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1 
 

Abstract 
 

Advancements in computer capabilities in the last fifty years had been closely 

linked to miniaturization of CMOS technology, while the underlying structure of 

digital computing systems has been based on von Neumann architecture, where the 

memory and execution units are logically and physically separated, using various 

types of interconnect for communication between them. Recently, device scaling has 

slowed down, while electrical interconnect has become both a performance bottleneck 

and a major source of power dissipation, which is currently the most critical limiter 

for technology growth. Conventional memory technologies, such as Flash, DRAM, 

and SRAM, are unable to keep up with market requirements for higher density and 

lower power. Flash memory has already achieved its physical limits, and cannot be 

scaled further, primarily due to its limited endurance. 

These problems can be addressed by emerging new semiconductor devices, such 

as memristors, which are useful both as memory cells and as novel switching circuits 

which can be used to augment traditional CMOS gates. Memristors are simple two-

terminal resistors, where the resistance can be changed by the electrical current. The 

resistance serves as a stored variable. Memristors can also be interconnected to 

perform Boolean operations. Since memristors can be fabricated in high density at the 

intersection of nanoscale width metal lines, common to all silicon circuits and located 

on top of the silicon layer, these new devices hold promise to provide continued 

growth in functional density.  The primary focus of this thesis is on architecturally 

integrating memory with computational capabilities, based on exploiting these new 

devices. These memristor-based structures will greatly enhance the speed and power 

of digital computing beyond Moore scaling, while maintaining compatibility with 

standard CMOS technology. From an architectural viewpoint, memristor-based 

circuits will lead to innovative memory-intensive computing structures and systems. 

The focus of this research is on developing memristor-based applications at the 

circuit and architecture levels. Memristors are investigated from the point of view of 

circuit designer and computer architect, including describing the desired device for 

different applications and modeling a general memristor model – TEAM – to fit 

different memristive technologies. The TEAM model is simple (i.e., requires low 
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computational effort) and sufficiently accurate. The TEAM model is implemented in 

VerilogA to be used in SPICE simulations. 

Various logic circuits with memristors have been proposed and design 

methodologies for them are developed. IMPLY (material implication), MAGIC 

(Memristor Ratioed Logic), and Akers logic arrays are logic families that can be 

performed within memristive memories, enabling in-memory computing. MRL 

(Memristor Ratioed Logic) is a different logic family used for hybrid CMOS-

memristor logic gates to increase the logic density and extend Moore's law. 

Additionally, the multistate register, a novel memory structure that stores multiple 

values within a single register, is proposed.  A multistate register is designed based on 

an RRAM crosspoint array on top of a CMOS register with a relatively low area. The 

area of a single state in a 64 state RRAM multistate register is only 1.3% of a stored 

state in CMOS register. The multistate register is embedded within CPU pipelines to 

enable new memory intensive architectures, such as Continuous Flow Multithreading 

(CFMT). CFMT is a multithreaded processor that is as simple as Switch on Event 

Multithreading (SoE MT) with high performance and low energy. CFMT is designed 

and implemented with an FPGA, presenting a performance improvement of 32% on 

average with an energy reduction of 8.5%, as compared to SoE MT. 
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Abbreviations 
 

CFMT  Continuous Flow Multithreading 

CRS  Complementary Resistive Switching 

DRAM Dynamic Random Access Memory 

FPGA  Field Programmable Array 

IPC  Instruction per Cycle 

MAGIC Memristor Aided Logic 

MIM  Metal-Insulator-Metal 

MPR  Multistate Pipeline Register 

MRL  Memristor Ratioed Logic 

NVM  Nonvolatile Memory 

PCM  Phase Change Memory 

RRAM  Resistive Random Access Memory 

SCM  Storage Class Memory 

SMT  Simultaneous Multithreading 

SoE MT Switch-on-Event Mutlithreading 

STDP  Spike Timing Dependent Plasticity 

STT MRAM Spin-Transfer Magnetoresistance Random Access Memory 

TEAM  Threshold Adaptive Memristor 

VLSI  Very Large Scale Integration
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Chapter 1 Introduction 
 

For almost fifty years, integrated electronic circuits built with semiconductor 

devices have provided significant growth in the number of processing elements and 

memory bits available to system developers. This growth has provided orders of 

magnitude improvements in speed, power consumption, and reliability, together with 

significant reductions in the cost per device. These trends are direct consequences of 

frequent miniaturization of device dimensions in the semiconductor fabrication 

process, as originally described by Gordon Moore in 1965, predicting the growth and 

proliferation of digital computing and its applications ("Moore's Law").  Throughout 

this era, the underlying structure of digital computing systems has been based on the 

classical stored program machine architecture described by von Neumann in the 

1940's, which is characterized by a separation between functional units for instruction 

execution and data/instruction storage ("von Neumann architecture"). 

Moore's law, however, cannot be sustained indefinitely. There is broad agreement 

that nanoscale CMOS transistor sizes will reach fundamental physical limits within 

the next decade [1]. Even before the eventual ending of Moore's law due to 

technological limitations, the field of computing is already struggling with other 

fundamental problems which require innovative solutions. The first problem is related 

to the delay and bandwidth required to access memory, and is popularly known as 

"the memory wall" [2]. Another problem is the power crisis related to energy 

dissipation in computers [3]. These challenging issues are currently perceived as 

major disruptions on the evolutionary path of computing, calling for significant 

investments in research to develop new structures for next generation computing 

systems. 

In future years, when device sizes will no longer be scalable, microelectronic 

technology will need innovations "beyond Moore" to support novel applications. 

These enhancements may include revolutionary new emerging devices such as carbon 

nanotubes or spintronic devices. A less radical hybrid approach, combining standard 

CMOS with new technologies, is expected to provide a more practical and immediate 

growth path over the next 20 to 30 years. An example of a "more than Moore" 

technology is multi-layered integrated circuits (e.g., three-dimensional circuits [4]) 



 

5 

which are becoming commercially available. Other new technologies which will 

extend the capabilities of CMOS are memristive devices. This thesis focuses on 

memristive technologies and their impact on computers. 

 

1.1 Memristors 

Over the past 25 years, flash memory based on charge trapping in MOS transistors 

has been scaled aggressively, even exceeding Moore's law. Scaling below 20 nm 

involves formidable challenges, particularly an increase in bit error rate and a 

reduction in write endurance (the number of write cycles before the memory becomes 

unreliable). These challenges become intolerable, when flash process technology 

scales below 15 nm [5]. In recent years, many alternative technologies have been 

explored to find a replacement for flash. For most of these candidate technologies, the 

stored data is represented as a resistance and the storage device is fabricated within 

the metal layers. These technologies share similar properties – nonvolatility, relatively 

high write endurance, high density, good scalability below 10 nm, and fast read and 

write. Certain emerging memory technologies have sufficient speed and endurance to 

be considered as SRAM and DRAM replacements as well, enabling the use of 

universal memory [6]. These emerging nonvolatile memory technologies can be 

considered as memristors, or more precisely as memristive devices.  

 

1.1.1 The Theory of Memristors 

 In 1971, Leon Chua conceived the need for an additional fundamental circuit 

component in addition to the resistor, capacitor, and inductor [7]. Chua reasoned the 

existence of a missing circuit element from symmetry reasons, looking at the six 

possible combinations of the relationships of four fundamental circuit variables - the 

voltage V, current I, flux φ, and electric charge q. While the charge is the integral 

upon time of the current and the flux is integral upon time of the voltage, the other 

possible relationships are connected by two-terminal circuit components. Resistors 

connect voltage to current by Ohm's law (V = IR), capacitors connect charge to 

voltage (q = CV), and inductors connect current to flux (φ = LI). The sixth possible 

relationship is the connection between charge and flux and is not covered by any 
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conventional circuit element. Chua reasoned, for the sake of completeness, the 

existence of a fourth fundamental circuit element that connects the charge and flux 

and named the device the memristor, as a short for 'memory resistor'. The six 

combinations of the relationships are illustrated in Figure 1.  

Formally, a charge-controlled memristor is given by 

ሻݐሺݒ ൌ  ሻ,     (1)ݐሻ൯݅ሺݐሺݍ൫ܯ

where 

ሻ൯ݐሺݍ൫ܯ ≡ ݀߮ሺݍሻ/݀(2)     .ݍ 

Similarly, a flux-controlled memristor is given by 

݅ሺݐሻ ൌ ܹ൫߮ሺݐሻ൯ݒሺݐሻ,     (3) 

where 

ܹ൫߮ሺݐሻ൯ ≡  ሺ߮ሻ/݀߮.     (4)ݍ݀

The memristance of the memristor ܯ൫ݍሺݐሻ൯ has the units of resistance (and the units 

of ܹ൫߮ሺݐሻ൯ are of conductance) and depends on the integration of the current passed 

through the device upon time. The memristor is therefore actually a passive two-port 

element with variable resistance, which changes upon the history of the device (i.e., 

the memristance depends on the total charge passed through the device). 

In 1976, the theory of memristors was extended by Chua and Kang to a nonlinear 

dynamical system named memristive systems [8]. Similarly to memristors, a 

memristive device is a passive two-terminal device with varying resistance. The 

difference between a memristor and memristive device is how the resistance changes. 

In memristive devices, the resistance depends on an internal state	ݔ ∈ Ը௡, which 

depends on the history of the device (in terms of the past current passed through the 

device, or, alternatively, the past voltage across the device) and not directly on the 

charge or flux. 

Formally, a current-controlled time-invariant memristive device is represented by 

ሻݐሺݒ ൌ ,ݔሺܯ ݅ሻ݅ሺݐሻ,     (5) 

ݐ݀/ݔ݀ ൌ ݂ሺݔ, ݅ሻ,     (6) 

where ܯሺݔ, ݅ሻ is the memristance of the device. Similarly, a voltage-controlled time-

invariant memristive device is given by 

݅ሺݐሻ ൌ ܹሺݔ, ݅ሻݒሺݐሻ,     (7) 

ݐ݀/ݔ݀ ൌ ݂ሺݔ,  ሻ.     (8)ݒ

Memristors and memristive devices exhibit hysteresis in their current-voltage curve. 
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Although the shape of the hysteresis varies for different devices, it is always passes 

through the origin. The hysteresis depends on the input, where for high input 

frequencies the device behaves as a linear resistor. An example of possible I-V curve 

is shown in Figure 2. Note that memristors are a private case of memristive devices, 

where ݂ሺݔ, ݅ሻ ൌ ݅. 

 

 

Figure 1. Illustration of the six combinations of the relationships between voltage 
v, charge q, flux ϕ, and current i. The memristor connects the charge and flux. 

 
Figure 2. Example of a current-voltage curve of memristors and memristive 

devices for different input frequencies. 
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1.1.2 Practical Memristors 

While Chua and Kang presented physical memristive devices in [8] (e.g., ionic 

systems and discharge tubes), the topic of memristors and memristive devices have 

not attracted much attention for more than 35 years. In 2008, Hewlett Packard 

connected the theory of memristive devices to TiO2 resistive switches [9]. Initially, 

Hewlett Packard claimed that their device is similar to ideal memristors, and proposed 

a model for the structure and behavior of their devices. The proposed structure is 

shown in Figure 3 and the proposed representation of (5) and (6) is 

,ݔሺܯ ݅ሻ ൌ ܴைே
௫ሺ௧ሻ

஽
൅ ܴைிிሺ1 െ

௫ሺ௧ሻ

஽
ሻ,     (9) 

݂ሺݔ, ݅ሻ ൌ ௏ߤ
ோೀಿ
஽
݅ሺݐሻ,     (10) 

where RON is the resistance when x(t) = D, and ROFF is the resistance when x(t) = 0. 

The state variable x(t) is limited to the physical dimensions of the device, i.e., the 

value is within the interval [0, D]. 

Although the model proposed by Hewlett Packard is elegant, it does not match real 

devices, including their own TiO2 device. Other models that better fit real devices 

have been proposed, as comprehensively explained in Chapter 3.1. The announcement 

of Hewlett Packard, however, sparked an interest in memristors and memristive 

systems. Additional resistive memory devices, other than TiO2 resistive switches, 

such as different resistive switches and spin-transfer torque magnetoresistive random 

access memory (STT-MRAM) have been redescribed in terms of memristive systems 

[10-14].  

All of the different devices that can be considered as memristive devices share 

several characteristics: they are fabricated as oxides sandwiched between two metals 

(metal-insulator-metal structure, also named MIM), and their size is relatively small 

(for most devices it is the minimum feature size of the technology). Additionally, as 

described by the definition of memristive devices, these devices have varying 

resistance and are nonvolatile (i.e., no voltage is applied to retain the resistance). Due 

to these characteristics and their relatively low switching time (from sub-nanoseconds 

to tens of nanoseconds), high endurance (the number of write cycles before the 

memory becomes unreliable, typically from 109 to 1015), and low switching energy 

(typically 0.1 to 1 pJ), memristive technologies are primarily investigated as memory 

applications and considered as emerging nonvolatile memory technologies. It is 
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common referring to all (or some) of these technologies as Resistive RAM (RRAM or 

ReRAM). 

