

Awards

Award Abstract #9208165

RIA: Clock Distribution Design and Register Allocation in Pipelined Systems with Application to Behavioral Synthesis[Search Awards](#)[Recent Awards](#)[Presidential and Honorary Awards](#)[About Awards](#)[How to Manage Your Award](#)[Grant Policy Manual](#)[Grant General Conditions](#)[Cooperative Agreement Conditions](#)[Special Conditions](#)[Federal Demonstration Partnership](#)[Policy Office Website](#)NSF Org: [CCF
Division of Computer and Communication Foundations](#)**Initial Amendment Date:** May 18, 1992**Latest Amendment Date:** May 18, 1992**Award Number:** 9208165**Award Instrument:** Standard Grant**Program Manager:** John R. Lehmann
CCF Division of Computer and Communication Foundations
CSE Directorate for Computer & Information Science & Engineering**Start Date:** August 1, 1992**Expires:** January 31, 1996 (Estimated)**Awarded Amount to Date:** \$90000**Investigator(s):** Eby Friedman friedman@ece.rochester.edu (Principal Investigator)**Sponsor:** University of Rochester
515 Hylan, RIVER CAMPUSBOX 27014
ROCHESTER, NY 14627 585/275-4031**NSF Program(s):** COMPUTER SYSTEMS ARCHITECTURE**Field Application(s):** 0000912 Computer Science,
0108000 Software Development,
0510403 Engineering & Computer Science,
31 Computer Science & Engineering**Program Reference Code(s):** 9215**Program Element Code(s):** 4715**ABSTRACT**

In this research effort, the effects of pipelining on the performance of a high speed synchronous digital system are investigated. Pipelining, coupled with the design of the clock distribution network synchronizing the signal flow between each data path, can significantly effect system performance. Timing characteristics of the clock distribution network are analyzed in terms of how system performance can be either enhanced or degraded. A

graphical design paradigm relating latency and clock frequency as a function of the level of pipelining are enhanced to further study the performance of a synchronous system. Specifically, the following areas are investigated: 1) the application of localized clock waveform lead/lag relationships to pipelined data paths so as to demonstrate the utility of these relationships and to understand their limitations for increasing clock frequency in deeply pipelined systems, 2) the investigation of the effects of retiming and register allocation/scheduling on pipelined systems for application to behavioral synthesis and analysis, 3) the application of the aforementioned graphical approach to the analysis of clock frequency/latency tradeoffs in structures containing feedback, thereby providing a structured theoretical basis for designing and implementing recursive circuit structures, and 4) the investigation of the effects of process parameter variations on system level performance.

Please report errors in award information by writing to:
awardsearch@nsf.gov.

 [Print this page](#)

 [Top](#)

[Web Policies and Important Links](#) | [Privacy](#) | [FOIA](#) | [Help](#) | [Contact NSF](#) | [Contact Web Master](#) | [SiteMap](#)

The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel: (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749

Last Updated:
April 2, 2007
[Text Only](#)