopatkin, A.J.; Hamilton, K., “Quantitative microbial risk assessment of antibacterial resistant and susceptible Staphylococcus aureus in reclaimed wastewater,” Environmental Science & Technology,2021. doi: 10.1021/acs.est.1c04038

Moralez, J.; Szenkiel, K.; Hamilton, K.; Pruden, A.; Lopatkin, A.J., “Quantitative analysis of horizontal gene transfer in complex systems,” Current Opinions in Microbiology, 2021. doi: 10.1016/j.mib.2021.05.001

Williams, S.C.; Forsberg, A.P.; Lee, J.; Vizcarra, C.; Lopatkin, A.J.; Austin, R.N., “Investigation of the prevalence and catalytic activity of fused-rubredoxin alkane monooxygenases (AlkBs),” Journal of Inorganic Biochemistry, 2021.doi: 10.1016/j.jinorgbio.2021.111409

Prensky, H.; Gomez-Simmonds, A.; Uhlemann, A.C.; Lopatkin, A.J., “Conjugation dynamics depend on both the plasmid acquisition cost and the fitness cost,” Molecular Systems Biology, 2021. doi: 10.1525/msb.20209913

Lopatkin, A.J.; Bening, S.C.; Manson, A.L.; Stokes, J.M.; Kohanski, M.A.; Badram, A. H.; Earl, A.M.; Cheney, N.J.; Yang, J.H.; Collins, J.J., "Clinically relevant mutations in core metabolic genes confer antibiotic resistance,” Science, 2021. doi: 10.1126/science.aba0862

Lopatkin, A.J.; Yang, J.H., “Nucleotide metabolism and antibiotic treatment failure,” Frontiers in Microbiology, 2021. doi: 10.3389/fdgth.2021.583468

Lopatkin, A.J.; Collins, J.J., “Predictive biology: modeling, understanding, and harnessing microbial complexity,” Nature Microbiology Reviews, 2020. doi: 10.1038/s41579-020-0372-5

Research Overview

Research in my lab focuses on designing and optimizing stable microbial systems using a highly interdisciplinary approach that integrates experimental and computational tools. We use systems and synthetic biology, biochemical engineering, mathematical modeling, bioinformatics, and molecular microbiology techniques to investigate and engineer microbial dynamics for diverse applications. A major area of interest is horizontal gene transfer (HGT), a natural mechanism by which bacteria exchange genetic material, driving adaptation and evolution in microbial communities. Our goal is to uncover and apply fundamental design principles of HGT to create predictive frameworks and tools for controlling genetic communication in clinical and environmental contexts. In addition to HGT, our research addresses challenges such as mitigating antibiotic resistance, engineering functional microbiomes for human and agricultural systems, and developing microbial solutions for environmental remediation.

Research Interests

  • Systems and Synthetic Biology
  • Computational Biology
  • Engineered Microbial Communities
  • Metabolic Engineering
  • Mathematical Modeling
  • Machine Learning
  • Horizontal Gene transfer
  • Antibiotic Resistance