 

	
Figure 3. Hewlett Packard original device model. The device is composed of two 
regions: doped and undoped. The total resistance of the device is the sum of the 

resistances of both regions, as described by (9). 
 

1.2 Memristor-Based Applications 

While the semiconductor industry focuses on the use of memristive technologies as 

a replacement for existing memory technologies (i.e., Flash, DRAM, and SRAM), 

these devices can be used for many other applications as well. Memristors are used in 

hardware neural networks, both to implement different learning algorithms (e.g., 

STDP [15-17] and back propagation [18]) and neuromorphic systems (hardware that 

mimic the brain) [19]. Memristors can also been used in analog circuits, for example 

as reconfigurable resistors to change the properties of the circuit [20]. Another 

interesting application is the use of memristors as part of logic circuit, as 

comprehensively explained in Chapters 1.2.2 and 3.2. 

Looking at computer architectures, memristors can be an enabler to a new and 

disruptive era in computer architecture – the era of memory intensive computing, 

where the computation engine is integrated with numerous memory devices (i.e., 

memristors). The straightforward way is to use memristors as improved replacements 

to existing memory technologies and benefit from the improve characteristics of the 

replacements - higher density, no leakage, high endurance, etc. Using these 

technologies as SRAM replacements will significantly increase on-die memory. 

Alternatively, additional memory levels can be added to the memory hierarchy. For 
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example, Sony and Micron plan to commercialize RRAM as a Storage Class Memory 

(SCM), a memory hierarchy between DRAM and flash [21]. SCM requires 

nonvolatility and high density, as well as high performance. Adding more cache levels 

is another example. Memristors are, however, much more than just having 

replacements to existing memory technologies. 

 

1.2.1 Memory Intensive Architectures 

Memristors add new characteristics to existing memory technologies. For example, 

the levels of volatile memory (i.e., register file, cache, and main memory) become 

nonvolatile. Memristors add fast, dense, and nonvolatile memory that is located on-

top of the logic gates. Memristors therefore can be used in a different manner than 

random access memories. The memristors can be used to integrate memory and logic, 

enabling memory intensive architectures, where processors are abundant with non-

volatile, fast memory. This memory is used to enhance performance and decrease 

energy. 

The small size of the memory devices and the possibility to stack several layers of 

memory, one on top of the other, can significantly increase the capacity of the 

memory, including cache hierarchies, while leakage power is lower. The additional 

memory can also be used not only for conventional caches (i.e., data and instruction 

cache, private and shared cache, etc.) but also for new cache architectures, including 

specific purposes caches. Examples to this can be using different caches for different 

threads, or alternatively, different caches for specific content (e.g., floating point, 

SIMD). Another example is to use memristors to implement NAHALAL-like cache 

systems [22], where the private caches are located on-top of the CPUs in the 

memristor layer. 

Furthermore, the additional memory can be used to increase the capacity of other 

elements within the processor, such as branch predictors, instruction queues, 

prefetching structures, reorder buffers, and other buffers. The increase in the capacity 

increases predictions and speculations of the processor and therefore trades off the 

power consumption – although storing data within memristor-based structures is low 

power, the increased speculation consume more power. 

The additional memory elements can also be used to store data, which is typically 

not stored due to the limitations of conventional technologies. For example, it is 
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possible to store the results of previously executed instructions to perform instruction 

reuse and have hardware memoization [23]. It is also possible to have many 

checkpoints within the processor. Another example is CFMT, as presented in Chapter 

3.3, where the states of different instructions for multiple threads are stored to 

enhance performance of multithreading processors. 

 

1.2.2 Logic with Memristors 

One interesting application of memristive circuits is to perform logic operations. 

With memristive logic gates, novel memory intensive architectures can be developed, 

including non-von Neumann architectures. The use of memristors to perform logical 

operations has been proposed in several different ways. In some logic families, 

memristors are integrated with CMOS structures to perform the logical operation, 

while the logical values are represented by voltage levels. Memristors can be used as 

reconfigurable switches for FPGA-like architectures [24-25] or as computational 

elements within logic gates [26]. 

Another approach for logic with memristors is to treat resistance as the logical state, 

where the high and low resistance are considered, respectively, as logical zero and 

one. For this approach, the memristors are the primary building blocks of the logic 

gate. Each memristor acts as an input, output, computational logic element, and latch 

in different stages of the computing process [27]. This approach is suitable for 

crossbar array architectures and can therefore be integrated within a standard 

memristor-based crossbar, commonly used for memory. This approach is appealing 

since it provides an opportunity to explore advanced computer architectures different 

from the classical von Neumann architecture. In these architectures, the memory can 

perform logic operations on the same devices that store data, i.e., performing 

computation inside the memory. Material implication (IMPLY logic gate) [28] is the 

basic logical element using this approach, combining state memory and a Boolean 

operator. Additional logic families, which extends the IMPLY logic gate by using 

certain variations of a regular memristor-based crossbar, have also been proposed [29-

30]. A schematic of the IMPLY logic gate is shown in Figure 4. 
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Figure 4. Schematic of an IMPLY logic gate. The gate consists of two memristors 

p and q, and a resistor RG. 
 

1.3 Research Goals and Methods 

In this research, the capabilities and limitations of memristors are studied and 

analyzed from single device level for better understanding of the capabilities of 

circuits and architectures with memristors. Models of memristors are developed for 

different memristor technologies to be used in circuit simulations. 

 The integration of memristors with CMOS is explored for memory and logic 

circuits. Different logic gates are proposed, both for non-von Neumann architectures, 

where memristive memories have also computing capabilities (in-memory 

computing), and for hybrid CMOS-memristor logic gates for a beyond Moore 

approach. Memory circuits are designed for new uses, different than the conventional 

memory hierarchy. These memory circuits are integrated with processors to open a 

path for novel memory intensive architectures. 

This research is done in different abstraction levels: device level, circuit level, and 

architecture level. For device level the properties of memristors are investigated and 

characterized, and device models are developed to be used in circuit simulations. In 

the circuit level, different digital and analog circuits are designed for logic and 

memory applications. Design methodologies are developed for proper circuit design, 

including procedures to select the exact device and circuit parameters. Memristive 

circuits are used to develop memory intensive architectures. 
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This research is multidisciplinary, varying from device physics, VLSI physical 

design, VLSI circuit design, electronic design automation, and computer architecture. 

We also combined knowledge from information theory and machine learning. 

For memristor model development, we use Matlab to evaluate and investigate the 

model and compare it to other memristor models. The model is implemented in 

Verilog-A and embedded in SPICE. We develop design methodologies for circuits, 

and design them in SPICE, using Cadence Virtuoso. Architectures are evaluated in a 

cycle accurate in-house simulator for performance evaluation, and by CACTI and 

McPAT for energy evaluation. For the design of memory architectures, we also use 

NVSim. For a proof of concept, the CFMT architecture is also implemented in real 

hardware (Xilinx Virtex 6), using Verilog and ModelSim for verification. 

 

1.4 Thesis Structure 

This thesis is organized as a collection of papers published in scientific journals 

and refereed conference proceedings. All of the papers describe research results 

obtained during this PhD study. Chapter 2 provides a short overview of the main 

contributions of this thesis. The published papers are organized in Chapter 3 in three 

subsections according to the main parts of the research: device characteristics and 

modeling, logic circuits, and computing system architecture. In Chapter 4, the main 

results are summarized, some additional research topics are described, and 

suggestions for future research are discussed. 
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Chapter 2 Summary of Contributions 
In this chapter, our contributions in the field of memristor-based circuits and 

architectures are summarized. Our main observations and solutions to the different 

research problems considered in this thesis are outlined. For convenience, each 

subchapter is devoted to a different aspect of this research. 

2.1 Device Level 

2.2.1 Device Characterization 

Memristors have many different faces, from the theoretical devices envisioned by 

Chua in 1971, to the extended theory of memristive device, to the numerous different 

resistive technologies that have emerged in recent years. Since memristive 

technologies are currently immature, standardization of the characteristics of 

memristors remains to be done. The desired characteristics differ for diverse 

applications. 

In this research, we study and analyze the capabilities and limitations of different 

memristive technologies, and define the desired characteristics of memristors for 

different applications from the viewpoint of an integrated circuit designer. 

Understanding the desired characteristics for different applications can assist device 

and material engineers in providing the appropriate behavior when developing 

memristive devices, thereby optimizing these devices for different applications. 

Further details on the desired memristor are found in Chapter 3.1 and [31].  

 

2.2.2 Device Modeling 

Several models for memristive devices have been developed. One type of models is 

physical models that try to fit the dynamic behavior of a specific memristor [32-35]. 

Usually, physical models are complicated and based on mathematical fitting of 

experimental results for a specific device under a certain experimental set, while the 

actual physical mechanism is still unknown. A different approach for memristor 

modeling is to define mathematical models, obeying the theory of memristors, 

without a connection to practical devices [36-39]. Usually, mathematical models are 

similar to Chua's original definition and cannot predict the behavior of real devices.  

In this research, a general mathematical model - TEAM, ThrEshold Adaptive 

Memristor model – is developed. The TEAM model is flexible and can be fit to any 
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practical memristive device. As shown in this thesis, the TEAM model is reasonably 

accurate and computationally efficient, and is more appropriate for circuit simulation 

than previously published models. The TEAM model is implemented in Verilog-A, 

and is widely used in SPICE simulations. Further details on the TEAM model are 

found in Chapter 3.1 and [40-41]. 

	

2.2 Logic Circuits 

2.2.1 Material Implication (IMPLY) 

Although IMPLY gates have been fabricated and proved to work [28], the design 

issues of these logic gates have not been discussed. Additionally, the design of 

complete combinatorial system based on IMPLY gates is not trivial. In this research, 

the behavior of IMPLY logic gates is analyzed and evaluated, and the tradeoff 

between speed and correct logic behavior is described. An approximate analytic 

model to evaluate the speed of the circuit and the internal state drift of the memristors 

is proposed. We develop a methodology for designing IMPLY logic family, based on 

a general design flow, suitable for all deterministic memristive logic families, and 

includes some additional design constraints to support the IMPLY logic family. The 

design flow is shown in Figure 5. Additionally, techniques for performing logic 

within memristive crossbars based on IMPLY logic gates are discussed and proposed. 

Further details on IMPLY logic design and IMPLY within the memory are found in 

Chapter 3.2 and [42-43]. 
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Figure 5. Proposed design flow for IMPLY logic. 

 

2.2.2 MAGIC 

IMPLY gates require different voltage levels within the circuit and additional 

circuit components (for example, a controller and an additional resistor within each 

row of the crossbar), dissipates high power, has high computational complexity, and 

requires complicated control circuitry. Additionally, the result is stored by one of the 

inputs and not a dedicated output memristor. 

We propose a different memristive-only logic family, Memristor Aided LoGIC 

(MAGIC) that overcomes the disadvantages of IMPLY. MAGIC does not require a 

complicated structure and enables stable evaluation of the gate function. Stable 

evaluation is achieved by applying a single voltage pulse at the gateway of the circuit. 

MAGIC NOR gates can also be fabricated within a crossbar, enabling computing 

within memory. The schematic of MAGIC NOR is shown in Figure 6. Further details 

on IMPLY logic design and IMPLY within the memory are found in Chapter 3.2 and 

[44]. 
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Figure 6. MAGIC NOR. (a) Basic schematic, the gate consists of two input 

memristors in1 and in2, and an output memristor out, and (b) a MAGIC NOR 
gate within a memristive crossbar. 

 

2.2.3 MRL 

We propose MRL (Memristor Ratioed Logic), a hybrid CMOS-memristor logic 

family, which increases the logic density. In MRL, OR and AND logic gates are 

based on memristors, and CMOS inverters are added to provide a complete logic 

structure and signal restoration. The MRL family is compatible with standard CMOS 

logic since the logical state is represented by voltage as in CMOS. We develop an 

analytic model to evaluate the speed of the circuit and discuss design issues and 

considerations, including area and power. The schematic of an MRL NAND and NOR 

are shown in Figure 7. Further details on MRL gates are found in Chapter 3.2 and [45-

46]. 
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Figure 7. MRL gates. (a) A two-input MRL NAND and a (b) two-input MRL 

NOR. 
 

2.2.4 Akers Logic Arrays 

In 1972, Sheldon Akers proposed a theoretical logic array that supports the 

execution of any Boolean function by flowing data across an array of primitive logic 

cells. Since the benefit of an Akers logic array with conventional semiconductor 

technology (i.e., CMOS technology) is limited, Akers array has been treated as a 

mathematical concept without implementing it in real hardware. In this research, the 

theory by Akers is used to design a memristive Akers logic array that support in-

memory computation. We show that the proposed logic array can be used in a 

modified CRS memory array, combining logic operations and memory. We 

demonstrate Boolean operations such as XOR and sorting of bits. The schematic of a 

memristive Akers logic array is shown in Figure 8. Further details on memristive 

Akers logic arrays are found in Chapter 3.2 and [47]. 
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Figure 8. Memristive Akers logic array. (a) Primitive logic cell, consists of two 

memristors ࢆࡹ and ࢆࡹഥ. The inputs of the primitive logic cell are two voltages x 
and y, and the initial resistance of ࢆࡹ. (b) A two by two memristive Akers array 

and (c) a two input XOR, where ࢚࢛࢕ࢌ ൌ ,࡭ሺࡾࡻࢄ  .ሻ࡮
	

2.3 Multistate Registers and Its Implications 

2.2.1 Multistate Register 

Storing data is the primarily application of memristors, usually for replacing 

conventional memory technologies in standard memory structures within the memory 

hierarchy. A different approach is considered in this research, where a novel memory 

structure, the multistate register, is proposed and designed. The multistate register is 

used to store multiple data bits, where only a single bit is active and the remaining 

data bits are idle. The active bit is stored within a CMOS flip flop, while the idle bits 

are stored in a memristive crossbar co-located with the flip flop. Multistate registers 

open opportunity for new applications and architectures, exploiting the density and 

low power of memristors. The schematic of an RRAM-based multistate register is 

shown in Figure 9. Further details on multistate registers are found in Chapter 3.3 and 

[48]. 
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Figure 9. Schematic of an RRAM 16 states multistate register. The multistate 
register consists of an RRAM crosspoint on top of a CMOS D flip flop. 

 

2.2.2 Continuous Flow Multithreading 

The use of multistate registers to store the microarchitectural state of multiple 

threads within the processor pipeline is proposed. We call this use a multistate 

pipeline register (MPR). Using MPRs can eliminate the need to flush the pipeline 

upon a thread switch in Switch-on-Event (SoE) multi-threading machines. We call the 

new microarchitectural scheme, Continuous Flow Multi-Threading (CFMT), and 

compare the performance and power consumption against traditional SoE machines. 

Memristor-based CFMT significantly improves performance as compared to SoE, 

while reducing energy. A CFMT processor is illustrated in Figure 10. Further details 

on CFMT are found in Chapter 3.3 and [49-50]. 
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Figure 10. Continuous Flow Multithreading structure. A multistate pipeline 
register (MPR) is located between each two pipeline stages instead of a 

conventional pipeline register.  The MPR stores the state of instructions from all 
supported threads within the machine when only a single thread is active at a 

time. 
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Chapter 3 Published Papers 

This chapter contains the full collection of the scientific papers that were published 

during the thesis in scientific journals and refereed conference proceedings. Each 

subchapter is devoted to a different aspect of our research. 
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3.1 Device Characteristic and Modeling 

This section contains the following papers: 

 S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "TEAM - 

ThrEshold Adaptive Memristor Model," IEEE Transactions on Circuits and 

Systems I: Regular Papers, Vol. 60, No. 1, pp. 211-221, January 2013. 

 S. Kvatinsky, K. Talisveyberg, D. Fliter, E. G. Friedman, A. Kolodny, and U. 

C. Weiser, "Models of Memristors for SPICE Simulations," Proceedings of 

the IEEE Convention of Electrical and Electronics Engineers in Israel, pp. 1-

5, November 2012. 

 S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "The Desired 

Memristor for Circuit Designers," IEEE Circuits and Systems Magazine, Vol. 

13, No. 2, pp. 17-22, second quarter 2013. 
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TEAM: ThrEshold Adaptive Memristor Model
Shahar Kvatinsky, Eby G. Friedman, Fellow, IEEE, Avinoam Kolodny, Senior Member, IEEE, and

Uri C. Weiser, Fellow, IEEE

Abstract—Memristive devices are novel devices, which can be
used in applications ranging from memory and logic to neuro-
morphic systems. A memristive device offers several advantages:
nonvolatility, good scalability, effectively no leakage current, and
compatibility with CMOS technology, both electrically and in
terms of manufacturing. Several models for memristive devices
have been developed and are discussed in this paper. Digital ap-
plications such as memory and logic require a model that is highly
nonlinear, simple for calculations, and sufficiently accurate. In
this paper, a new memristive device model is presented—TEAM,
ThrEshold Adaptive Memristor model. This model is flexible and
can be fit to any practical memristive device. Previously published
models are compared in this paper to the proposed TEAM model.
It is shown that the proposed model is reasonably accurate and
computationally efficient, and is more appropriate for circuit
simulation than previously published models.

Index Terms—Memristive systems, memristor, SPICE, window
function.

I. INTRODUCTION

M EMRISTORS are passive two-port elements with
variable resistance (also known as a memristance) [1].

Changes in the memristance depend upon the history of the
device (e.g., the memristance may depend on the total charge
passed through the device, or alternatively, on the integral over
time of the applied voltage between the ports of the device).

Formally, a current-controlled time-invariant memristive
system [2] is represented by

(1)

(2)

where is an internal state variable, is the memristive de-
vice current, is the memristive device voltage, is
the memristance, and is time. The terms memristor and mem-
ristive systems are often used interchangeably to describe mem-
ristive systems [2]. While there are discussions in the literature
about specific definitions [29], [30], in this paper we use the
term “memristive device” to describe all devices within these
categories.

Since Hewlett-Packard announced the fabrication of a
working memristive device in 2008 [3], there has been an
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increasing interest in memristors and memristive systems. New
devices exhibiting memristive behavior have been announced
[4], [5], and existing devices such as spin-transfer torque mag-
netoresistive random access memory (STT-MRAM) have been
redescribed in terms of memristive systems [6].

Memristive devices can be used for a variety of applications
such as memory [7], neuromorphic systems [8], analog circuits
(e.g., see [9]), and logic design [10], [27]. Different characteris-
tics are important for the effective use of memristive devices in
each of these applications, and an appropriate designer friendly
physical model of a memristive device is therefore required.

In this paper, the characteristics of memristive devices are
described in Section II. Previously published memristive de-
vice models are reviewed in Section III. TEAM—a new model
that is preferable in terms of the aforementioned characteris-
tics—is proposed in Section IV. In Section V, a comparison be-
tween these models is presented. The paper is summarized in
Section VI.

II. REQUIREMENTS FOR MEMRISTIVE DEVICE

CHARACTERISTICS

Different applications require different characteristics from
the building blocks. Logic and memory applications, for ex-
ample, require elements for computation and control, as well
as the ability to store data after computation. These elements re-
quire sufficiently fast read and write times. The read mechanism
needs to be nondestructive, i.e., the reading mechanism should
not change the stored data while reading. To store a known dig-
ital state and maintain low sensitivity to variations in parame-
ters and operating conditions, it is crucial that the stored data be
distinct, i.e., the difference between different data must be suf-
ficiently large. The transient power consumption while reading
and writing, as well as static power consumption, are also crit-
ical issues.

Although the definition of a memristive system is quite broad,
all memristive systems exhibit a variable resistance, which is re-
lated to an internal state variable. Memristive devices employed
in practice exhibit a nonvolatile behavior. To provide a non-
destructive read mechanism, the internal state variable needs
to exhibit a nonlinear dependence on charge, i.e., changes in
the state variable due to high currents should be significant,
while changes due to low currents should be negligible. Other
mechanisms where the state variables return to the original po-
sition after completing the read process may also require the
nondestructive read mechanism. For certain applications such
as analog counters, however, a linear dependence on charge is
preferable, since the current is integrated during the counting
process.

To store distinct Boolean data in a memristive device, a high
ratio between the resistances (typically named and )
is necessary. Several additional characteristics are important for

1549-8328/$31.00 © 2012 IEEE
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Fig. 1. Linear ion drift memristive device model. The device is composed of
two regions: doped and undoped. The total resistance of the device is the sum
of the resistance of both regions.

all applications, such as low power consumption, good scala-
bility, and compatibility with conventional CMOS.

These characteristics exist in memristive devices.
STT-MRAM exhibits these characteristics except for the high
off/on resistance ratio [11]. To design and analyze memristive
device-based circuits and applications, a model exhibiting these
traits is required.

III. PREVIOUSLY PROPOSED MEMRISTIVE DEVICE MODELS

A. Requirements From an Effective Memristive Device Model

An effective memristive device model needs to satisfy several
requirements: it must be sufficiently accurate and computation-
ally efficient. It is desirable for the model to be simple, intuitive,
and closed-form. It is also preferable for the model to be gen-
eral so that it can be tuned to suit different types of memristive
devices.

B. Linear Ion Drift Model

A linear ion drift model for a memristive device is suggested
in [3]. In this model, one assumption is that a device of physical
width contains two regions, as shown in Fig. 1. One region
of width (which acts as the state variable of the system) has
a high concentration of dopants (originally oxygen vacancies
of , namely ). The second region of width

is an oxide region (originally ). The region with the
dopants has a higher conductance than the oxide region, and the
device is modeled as two resistors connected in series. Several
assumptions are made: ohmic conductance, linear ion drift in a
uniform field, and the ions have equal average ion mobility .
Equations (1) and (2) become, respectively,

(3)

(4)

where is the resistance when , and is
the resistance when . The state variable is lim-
ited to the physical dimensions of the device, i.e., the value is
within the interval . To prevent from growing beyond
the physical device size, the derivative of is multiplied by a
window function, as discussed in Section III-C. The I-V curve
of a linear ion drift memristive device for sinusoidal and rect-
angular waveform inputs is shown in Fig. 2.

C. Window Function

In the linear ion drift model, the permissible value of the state
variable is limited to the interval . To satisfy these bounds,
(3) is multiplied by a function that nullifies the derivative, and

Fig. 2. Linear ion drift model I-V curve. , ,
, , and . (a) Si-

nusoidal voltage input for several frequencies , , and , and (b) rect-
angular waveform current input.

forces (3) to be identical to zero when is at a bound. One
possible approach is an ideal rectangular window function (the
function where the value is 1 for any value of the state variable,
except at the boundaries where the value is 0). It is also possible
to add a nonlinear ion drift phenomenon, such as a decrease in
the ion drift speed close to the bounds, with a different window
[12],

(5)

where is a positive integer. For large values of , the window
function becomes similar to a rectangular window function,
and the nonlinear ion drift phenomenon decreases, as shown in
Fig. 3.

The window function in (5) exhibits a significant problem for
modeling practical devices, since the derivative of is forced
to zero and the internal state of the device cannot change if
reaches one of the bounds. To prevent this modeling inaccuracy,
a different window function has been proposed [13],

(6)

(7a)
(7b)

where is the memristive device current. This function is shown
in Fig. 4. In the original definition, these window functions do
not have a scale factor and therefore cannot be adjusted, i.e., the
maximum value of the window function cannot be changed to
a value lower or greater than one. To overcome this limitation,
a minor enhancement—adding a multiplicative scale factor to
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Fig. 3. Window function described by (5) according to [12] for several values
of .

Fig. 4. Window function described by (6) according to [13].

the window function, has recently been proposed [14]. The pro-
posed window function in [14] is

(8)

where is a control parameter which determines the maximum
value of (in this function, the maximum value can be
smaller or larger than one). This function is shown in Fig. 5.

While these window functions alleviate the bounds issue and
suggest a nonlinear phenomenon, these functions do not exhibit
full nonlinear ion drift behavior since the model ignores the non-
linear dependence of the state derivative on the current. A linear
ion drift model with a window function does not therefore fully
model nonlinear ion drift behavior.

D. Nonlinear Ion Drift Model

While the linear ion drift model is intuitive and satisfies the
basic memristive system equations, experiments have shown
that the behavior of fabricated memristive devices deviates sig-
nificantly from this model and is highly nonlinear [15], [16]. The
nonlinear I-V characteristic is desirable for logic circuits, and
hence more appropriate memristive device models have been
proposed. In [17], a model is proposed based on the experi-

Fig. 5. Window function described by (8) according to [14]. (a) Varying , and
(b) varying .

mental results described in [15]. The relationship between the
current and voltage is

(9)

where , , and are experimental fitting parameters, and
is a parameter that determines the influence of the state variable
on the current. In this model, the state variable is a normal-
ized parameter within the interval . This model assumes
an asymmetric switching behavior. When the device is in the
ON state, the state variable is close to one and the current is
dominated by the first expression in (9), , which
describes a tunneling phenomenon. When the device is in the
OFF state, the state variable is close to zero and the current is
dominated by the second expression in (9), ,
which resembles an ideal diode equation.

This model assumes a nonlinear dependence on voltage in the
state variable differential equation,

(10)

where and are constants, is an odd integer, and is
a window function. The I-V relationship of a nonlinear ion drift
memristive device for sinusoidal and rectangular waveform in-
puts is illustrated in Fig. 6. A similar model is proposed by the
same authors in [28]. In this model, the same I-V relationship is
described with a more complex state drift derivative.

E. Simmons Tunnel Barrier Model

Linear and nonlinear ion drift models are based on repre-
senting the two regions of oxide and doped oxide as two resis-
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Fig. 6. Nonlinear ion drift model I-V curve. , , ,
, , , and . (a) Sinusoidal

voltage input for several frequencies , , and , and (b) rectangular
waveform of input voltage.

Fig. 7. Physical model of Simmons tunnel barrier memristive device. The state
variable is the width of the oxide region, is the applied voltage on the
device, is the voltage in the undoped region, and is the internal voltage in
the device.

tors in series. A more accurate physical model was proposed in
[18]. This model assumes nonlinear and asymmetric switching
behavior due to an exponential dependence of the movement
of the ionized dopants, namely, changes in the state variable. In
this model, rather than two resistors in series as in the linear drift
model, there is a resistor in series with an electron tunnel barrier,
as shown in Fig. 7. The state variable is the Simmons tunnel
barrier width [19] (note that a different notation for the state
variable is used to prevent confusion with the role of the state
variable in the linear ion drift model). In this case, the derivative

Fig. 8. Derivative of the state variable as described in (11). The fitting pa-
rameters are , , ,

, , , , and .

of can be interpreted as the oxygen vacancy drift velocity, and
is

where , , , , , , , and are fitting pa-
rameters. Equation (11) is illustrated in Fig. 8 for the measured
fitting parameters reported in [18]. The physical phenomena be-
hind the behavior shown in (11) are not yet fully understood,
but considered to be a mixture of nonlinear drift at high elec-
tric fields and local Joule heating enhancing the oxygen vacan-
cies. In practical memristive devices, the ON switching is sig-
nificantly faster than the OFF switching because of the diffu-
sion of the oxygen vacancies from to , and the
drift of the oxygen vacancies due to the internal electric field
is different for positive and negative voltages. For a negative
voltage (lower ), the drift of the oxygen vacancies and the dif-
fusion are in the same direction, while for a positive voltage,
the direction of diffusion and drift is opposite [20]. The param-
eters and influence the magnitude of the change of .
The parameter is an order of magnitude larger than the pa-
rameter . The parameters and effectively constrain
the current threshold. Below these currents, the change in the
derivative of is neglected. A current threshold phenomenon
is desirable for digital applications. The parameters and

force, respectively, the upper and lower bounds for . Be-
cause of the exponential dependence on or ,
the derivative of the state variable is significantly smaller for the
state variable within the permitted range. There is therefore no
need for a window function in this model.

In this model, the relationship between the current and
voltage is shown as an implicit equation based on the Simmons
tunneling model [19],

(12)

(13)
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Fig. 9. Derivative of the state variable as described in (11) under the as-
sumption of a small change in . Note that the device exhibits a
threshold current. The same fitting parameters as used in Fig. 8 are used.

where is the internal voltage on the device, which is not nec-
essarily equal to the applied voltage on the device (i.e., the
external voltage and the internal voltage are not necessarily
the same [18]).

IV. THRESHOLD ADAPTIVE MEMRISTOR (TEAM) MODEL

In this section, TEAM, a novel memristive device model, is
presented. The integral portion of the TEAM model is based
on an expression for the derivative of the internal state variable
that can be fitted to any memristive device type. Unlike other
memristive device models, the current-voltage relationship is
undefined and can be freely chosen from any current-voltage
relationship. Several examples of possible current-voltage rela-
tionships are described in Section IV-B. This relationship is not
limited to these examples. In Section IV-A, the disadvantages
of the aforementioned models and the need for such a model
are explained. The derivative of the internal state variable of
the memristive device [the relevant expression for (1)] and ex-
amples of the current-voltage relationship [the relevant expres-
sion for (2)] are described, respectively, in Section IV-B and
IV-C. Proper fitting of the Simmons tunnel barrier model to the
TEAM model is presented in Section IV-D, as well as the proper
window function for this fitting.

A. Need for a Simplified Model

The Simmons tunnel barrier model is, to the authors’ best
knowledge, the most accurate physical model of a
memristive device. This model is however quite complicated,
without an explicit relationship between current and voltage,
and not general in nature (i.e., the model fits only a specific
type of memristive device). A complex SPICE model of the
Simmons tunnel barrier model is presented in [21]. This model
is also computational inefficient. A model with simpler ex-
pressions rather than the complex equations in the Simmons
tunnel barrier model is therefore desired. Yet the accuracy of
the simple model must be adequate. This simplified model
represents the same physical behavior, but with simpler math-
ematical functions. In Section V, simplifying assumptions are
introduced. Namely, no change in the state variable is assumed
below a certain threshold, and a polynomial dependence rather
than an exponential dependence is used. These assumptions

are applied to support simple analysis and computational
efficiency.

B. State Variable Derivative in TEAM Model

Note in Fig. 9 and (11) that because of the high nonlinear de-
pendence of the memristive device current, the memristive de-
vice can be modeled as a device with threshold currents. This ap-
proximation is similar to the threshold voltage approximation in
MOS transistors. This approximation is justified, since for small
changes in the electric tunnel width, separation of variables can
be performed. The dependence of the internal state derivative
on current and the state variable itself can be modeled as inde-
pendently multiplying two independent functions; one function
depends on the state variable and the other function depends
on the current.

Under these assumptions, the derivative of the state variable
for the simplified proposed model is

where , , , and are constants, and are
current thresholds, and is the internal state variable, which rep-
resents the effective electric tunnel width. The constant param-
eter is a positive number, while the constant parameter
is a negative number. The functions and rep-
resent the dependence on the state variable . These functions
behave as the window functions described in Section II, which
constrain the state variable to bounds of . Al-
ternatively, these functions can be different functions of . The
functions and are not necessarily equal, since
the dependence on may be asymmetric (as in the Simmons
tunnel barrier model). Note that the role of in this model is
opposite to in the linear ion drift model.

C. Current—Voltage Relationship in TEAM Model

Assume the relationship between the voltage and current of
a memristive device is similar to (4). The memristance changes
linearly in , and (2) becomes

(15)

The reported change in the resistance however is an exponen-
tial dependence on the state variable [18], since the memris-
tance, in practical memristive devices, is dependent on a tun-
neling effect, which is highly nonlinear. If (12) describes the
current-voltage relationship in the model, the model becomes
inefficient in terms of computational time and is also not gen-
eral. Therefore, any change in the tunnel barrier width changes
the memristance, and is assumed to change in an exponential
manner. Under this assumption, (2) becomes

(16)
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Fig. 10. Fitting between the derivative of the state variable in the Simmons
tunnel barrier memristive device model and the TEAM model. The same fitting
parameters as used in Fig. 8 are used for the Simmons tunnel barrier model.
(a) The fitting parameters for the proposed model are ,

, , , , and
. (b) Fitting procedure in a logarithmic scale. The operating current range

is assumed to be 0.1 to 1 mA and the neglected value for the derivative of
the state variable is assumed to be . For any desired current range,
the proper fitting parameters can be evaluated to maintain an accurate match
between the models. For the aforementioned parameters, a reasonable current
threshold is 0.5 mA (marked as the effective threshold in the figure).

where is a fitting parameter, and and are the
equivalent effective resistance at the bounds, similar to the no-
tation in the linear ion drift model, and satisfy

(17)

D. Fitting the Simmons Tunnel Barrier Model to the TEAM
Model

The TEAM model is inspired by the Simmons tunnel barrier
model. However, to use this model for practical memristive de-
vices, similar to the Simmons tunnel barrier model, a fit to the
TEAM model needs to be accomplished. Since (14) is derived
from a Taylor series, for any desired range of memristive device
current, , , , , and can be evaluated to achieve
a sufficiently accurate match between the models. As the desired
operating current range for the memristive device is wider, to
maintain sufficiently accuracy, the required and are
higher, thereby increasing the computational time. The proper
fitting procedure to the current threshold is to plot the deriva-
tive of the exact state variable in the actual operating range of
the current, and decide what value of the state variable deriva-
tive is effectively zero (i.e., the derivative of the state variable is

Fig. 11. Proposed and based on (18) and (19). These func-
tions represent the dependence on in (14) and also force bounds for since

is used when is positive and is zero around , and vice versa
for .

significantly smaller and can therefore be neglected). The cur-
rent at this effective point is a reasonable value of the current
threshold. In this paper, the parameters and are chosen
as these current thresholds, since these terms represent the ex-
ponential dependence of the derivative on the state variable of
the current in the Simmons tunnel barrier model. A fit of the
Simmons tunnel barrier model to the TEAM model is shown
in Fig. 10(a). The proper current threshold fitting procedure is
shown in Fig. 10(b). Note that a reasonable current threshold
can be higher than .

As mentioned in Section IV-B, the functions and
are window functions, or alternatively, functions that fit

the Simmons tunnel barrier model based upon the separation of
variables of (11). These functions represent the dependence of
the derivative in the state variable . Based on the fitting param-
eters reported in [18], possible functions and
are, respectively,

(18)

(19)

The determination process for (18) and (19) is presented in
Appendix A. Note that (18) and (19) maintain the limitation
of certain bounds for the state variable since the derivative
of around when using (18) and (19) is effectively zero
for positive current ( is practically zero) and negative for
negative current. can only be reduced. The value of can be
increased for values of around . Therefore, a reasonable
value for the state variable bounds and is, respectively,

and . Although the proposed function limits the bounds
of the state variable, there is no problem when the bounds are
exceeded, unlike other window functions. This characteristic is
useful for simulations, where the bounds can be exceeded due to
the discrete nature of simulation engines. The proposed terms,

and , are illustrated in Fig. 11.
The I-V relationship and state variable behavior of the pro-

posed model are shown in Figs. 12 and 13 for an ideal rect-
angular window function and the proposed window function.
Note in Figs. 12 and 13 that there is a performance difference
between the different window functions. Due to the significant
nonlinearity, the proposed window function constrains the state
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Fig. 12. The TEAM model driven with a sinusoidal input of 1 volt using the
same fitting parameters as used in Fig. 10, , , and
an ideal rectangular window function for in (19) and in (18).
(a) I-V curve, and (b) state variable . Note that the device is asymmetric, i.e.,
switching OFF is slower than switching ON.

variable to a small range, and the memristive devices are acti-
vated within a significantly smaller time scale as compared to an
ideal rectangular window function. The required conditions for
a sufficient fit of the TEAM model to the Simmons tunnel barrier
model, as described in Appendix A, cannot be maintained for a
symmetric input voltage due to the asymmetry of the Simmons
tunnel model. The required conditions for a sufficient fit are
therefore not maintained in Fig. 13. These conditions are how-
ever maintained in Fig. 14, where the behavior of the TEAM
model and the Simmons tunnel barrier model is compared and
exhibits excellent agreement. While the proposed model fits the
Simmons Tunnel Barrier model, the TEAM model is general
and flexible. The model can fit different physical memristive de-
vice models, including other types of memristive devices, such
as STT-MRAM and Spintronic memristors [6], [24].

V. COMPARISON BETWEEN THE MODELS

A comparison between the different memristive device
models is listed in Table I and a comparison between different
window functions is listed in Table II. A comparison of the
accuracy and complexity between the Simmons tunnel barrier
memristive device and TEAM models is shown in Fig. 14. The
TEAM model can improve the simulation runtime by 47.5%
and is sufficiently accurate, with a mean error of 0.2%. These
results are dependent on the particular TEAM parameters. A
lower value for and produces lower accuracy and

Fig. 13. The TEAM model driven with a sinusoidal input of 1 volt using the
same fitting parameters as used in Fig. 10, , ,
proposed in (19), and in (18) with the same parameters used in
Fig. 8. (a) I-V curve, and (b) state variable . Note that the device is asymmetric,
i.e., switching OFF is slower than switching ON.

Fig. 14. TEAM model fitted to Simmons tunnel barrier model. (a) I-V curve
for both models, and (b) fitting accuracy in terms of internal state variable
and maximum improvement in runtime for MATLAB simulations. The state
variable average and maximum differences are, respectively, 0.2% and 12.77%.
The TEAM fitting parameters are , ,

, , , ,
, and .

enhanced computational runtime. The TEAM model satisfies
the primary equations of a memristive system as described in
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TABLE I
COMPARISON OF DIFFERENT MEMRISTIVE DEVICE MODELS

TABLE II
COMPARISON OF DIFFERENT WINDOW FUNCTIONS

(1) and (2), and the convergence conditions and computational
efficiency required by simulation engines.

The TEAM model accurately characterizes not only the
Simmons tunnel barrier model, but also a variety of different
models. For example, the TEAM model can be fitted to the
linear ion drift behavior, where

(20)

(21)

(22)

(23)

(24)

(25)

To include memristive devices into the circuit design process,
these models need to be integrated into a CAD environment,
such as SPICE. There are several proposed SPICE macromodels
for the linear ion drift model [13], [22] and the nonlinear ion drift
model [17]. A SPICE model for the Simmons tunneling barrier
model has recently been proposed [21], but is complicated and
inefficient in terms of computational time. Another simplified
model has recently been proposed, assuming voltage threshold
and an implicit memristance [25]. In this model, the current and
voltage are related through a hyperbolic sine and the derivative
of the state variable is an exponent. This model is less general
than the TEAM model and more complex in terms of computa-
tional time (the model uses sinh and exponents rather than poly-

nomials as in the TEAM model). The model is also less accurate
than the TEAM model when fitting the model to the Simmons
tunnel barrier model.

The TEAM model can be described in a SPICE macromodel
similar to the proposed macromodel in [23], as shown in Fig. 15.
In this macromodel, the internal state variable is represented by
the voltage across the capacitor and the bounds of the state
variable are enforced by diodes and . A Verilog-A model
is however chosen because it is more efficient in terms of com-
putational time than a SPICE macromodel, while providing sim-
ilar accuracy. A Verilog-A form of the model, as described in
this paper, has been implemented. The code for these models can
be found in [26]. Although the state variable derivative in the
TEAM model is not a smooth function, it is a continuous func-
tion based only on polynomial functions. The Verilog-A model
has been tested in complex simulations (hundreds of memristive
devices) and did not exhibit any convergence issues.

VI. CONCLUSIONS

Different memristive device models are described in this
paper—linear ion drift, nonlinear ion drift, Simmons tunnel
barrier, and TEAM (ThrEshold Adaptive Memristor), as well
as different window functions. The TEAM model is a flexible
and convenient model that can be used to characterize a variety
of different practical memristive devices. This model suggests
a memristive device should exhibit a current threshold and
nonlinear dependence on the charge, as well as a dependence
on the state variable.
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Fig. 15. TEAM SPICE macromodel. The state variable is the voltage across
the capacitor . The initial voltage is the initial state variable.
and constrain the bounds of the state variable to the value of the voltage
sources and . and are the relevant functions
from (14). is determined from the current-voltage relationship, and is

for the current-voltage relationship in (16).
and are, respectively, the negative and positive ports of the memristive

device, and is the memristive device current.

A comparison between the TEAM model and other memris-
tive device models is presented. The TEAM model is simple,
flexible, and general. While the simplicity of this model im-
proves the efficiency of the simulation process, the model is
sufficiently accurate, exhibiting an average error of only 0.2%
as compared to the Simmons tunnel barrier state variable. This
model fits practical memristive devices better than previously
proposed models. This model is suitable for memristive de-
vice-based circuit design and has been implemented in Ver-
ilog-A for SPICE simulations.

APPENDIX

APPROPRIATE FITTING WINDOW FUNCTION TO THE SIMMONS

TUNNEL BARRIER MODEL

The purpose of this appendix is to determine a proper window
function that provides a sufficient fit to the Simmons tunnel
barrier model. To determine a reasonable approximation, pa-
rameter values from [18] are used. From (11a) and (11b), the
derivative of the state variable is

The derivative of the state variable is a multiplicand of two
functions—a hyperbolic sine function which depends only on
the current and an exponential function which depends on both
the current and the state variable. To simplify (A.1) and to apply
separation of variables, approximations

(A.2.a)

(A.2.b)

need to be assumed. In this appendix, the range of the required
state variable for this approximation is determined. From (A.1),
an approximation for is provided.

The Simmons tunnel barrier model is appropriate when the
state variable is limited by and , i.e.,

(A.3)

From the parameters in [18],

(A.4)

Assume the maximum current in the device is 100 ,

(A.5)

Assume that the value of the state variable is one of the ef-
fective boundaries and ,

(A.6)

To maintain the same approximation as in (A.6), it is suffi-
cient to assume that the value of the expression in (A.5) is rel-
atively small. Assume that one order of magnitude is sufficient
for this assumption. The proper range of can be determined as

(A.7)

(A.8)

For positive current, the derivative of is positive and there-
fore the value of is increasing. It is reasonable to assume
(A.8). Similarly, for negative current, it is reasonable to assume
(A.7). Under these assumptions, separation of variables can be
achieved. See (A.9) at the top of the next page.

Based on the parameters in [18] and the exponential depen-
dence, the exponential term is significantly greater than the
second term,

(A.10)

And similarly,

(A.11)
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(A.9)

From (A.10) and (A.11), the proposed window function is
therefore

(A.12)

(A.13)
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Abstract— Memristors are novel devices which can be used in 

applications such as memory, logic, analog circuits, and 

neuromorphic systems. Several memristor technologies have 

been developed such as ReRAM (Resistive RAM), MRAM 

(Magnetoresistance RAM), and PCM (Phase Change Memory). 

To design circuits with memristors, the behavior of the 

memristor needs to be described by a mathematical model. While 

the model for memristors should be sufficiently accurate as 

compared to the behavior of physical devices, the model must 

also be computationally efficient. Several models for memristors 

have been proposed – the linear ion drift model, the nonlinear ion 

drift model, the Simmons tunnel barrier model, and the 

ThrEshold Adaptive Memristor (TEAM) model. In this paper, 

the different memristor models are described and a Verilog-A 

implementation for these models, including the relevant window 

functions, are presented. These models are suitable for EDA tools 

such as SPICE. 

Index Terms— memristor, memristive systems, SPICE, 

Verilog-A, TEAM. 

I. INTRODUCTION 

Memristors are passive two-port elements with variable 

resistance (also known as a memristance) [1]. Changes in the 

memristance depend upon the history of the device (e.g., the 

memristance may depend on the total charge passed through 

the device, or alternatively, on the integral over time of the 

applied voltage between the ports of the device). Memristive 

systems [2] are an extension to memristors, where a current-

controlled time-invariant memristive device is represented by 

 ( , ),
dw

f w i
dt

  (1) 

 ( ) ( , ) ( ),v t R w i i t   (2) 

where w is an internal state variable, i(t) is the current of the 

memristive device, v(t) is the voltage across the memristive 

device, R(w, i) is the memristance, and t is time. The terms 

memristor and memristive systems are often used 

interchangeably to describe memristive devices.  

Memristors can be used in applications such as memory, 

logic, analog circuits, and neuromorphic systems. A memristor 

offers several advantages as compared to standard memory 

technologies: nonvolatility, good scalability, effectively no 

leakage current, and compatibility with CMOS technology, 

both electrically and in terms of manufacturing. Several 

memristor technologies have been developed such as ReRAM 

(Resistive RAM), MRAM (Magnetoresistance RAM), and 

PCM (Phase Change Memory). 

To design circuits with memristors, the behavior of the 

memristor needs to be described by a mathematical model. 

While the model for memristors should be sufficiently 

accurate as compared to the behavior of physical devices, it 

must also be computationally efficient. It is also desirable for 

the model to be simple, intuitive, and closed-form, as well as 

general so that it can be tuned to suit different technologies of 

memristors. Several memristor models have been proposed: 

the linear ion drift model, the nonlinear ion drift model, the 

Simmons tunnel barrier model, and the ThrEshold Adaptive 

Memristor (TEAM) model. In this paper, the different 

memristor models are described and a Verilog-A code for 

these models and the relevant window functions are presented. 

These models are suitable for EDA tools such as SPICE. 

II. MEMRISTOR MODELS 

All of the memristor models which have been implemented 

in the Verilog-A model are described in [3]. In this paper, only 

a brief description of these models is provided. The basic 

equations and the main characteristics of the memristor models 

are listed in Table 1. A user manual to this Verilog-A model is 

provided in [4]. 

A. Linear Ion Drift Model 

In the linear ion drift model [5], two resistors are connected 

in series, one resistor represents the high concentration of 

dopants region (high conductance) and the second resistor 

represents the oxide region (low conductance). A linear ion 

drift in a uniform field is also assumed, where the ions have 

equal average ion mobility µV. This model exhibits the 

definition of the original memristor in [1], but is inaccurate as 

compared to physical memristive devices. 

B. Nonlinear Ion Drift Model 

In the nonlinear ion drift model [6], a voltage-controlled 

memristor exhibiting a nonlinear dependence between the 

voltage and the internal state derivative is assumed. In this 

model, the state variable w is a normalized parameter within 

the interval [0, 1]. This model also assumes an asymmetric 

switching behavior. 
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C. Simmons Tunnel Barrier Model 

The Simmons tunnel barrier model [7] assumes nonlinear 

and asymmetric switching behavior due to an exponential 

dependence of the movement of the ionized dopants, namely, 

changes in the internal state variable. In this model, rather than 

two resistors in series as in the linear drift model, there is a 

resistor in series with an electron tunnel barrier. The state 

variable x is the Simmons tunnel barrier width. 

D. ThrEshold Adaptive Memristor (TEAM) Model 

The TEAM model [3] is a general memristor model. In this 

model, a current threshold and tunable nonlinear (polynomial) 

dependence between the current and the derivative of the 

internal state variable are assumed. The current-voltage 

relationship can be in a linear or an exponential manner. It is 

possible to fit the TEAM model to the Simmons tunnel barrier 

model or to any different memristor model and gain a more 

efficient computational time with sufficient accuracy. 

III. WINDOW FUNCTIONS 

To maintain the physical bounds of the device and add 

nonlinear behavior close to these physical bounds, several 

window functions are implemented in the Verilog-A model. 

These window functions are: Jogelkar [8], Biolek [9], 

Prodromakis [10], and TEAM (named Kvatinsky in the 

Verilog-A model). The window functions and main properties 

are listed in Table 2. 

IV. VERILOG-A CODE 

`include "disciplines.vams" 

`include "constants.h" 

 

// define meter units for w parameter nature distance  

access = Metr; 

units = "m"; 

abstol = 0.01n; 

endnature 

discipline Distance 

potential distance; 

enddiscipline 

 

module Memristor(p, n,w_position); 

input p;//positive pin 

output n;//negative pin  

    output w_position;// w-width pin 

    electrical p, n,gnd; 

    Distance w_position; 

ground gnd; 

    parameter real model = 0;   // define the model 0 - Linear    

    // Ion Drift ; 1 - Simmons Tunnel Barrier; 2 - Team model;  

   // 3- Nonlinear Ion Drift model 

   parameter real window_type=0;   // define the window type :   

   // 0 - No window; 1 - Jogelkar window ; 2 - Biolek window ;  

   // 3 - Prodromakis window ; 4- Kvatinsky window (Team  

   // model only) 

  parameter real dt=0; // user must specify dt same as max step 

   // size in transient analysis & must be at least 3 orders  

   // smaller than T period of the source 

   parameter real init_state=0.5; // the initial state condition  

   // [0:1]  

 

///////////////////////Linear Ion Drift model //////////////////////////////// 

//parameters definitions and default values for linear model   

    parameter real Roff = 200000;                                  

    parameter real Ron = 100; 

    parameter real D = 3n; 

    parameter real uv = 1e-15; 

    parameter real w_multiplied = 1e8;  // transformation factor  

    // for w/X width in meter units 

    parameter real p_coeff = 2; // Windowing function  

    // coefficient 

    parameter real J = 1;  // for prodromakis Window function  

    parameter real p_window_noise=1e-18; // provoke the w  

    // width not to get stuck at 0 or D with p window 

    parameter real treshhold_voltage=0;     

     

    // local variables 

    real w;  

    real dwdt; 

    real w_last; 

    real R; 

    real sign_multply;                                      

    real stp_multply;                                      

    real first_iteration; 

     

/////////////////////// Simmons Tunnel Barrier model //////////////////// 

 //parameters definitions and default values  

    parameter real f_off = 3.5e-6; 

    parameter real f_on = 40e-6; 

    parameter real i_off = 115e-6; 

    parameter real i_on = 8.9e-6; 

    parameter real x_c = 107e-12; 

    parameter real b = 500e-6; 

    parameter real a_on = 2e-9; 

    parameter real a_off = 1.2e-9;                                        

     

    // local variables 

    real x; 

    real dxdt; 

    real x_last; 

 

////////////////////////////TEAM model///////////////////// 

    parameter real K_on=-8e-13; 

    parameter real K_off=8e-13; 

    parameter real Alpha_on=3; 

    parameter real Alpha_off=3; 

parameter real IV_relation=0; // IV_relation=0 means linear  

// V=IR. IV_relation=1 means nonlinear V=I*exp{..}   

    parameter real x_on=0; 

    parameter real x_off=3e-09;  // equals D    

    // local variables 

    real lambda; 
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/////////////////////////////Nonlinear Ion Drift model///////////////////// 

    parameter real alpha = 2; 

    parameter real beta  = 9;                                 

    parameter real c     = 0.01; 

    parameter real g     = 4; 

    parameter real N     = 14;                                  

    parameter real q     = 13;                                  

    parameter real a     = 4;   

        

 analog function integer sign; //Sign function for Constant  

 // edge cases 

     real arg; input arg; 

     sign = (arg >= 0 ? 1 : -1 ); 

 endfunction 

 analog function integer stp;            //Stp function  

     real arg; input arg; 

     stp = (arg >= 0 ? 1 : 0 ); 

 endfunction 

  

 /////////////////////////MAIN //////////////////////////////// 

 analog begin                                                  

 if(first_iteration==0) begin 

w_last=init_state*D; // if this is the first iteration,  

             // start with w_init 

 x_last=init_state*D; // if this is the first  

             // iteration, start with x_init 

 end 

   

///////////////////////Linear Ion Drift model //////////////////////////////// 

if (model==0) begin // Linear Ion Drift model 

 dwdt =(uv*Ron/D)*I(p,n); 

  //change the w width only if the threshhold_voltage permits! 

       if(abs(I(p,n))<treshhold_voltage/R) begin 

         w=w_last; 

  dwdt=0; 

       end 

       if ((window_type==0)|| (window_type==4)) begin // No  

       // window 

        w=dwdt*dt+w_last; 

 end // No window 

 if (window_type==1) begin // Jogelkar window 

  if (sign(I(p,n))==1) begin 

   sign_multply=0; 

   if(w==0) begin 

   sign_multply=1; 

   end 

  end 

  if (sign(I(p,n))==-1) begin 

          sign_multply=0;     

          if(w==D) begin 

                      sign_multply=-1; 

                      end 

  end 

 w=dwdt*dt*(1-pow(2*w/D-  

            1,2*p_coeff))+w_last+sign_multply*p_window_noise; 

 end // Jogelkar window 

 

 if (window_type==2) begin // Biolek window 

  if (stp(-I(p,n))==1) begin 

   stp_multply=1; 

   end 

  if (stp(-I(p,n))==0) begin 

          stp_multply=0;    

                           end 

              w=dwdt*dt*(1-pow(w/D- 

                   stp_multply,2*p_coeff))+w_last; 

 end  // Biolek window 

 if (window_type==3) begin // Prodromakis window 

  if (sign(I(p,n))==1) begin 

   sign_multply=0; 

   if(w==0) begin 

   sign_multply=1; 

   end 

  end 

  if (sign(I(p,n))==-1) begin 

          sign_multply=0;     

          if(w==D) begin 

                              sign_multply=-1; 

                         end 

  end 

               w=dwdt*dt*J*(1-pow(pow(w/D- 

               0.5,2)+0.75,p_coeff))+ w_last + sign_multply *  

               p_window_noise; 

    end  // Prodromakis window 

 if (w>=D) begin  

  w=D; 

                           dwdt=0; 

 end 

 if (w<=0) begin 

  w=0; 

                           dwdt=0; 

 end 

 

       //update the output ports(pins)   

       R=Ron*w/D+Roff*(1-w/D); 

       w_last=w; 

       Metr(w_position) <+ w*w_multiplied;  

       V(p,n) <+ (Ron*w/D+Roff*(1-w/D))*I(p,n); 

       first_iteration=1; 

end // end Linear Ion Drift model 

 

//////////////////////Simmons Tunnel Barrier model////////////////////// 

if (model==1) begin // Simmons Tunnel Barrier model                                                

 if (sign(I(p,n))==1) begin 

    dxdt =f_off*sinh(I(p,n)/i_off)*exp(-exp((x_last- 

                 a_off)/x_c-abs(I(p,n)/b))-x_last/x_c); 

 end     

 if (sign(I(p,n))==-1) begin 

    dxdt = f_on*sinh(I(p,n)/i_on)*exp(-exp((a_on- 

                 x_last)/x_c-abs(I(p,n)/b))-x_last/x_c); 

 end 

        x=x_last+dt*dxdt; 

   if (x>=D) begin 

         x=D; 
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         dxdt=0;  

  end 

  if (x<=0) begin 

         x=0; 

         dxdt=0; 

  end 

       //update the output ports(pins)   

       R=Ron*(1-x/D)+Roff*x/D; 

       x_last=x; 

       Metr(w_position) <+ x/D;  

       V(p,n) <+ (Ron*(1-x/D)+Roff*x/D)*I(p,n); 

       first_iteration=1; 

end // end Simmons Tunnel Barrier model    

 

/////////////////////////////////TEAM model////////////////////////////////// 

if (model==2) begin // Team model  

 if (I(p,n) >= i_off) begin  

             dxdt =K_off*pow((I(p,n)/i_off-1),Alpha_off); 

 end 

 if (I(p,n) <= i_on) begin 

             dxdt =K_on*pow((I(p,n)/i_on-1),Alpha_on); 

 end 

             if ((i_on<I(p,n)) && (I(p,n)<i_off)) begin 

 dxdt=0; 

 end 

 if (window_type==0) begin // No window 

 x=x_last+dt*dxdt; 

 end // No window 

 if (window_type==1) begin // Jogelkar window 

    x=x_last+dt*dxdt*(1-pow((2*x_last/D- 

                          1),(2*p_coeff))); 

        end // Jogelkar window 

 if (window_type==2) begin // Biolek window 

  if (stp(-I(p,n))==1) begin 

   stp_multply=1; 

   end 

  if (stp(-I(p,n))==0) begin 

                                   stp_multply=0;                 

         end 

                     x=x_last+dt*dxdt*(1-pow((x_last/D- 

                     stp_multply),(2*p_coeff)));  

 end  // Biolek window 

 if (window_type==3) begin // Prodromakis window 

        x=x_last+dt*dxdt*J*(1- 

                            pow((pow((x_last/D-0.5),2)+0.75),p_coeff)); 

 end  // Prodromakis window 

              if (window_type==4) begin //Kvatinsky window 

                          if (I(p,n) >= 0) begin      

                                  x=x_last+dt*dxdt*exp(-exp((x_last- 

                                  a_off)/x_c)); 

                          end 

              if (I(p,n) < 0) begin 

                                x = x_last+dt*dxdt*exp(-exp((a_on- 

                                x_last)/x_c)); 

              end 

        end // Kvatinsky window 

 if (x>=D) begin 

     dxdt=0;             

      x=D; 

 end 

 if (x<=0) begin 

     dxdt=0; 

     x=0; 

 end 

             lambda = ln(Roff/Ron); 

 //update the output ports(pins)   

 x_last=x; 

 Metr(w_position) <+ x/D; 

  if (IV_relation==1) begin  

     V(p,n) <+ Ron*I(p,n)*exp(lambda*(x-  

                  x_on)/(x_off-x_on)); 

             end 

 else if (IV_relation==0) begin  

     V(p,n) <+ (Roff*x/D+Ron*(1-x/D))*I(p,n); 

 end 

 first_iteration=1;                                  

end // end TEAM model  

 

/////////////////////////////Nonlinear Ion Drift model///////////////////// 

if (model==3) begin // Nonlinear Ion Drift model  

 if (first_iteration==0) begin 

                   w_last=init_state; 

 end 

 dwdt = a*pow(V(p,n),q); 

 if ((window_type==0) || (window_type==4)) begin  

             // No window 

                   w=w_last+dt*dwdt; 

      end // No window 

 if (window_type==1) begin // Jogelkar window 

       w=w_last+dt*dwdt*(1-pow((2*w_last-1) , (2 *  

                    p_coeff))); 

 end // Jogelkar window 

 if (window_type==2) begin // Biolek window 

  if (stp(-V(p,n))==1) begin 

   stp_multply=1; 

   end 

  if (stp(-V(p,n))==0) begin 

          stp_multply=0;                 

              end 

                          w=w_last+dt*dwdt*(1-pow((w_last- 

                          stp_multply),(2*p_coeff))); 

 end // Biolek window 

 if (window_type==3) begin // Prodromakis window 

         w=w_last+dt*dwdt*J*(1-pow((pow((w_last- 

                      0.5),2)+0.75),p_coeff)); 

 end  // Prodromakis window 

 if (w>=1) begin  

  w=1; 

  dwdt=0; 

 end 

 if (w<=0) begin 

  w=0; 

  dwdt=0; 

 end 
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   //change the w width only if the threshhold_voltage permits! 

               if(abs(V(p,n))<treshhold_voltage) begin 

         w=w_last; 

        end 

     

      //update the output ports(pins)   

    w_last=w; 

         Metr(w_position) <+ w;  

         I(p,n) <+ pow(w,N) *beta *sinh(alpha*V(p,n)) +c*  

                (exp(g*V(p,n))-1); 

                first_iteration=1;                                  

       end // end Nonlinear Ion Drift model  

  end   // end analog                                              

endmodule 

V. CONCLUSIONS 

A Verilog-A code that contains several models, useful for 

design in memristor-based circuits, is presented in this paper, 

as well as relevant window functions. This Verilog-A model 

can be used by circuit designers, since it is easy to use, contains 

several mathematical models, the parameters of already 

existing models can be easily changed, as well as additional 

mathematical models can be added. 

ACKNOWLEDGMENT 

 This work was partially supported by Hasso Plattner 

Institute, by the Advanced Circuit Research Center at the 

Technion, and by Intel grant no. 864-737-13. 

REFERENCES 

[1] L. O. Chua, “Memristor – the Missing Circuit Element,” IEEE 

Transactions on Circuit Theory, Vol. 18, No. 5, pp. 507-519, 

September 1971. 

[2] L.O. Chua and S.M. Kang, “Memristive Devices and Systems,” 

Proceedings of the IEEE, Vol. 64, No. 2, pp. 209-223, February 

1976. 

[3] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, 

"TEAM: ThrEshold Adaptive Memristor Model," IEEE 

Transactions on Circuits and Systems I: Regular Papers, 2012 

(in press). 

[4] http://memristor.shorturl.com 

[5] D. B. Strukov, G. S.Snider, D. R. Stewart, and R. S. Williams, 

"The Missing Memristor Found,” Nature, Vol. 453, pp. 80-83, 

May 2008. 

[6] E. Lehtonen and M. Laiho, "CNN Using Memristors for 

Neighborhood Connections," Proceedings of the International 

Workshop on Cellular Nanoscale Networks and their 

Applications, pp. 1-4, February 2010. 

[7] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. 

Snider, D. R. Stewart, and R. S. Williams, "Switching 

Dynamics in Titanium Dioxide Memristive Devices," Journal 

of Applied Physics, Vol. 106, No. 7, pp. 1-6, October 2009. 

[8] Y. N. Joglekar and S. J. Wolf, “The Elusive Memristor: 

Properties of Basic Electrical Circuits,” European Journal of 

Physics, Vol. 30, No. 4, pp. 661-675, July 2009. 

[9] Z. Biolek, D. Biolek, and V. Biolkova, "SPICE Model of 

Memristor with Nonlinear Dopant Drift," Radioengineering, 

Vol. 18, No. 2, Part 2, pp. 210-214, June 2009. 

[10] T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou, 

“A Versatile Memristor Model with Non-linear Dopant 

Kinetics,” IEEE Transactions on Electron Devices, Vol. 58, 

No. 9, pp. 3099-3105, September 2011. 

 

TABLE 1. THE DIFFERENT MEMRISTOR MODELS (FURTHER DESCRIPTION IN [2]) 

Model Linear ion drift [5] Nonlinear ion drift [6] Simmons tunneling 

barrier [7] 

TEAM [3] 

State variable 0 w D   

Doped region physical 

width 

0 1w   

Doped region 

normalized width 

off ona x a   

Undoped region width 

on offx x x   

Undoped region width 

Control mechanism Current controlled Voltage controlled Current controlled Current controlled 

Threshold None None None ion, ioff 

 

TABLE 2. COMPARISON  OF DIFFERENT WINDOW FUNCTIONS 

Function Jogelkar [8] Biolek [9] Prodromakis [10] TEAM [3] 

f(x)/f(w) f(w) = 1-(2w/D-1)2p f(w) = 1-(w/D-stp(-i))2p f(w)=j(1-[(w-0.5)2+0.75]p) fon,off=exp[-exp(|x-xon,off|/wc)] 

Fits memristor 

model 

Linear/nonlinear ion 

drift/TEAM 

Linear/nonlinear ion 

drift/TEAM 

Linear/nonlinear ion 

drift/TEAM 

TEAM for Simmons tunneling 

barrier fitting 
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The Desired Memristor 
for Circuit Designers
Shahar Kvatinsky, Eby G. Friedman, Avinoam Kolodny, and Uri C. Weiser

Abstract
Memristors are two-terminal devices with 
varying resistance, where the behavior is 
dependent on the history of the device. In 
recent years, different physical phenomena 
of resistive switching have been linked with 
the theoretical concept of a memristor, 
and several emerging memory devices 
(e.g., Phase Change Memory, Resistive 
RAM, STT-MRAM) are now considered 
as memristors. Memristors hold prom-
ise for use in diverse applications such 
as memory, digital logic, analog cir-

cuits, and neuromorphic systems.
Important characteristics of 

memristors include high speed, 
low power, good scalability, 
data retention, endurance, and 
compatibility with conventional 
CMOS in terms of manufac-
turing and operating voltages. 
One interesting property of 
some memristors is a nonlinear response to current or voltage. 
Nonlinear memristors exhibit a current or voltage threshold, such 
that the resistance is affected only by currents or voltages which 
exceed the threshold, while the resistance of a linear memristor 
changes with small perturbations in device current.

Different applications exploit different characteristics of a 
memristor. In this article, the desired characteristics for dif-
ferent applications are presented from the viewpoint of an 
integrated circuit designer. Understanding the desired char-
acteristics for different applications can assist device and 
material engineers in providing the appropriate behavior when 
developing memristive devices, thereby optimizing these 
devices for different applications.

I. Introduction

Memristors have many different facets. A memris-
tor can be considered as the theoretical miss-
ing fundamental element originally proposed 

by Leon Chua in 1971 [1]. This theoretical device is a 
resistor with varying resistance, where the resistance 

changes according to the charge passed through the 
memristor over its entire history. Chua extended the 
theory of memristors to ‘memristive devices’ in 1976 
with his student, Steve (Sung Mo) Kang [2]. A memristive 
device is basically any resistor with a resistance that 
only changes due to the voltage across the device or, 
alternatively, the current flowing through the device. 
Since the resistance does not change when there is no 
voltage applied across the device, memristive devices 
are nonvolatile. It is acceptable to use the term ‘memris-
tor’ to describe a ‘memristive device.’

Since Hewlett Packard Laboratories announced the 
fabrication of a working memristor by electrical conduc-
tion in titanium oxide (TiO2) in 2008 [3], it has become 
popular to link different physical phenomena of resis-
tive switching with the term memristor. These devices 
include a large variety of oxides, also named Resistive 
RAM (RRAM). Additional emerging memory devices 
(e.g., Phase Change Memory and STT-MRAM) may also 
be considered as memristors since these devices are 
basically nonvolatile two-terminal devices with varying 
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resistance. In this article, memristors are considered in 
their broadest meaning—any two-terminal device with 
memory capability, which is represented by a varying 
resistance. An array of TiO2 memristors and a schematic 
of the physical structure of a single device are shown in 
Figure 1.

II. The Desired Memristor
Using memristors as storage elements in a memory is 
an obvious choice. Actually, most emerging memory 
technologies, which are considered as potential 
replacements for Flash, DRAM, and SRAM, are based 
on memristors. These technologies are somewhat 
immature and are not yet fully commercialized. Toshiba 
and Sandisk are currently sampling 4 GB RRAM 
memory circuits [4], Micron and Samsung are selling 
16 MB PCM [5], and Everspin recently debuted an 8 MB 
STT-MRAM [6]. Memristors are, however, much more 
than memory devices. The ability to control and modify 
their current-voltage characteristics can be utilized 
for performing a variety of computational operations. 
Memristors hold promise for use in diverse applica-
tions such as digital and analog circuits, and neuromor-
phic systems.

Since memristor technology is currently immature, 
standardization of the characteristics of memristors 
remains to be done. The desired characteristics may 
differ for different applications. In this article, the 
desired characteristics of memristors are described 
for different applications from the viewpoint of 
an integrated circuit designer. Understanding the 
desired characteristics for different applications can 
assist device and material engineers in providing 

the appropriate behavior when 
developing memristive devices, 
thereby optimizing these devices 
for different applications.

III. Memory
The speed, power consumption, 
data retention, and endurance 
of memristors are better than 
Flash memory for all emerging 
memristive technologies, and are 
comparable to DRAM and SRAM 
for certain memristive technolo-
gies. Speed is determined by the 
write time which currently var-
ies from tens of nanoseconds 
(PCM) to hundreds of picosec-

onds (RRAM). Endurance is determined by the num-
ber of writes to a device without affecting the stored 
data, and currently varies from hundreds of millions 
of writes (PCM) to an unlimited number of writes 
(STT-MRAM). All emerging memory technologies sat-
isfy the industrial standard of ten year data retention. 
STT-MRAM, however, still suffers degradation in data 
retention for technologies below 45 nm. A summary of 
the required characteristics for memory applications 
is listed in Table 1.

One interesting property of some memristors is a 
nonlinear response to current or voltage. Nonlinear 
memristors exhibit a current or voltage threshold, such 
that the resistance is not affected by relatively small 
currents or voltages, while the resistance of a linear 
memristor will change due to any change in device 
current. In the original publication by Hewlett Packard 
in 2008 [3], a linear memristor was presented. Practi-
cal memristors, however, seem to behave nonlinearly, 
although the nonlinearity varies for different materials 
and technologies. Current–voltage curves of linear and 
nonlinear memristor are shown in Figure 2.

Due to excellent scalability and fast speed, memris-
tors are a potential replacement for Flash memory in 
SSD, which requires dense memory, as well as DRAM 
and SRAM for main memory and cache memory, which 
require relatively fast memory with unlimited writes. 
Memristors therefore provide an opportunity for ‘uni-
versal memory’—a single technology for all memory 
hierarchies. Memristors are by their definition nonvola-
tile devices. Using memristors within caches and main 
memory will make these memories nonvolatile, dramat-
ically changing the manner in which these memories 
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Figure 1.  (a) An array of 17 purpose-built oxygen-depleted titanium dioxide (TiO2) 
memristors built at HP Labs, imaged by an atomic force microscope. The wires are 
about 50 nm wide (credit: J.J. Yang, HP Labs), and (b) a physical structure model of 
a TiO2 memristor. 
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are applied in modern computing 
systems.

Memory is an analog circuit 
behaving digitally, in which the 
resistance of the memristor typically 
represents a binary value. A low 
resistance is typically considered as 
a ‘logical one’ and a high resistance 
is treated as a ‘logical zero.’ A high 
ratio between the high and low resis-
tance (usually named, respectively, 
ROFF and RON) is therefore desirable. 
It is also desirable to provide a non-
destructive read mechanism, but 
the read operation in memristors 
may induce drift in the stored state. The drift requires 
occasionally refreshing the memory. The device design 
process should therefore consider the trade off between 
speed and robustness due to this state drift phenom-
enon. A preferred memristor would therefore be highly 
nonlinear, with a well-defined and abrupt threshold 
between the two distinct states.

In memory applications, it is also possible to write 
more than one bit into a single memristor if the resis-
tance of the device can be quantized into multiple levels. 
The difference among the different data must be care-
fully determined. To successfully store more than one 
bit within a memristor, it is crucial to maintain a high 
ratio between ROFF and RON to provide a wide range of 
resistance. It is also preferable that a linear memristive 
device successfully write the desired value with similar 
write pulses, or, alternatively, that a write mechanism 
allows a different and distinct write operation for differ-
ent data. In PCM, for example, the write operation uses 

a different magnitude and duration of applied current to 
write different data, as depicted in Figure 3.

IV. Computational Logic with Memristors
Another application of memristors is computational 
logic, where memristors are used as logic gates. Several 
different logic families have been developed that use 
memristors as fundamental elements within logic gates. 
In certain logic families, the logical state is represented 
as a resistance, as in memory, and the result of the logi-
cal operation is also stored as a resistance in a memris-
tor. These logic families can therefore be used for logic 
within memory, and require similar memristor character-
istics as in memory, namely, nonlinear memristors with 
well-defined thresholds are preferable. An example of 
these logic families is material implication (IMPLY) [7], 
as shown in Figure 4. In other logic families, the logical 
state is represented as a voltage level, as in CMOS logic. 
These logic families are useful for hybrid CMOS-memristor 

(a)

–1
–1

–0.5

0

I [
A

m
p]

0.5

1
x 10–4

–0.8 –0.6 –0.4 –0.2 0

Voltage (V)

0.2 0.4 0.6 0.8 1

w0
3w0
6w0

(b)

–1
–1.1

–0.75

–0.05

–0.4

0.3

0.65

I [
A

m
p]

1
1.1

x 10–4

–0.8 –0.6 –0.4 –0.2 0

Volt (V)

0.2 0.4 0.6 0.8 1

ROFF

RON

Figure 2.  Current–voltage curve in response to sinusoidal input for (a) a linear memristor (voltage input) and (b) nonlinear mem-
ristor (current input). 0~  is a frequency of the input waveform. The maximum and minimum resistance of the memristor, respec-
tively, Roff and Ron, are marked in the nonlinear memristor curve.

Table 1. 
Requirements of memristors for memory [11].

Speed 
(Write Time) 
[Seconds]

Endurance 
[# Writes]

Energy Per Bit 
[Joule] Nonvolatility

Storage  
(flash replacement)

0.1 to 10 µ 105 10 n Yes

Main Memory 
(DRAM 
replacement)

10 n > 1015 5 p No

Cache 
(SRAM 
replacement)

0.3 to 1 n > 1015 5 p No
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logic, where the critical characteristics of the memristors 
are their high density and compatibility with standard 
CMOS, both in fabrication and voltage levels. These logic 
families increase the logic density, where, for the same 
area, the number of logic gates is significantly higher. 
For these logic families, a linear memristor is prefer-
able to reduce power consumption and delay. An exam-
ple of these logic families is Memristor Ratioed Logic 

(MRL) [8], as shown in Figure 5. It 
is also possible to use memristors 
as configurable switches in PLA 
and FPGA [9], as shown in Figure 6. 
For these applications, the memris-
tors replace the standard program-
mable switches, commonly placed 
within the FPGA as CMOS switch 
boxes. High and low resistances are 
treated, respectively, as an ‘open’ 
and ‘closed’ switch. In these appli-
cations, the configuration phase is 
separate from the operation. The 
resistance of the memristors there-
fore does not change during opera-
tion and a nonlinear memristor with 
a threshold is necessary. A signifi-
cant ratio between the high and low 
resistance is also highly desirable.

V. Analog Circuits and Neuromorphic Systems
In applications using analog circuits and neuromor-
phic systems (electronic circuits that mimic the brain), 
the resistance typically requires a continuous value. 
Memristors can be used as configurable devices where 
the resistance of the device is initialized by a specific 
procedure, different from typical circuit operation 
[10]. During regular circuit operation, the memristor 
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Figure 3.  Phase change memory (PCM) (a) physical structure. A resistor made 
of TiN acts as a heater and heats the active area (marked in red). The active area 
heats the GST (chalcogenide glass), which changes its phase between crystalline 
and amorphous states. Crystalline state has better conductivity than amorphous 
state. (b) The write operation is done by flowing current in different shapes where 
high current (temperature) for a short period changes the phase to amorphous and 
relatively low current for a long period changes the phase to crystalline.
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Figure 4.  Schematic of a memristor-based material impli-
cation (IMPLY) logic gate. IMPLY gate consists of two 
memristors and a resistor. The memristors can be part of a 
memristor-based crossbar used for memory. The input and 
output variables of the IMPLY logic gate are the stored logical 
state of the memristors, represented by their initial and final 
resistance, where high and low resistance are considered, 
respectively, as logical zero and one.
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Figure 5.  An example of hybrid memristor-CMOS logic—
memristor ratioed logic (MRL). An MRL NAND logic gate 
consists of two memristors and two CMOS transistors. The 
memristors act as a logical AND gate and are connected 
to a CMOS-based inverter. The logical input and output 
variables are represented by voltages, as in conventional 
CMOS logic.



second QUARTER 2013		  IEEE circuits and systems magazine	 21

behaves as a simple resistor. The 
properties of the circuit can be 
tuned. A configurable amplifier is 
shown in Figure 7, where the gain 
and bandwidth of an amplifier 
vary due to the configurable resis-
tance. In these applications, it is 
desirable for the memristor to 
behave as a nonlinear nondestruc-
tive device, similar to the read 
mechanism in digital applications. 
Memristors can also be used as 
computational elements in analog 
circuits, such as analog counters 
and sensors. In these circuits, it 
is desirable for the memristor to 
maintain a linear behavior, where 
the local current changes the 
resistance of the memristor.

In neural networks, memris-
tors mimic the role of synapses, 
such that each device may inter-
act with other devices throughout 
the system. Several models exist 
for using memristors in neuromor-
phic systems. Usually, machine learning algorithms are 
executed in these systems. A threshold is useful to dis-
able the learning operation. During the learning opera-
tion, the resistance of the memristor is changed based 
on the input of the system, usually a voltage pulse. It is 
desirable for the same input to change the resistance of 
the memristor the same every time. Nonlinear memris-
tors require the change in resistance to be significantly 
different for the same input with a different initial resis-
tance, greatly complicating the learning process.

VI. Conclusions
In summary, memristors provide an inspiring variety of 
opportunities for electronics. Memristor technology is 
still immature and the device characteristics can vary a 
great deal. However, significant focus within academia 
and industry is currently taking place to develop and 
commercialize this exciting new technology. In this arti-
cle, certain desirable characteristics of memristors are 
described for an assortment of applications. It is intended 
that device and material engineers will consider the 
requirements for these devices from the point of view of 
an integrated circuit designer, and develop devices suit-
able for specific applications, opening a new era of mem-
ory intensive computing.
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Abstract — Memristors can be used as logic gates. No design 
methodology exists, however, for memristor-based combinatorial 
logic. In this paper, the design and behavior of a memristive-
based logic gate – an IMPLY gate - are presented and design 
issues such as the tradeoff between speed (fast write times) and 
correct logic behavior are described, as part of an overall design 
methodology. A memristor model is described for determining 
the write time and state drift. It is shown that the widely used 
memristor model - a linear ion drift memristor - is impractical 
for characterizing an IMPLY logic gate, and a different 
memristor model is necessary such as a memristor with a current 
threshold. 

Keywords - memristor; memristive systems; IMPLY; design 
methodology; logic 

I.  INTRODUCTION  

Memristors are passive elements with varying resistance 
(also known as a memristance), conceived theoretically in [1]. 
Changes in the memristance depend upon the history of the 
device, the total charge which passes through it, or, 
alternatively, the total flux in the device (the integral over time 
of the applied voltage at the ports of the device). 

In 2008, Hewlett-Packard announced the fabrication of a 
working memristor [2]. A linear ion drift model was proposed 
for describing the behavior of this memristor. The memristance 
of a linear ion drift memristor is 

 
2

( ) 1 ( )v ON
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M q R q t
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μ⎛ ⎞= −⎜ ⎟
⎝ ⎠ , (1) 

where ROFF and RON are, respectively, the maximum and 
minimum resistance of the memristor, µv is the average ion 
mobility, D is the memristor physical thickness, and q(t) is the 
total charge passing through the memristor. The linear ion drift 
model is the most commonly used memristor model, although 
practical memristors exhibit highly non-linear behavior. 

Memristors can be used for numerous applications, such as 
memory [3], neuromorphic systems [4], and analog circuits 
(e.g., see [5]). One interesting application of memristors is 
logic, using memristors as building blocks of logic gates. To 
use memristors in a digital manner, a high memristance is 
considered as logic 0 and a low memristance is considered as 
logic 1. Several approaches for memristor-based logic have 
been proposed, e.g., [6] and [7], which suggest using 

memristors as configurable switches as in an FPGA. The logic 
gates are designed as CMOS gates or as programmable 
majority logic array (PMLA) based on Goto pairs as logic gates 
[8]. 

Another approach is to use memristors as the primary 
building blocks of a logic gate. Each memristor acts as an 
input, output, computational logic element, and a latch in 
different stages of the computing process [9]. In [10], a 
memristor-based logic gate - the IMPLY gate, is presented. 
Since this logic function together with FALSE (a function that 
always yields the value 0 as an output) comprise a 
computationally complete logic structure, it may potentially 
provide a basic logic element for a memristor-based circuit. 
The truth table for p IMPLY q is listed in Table 1. Unlike 
CMOS logic [11], no design methodology exists for memristor-
based logic circuits. 

In this paper, a design methodology is suggested for 
memristor-based IMPLY logic gates. A memristor-based 
IMPLY gate and related limitations are also presented here. 
The tradeoff between performance and robustness is described 
as well as the necessity to refresh the logic gate. 

This paper is organized as follows. In Section II, the 
operation of a memristor-based IMPLY gate is described. In 
section III, the performance and limitations of this logic gate 
are presented. In section IV, a design example is described, and 
simulation results of the IMPLY gate are shown. The paper is 
summarized in section V. 

II. MEMRISTOR-BASED IMPLY GATE 

The logic function p→q (also known as "p IMPLIES q," 
"material implication," and "if p then q") is described in [10]. 
The proposed memristor logic is based upon a resistor RG (RON 
< RG < ROFF) connected to two memristors, named P and Q, 
acting as digital switches. The corresponding initial 
memristances p and q are the inputs of the gate; while the 
output of the gate is the final memristance of Q (the result is 
written into the logic state q). A schematic of an IMPLY gate 
is shown in Figure 1. 

The basic concept is to apply different negative voltages to 
P and Q, where VSET, the applied voltage on Q, has a higher 
magnitude than VCOND, the applied magnitude on P        
(|VCOND| < |VSET |). If p = 1 (low resistance), the voltage on the 
common terminal is approximately VCOND and the voltage on 
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the memristor Q is approximately VSET - VCOND, which is 
sufficiently small to maintain the logic state of q. In the case 
of p = 0 and q = 0 (high resistances), the applied voltage on Q 
is approximately VSET and Q is switched ON (q = 1). In the 
case of p = 0 and q = 1, the logic state of q is maintained. 

A two input NAND, based on a memristor-based IMPLY 
gate and a FALSE logic gate, is described in [10]. The circuit 
is comprised of three memristors; the operation of this NAND 
gate changes the function of each memristor during the 
computing process. Two memristors act as inputs in the initial 
stage, one memristor acts as the output in the last stage, and all 
memristors act together as a computational logic element (as a 
memristor-based IMPLY gate) during different stages of the 
computing process. This application requires three computing 
stages (one FALSE and two IMPLY). A schematic and the 
sequence of an IMPLY-based NAND are shown in Figure 2. 

The execution of any general Boolean function f: Bn →B 
can be implemented with only n + 3 memristors [12], where 
three additional memristors carry out the computation. Only 
two memristors are required for up to three inputs. 
Computation of the function is performed in steps. In each 
step, either FALSE is applied to one memristor, or an IMPLY 
is applied to two memristors, where the output is written 
(which is one of the inputs of the computational IMPLY 
stage). This process requires a long sequence of operations 
depending upon the number of inputs. This methodology is 
improved in [13] where only two additional memristors are 
used rather than three. While [12] and [13] present a general 
algorithm to compute any Boolean function with a minimal 
number of memristors, the computational process requires a 
large number of functional stages, and therefore requires 
significant computational time. 

III. DESIGN CONSIDERATIONS AND PERFORMANCE 

ANALYSIS OF THE MEMRISTOR-BASED IMPLY GATE 

A. Analysis fundamentals 

The behavior of a memristor-based IMPLY gate is 
mathematically cumbersome for analysis. There is therefore a 
need to develop heuristics for designing memristive circuits. 

These heuristics can be extended to enable a complete 
design methodology for memristor-based circuits. A flow 
diagram of an IMPLY logic gate design methodology is 
shown in Figure 3. 

In this section, design strategies for choosing the proper 
circuit parameters (RG, VSET, and VCOND) are discussed. The 
tradeoff between the delay time of the circuit (to maintain the 
proper write time) and the number of cycles to refresh the 
memristors (because of state variable drift) is described. 

 
TABLE 1.  TRUTH TABLE OF IMPLY FUNCTION. 

 
Case p q p→q 

1 0 0 1 
2 0 1 1 
3 1 0 0 
4 1 1 1 

 
Figure 1. Schematic of a memristor-based IMPLY gate. Two memristors 
P and Q are connected to a resistor RG. The logic state of the memristors 

P and Q are, respectively, p and q. 
 

 
Figure 2. IMPLY NAND logic gate. (a) Logical operation of an IMPLY-

based NAND, the logic gate requires three sequential steps, and (b) 
schematic of IMPLY-based NAND gate. 

 

B. The tradeoff between performance and robustness 

VSET and VCOND, the applied voltages on P and Q, are fixed. 
Therefore, for any initial state, the memristor state q tends to 
drift towards the ON state. For digital operation, the state of q 
should either stay unchanged or switch fully ON (changing the 
logic state from logic 0 to logic 1). 

The different input combinations are presented in Table 1.  
Note that in cases 2 and 4, the initial state of q is logic 1 and 
the logic gate output q is also logic 1. The gate operation, 
therefore, electrically reinforces the logic state of q, and the 
memristance of Q is reduced. 
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Figure 3. IMPLY logic gate design flow diagram. Each box refers to the 

relevant section of this paper. 
 
 

 
In case 1, the initial state of q is logic 0; after applying the 

external voltages, q is switched ON. This case determines the 
time required to apply VSET and VCOND until the logic state of q 
reaches the desired state (above a certain level of conduction 
to maintain correct logic behavior). This case determines the 
speed of the circuit in terms of the write time. 

In case 3, the initial state of q is logic 0. This logic state 
should remain unchanged after applying VSET and VCOND, 
although the voltages tend to change the internal state of q 
towards the ON state of logic 1. This phenomenon is "state 
drift." The logic 0 state of q, which is the output of the gate, is 
electrically "weaker" than the input logic state of q (the 
memristance of q after applying the voltages is lower than the 
initial memristance). State drift may require refreshing the 
state; otherwise, the sensing action may incorrectly switch the 
logic state of q. State drift depends upon the write time 
determined for case 1; a long write time increases the state 
drift phenomenon. 

 

C. Basic principles for parameter determination and 
design procedure 

Although it is difficult to compute the precise value of the 
applied voltage on Q, it is possible to determine the applied 
voltage on Q at the beginning of the logic gate activity. The 
initial applied voltage on Q is different for each case (a 
different initial memristance for q and p). The initial applied 

voltages on P and Q are listed in Table 2 under the 
assumptions that the memristance of logic 1 and logic 0 is, 
respectively, RON and ROFF, where ROFF >> RON. 

From the initial applied voltages, some necessary conditions 
for correct logic behavior can be determined. These conditions 
are not precise, but can provide design constraints. The basic 
design principle is that the write time of the logic gate is 
determined from case 1, but the parameters of the circuit 
should also not exceed a specific state drift in case 3. To 
determine the circuit parameters, an effective model for the 
memristors needs to be chosen. The model needs to be 
sufficiently accurate, while also correctly representing the 
switching behavior. Inserting the initial applied voltages into 
the simple memristor switching model can provide an 
approximate estimate of the circuit parameters. 

 

D. Write time and state drift for a binary memristance 

A useful and simple switching model is the binary 
memristance model. Assume only two allowed memristances, 
RON and ROFF. A total charge Q' must flow through the 
memristor to cause the memristance ROFF to switch to 
memristance RON. Under these assumptions and by solving 
both the switching behavior in case 1 and the write time T as a 
function of Q', the circuit parameter T is 

 
[ ]

2 2
'.OFF OFF G

OFF SET G SET COND

R R R
T Q

R V R V V

⎡ ⎤+= ⋅⎢ ⎥+ −⎢ ⎥⎣ ⎦
 (2) 

The write time for different circuit parameters and a varying 
VSET is shown in Figure 4. Note that the logic gate is faster 
with higher applied voltages, or smaller ROFF.  

Under this model, it is possible to limit the state drift (case 3) 
for a fixed drift. The state drift is 

[ ]
2

( ) ',G OFF G
q SET COND

ON G OFF SET G SET COND

R R R
q T V V Q

R R R V R V V

⎡ ⎤⎡ ⎤ +≈ − ⋅ ⋅⎢ ⎥⎢ ⎥+ + −⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3) 

where qq(T) is the total charge flowing through memristor Q 
after time T in case 3. To limit the state drift to a value of Q'/4, 
after four times, the logic gate is applied as in case 3, and the 
state drift changes the memristive logic state. This 
phenomenon requires a refresh every three times the gate is 
used, since the logic state changes during the fourth time. The 
allowed value of VSET for several circuit parameters is shown 
in Figure 5. Note that the state drift is more significant with a 
higher applied voltage, or with smaller ROFF. Combining 
Figures 4 and 5, the tradeoff between the speed and robustness 
of a memristive logic gate is shown in Figure 6. 
 

E. RG for a fixed threshold model 

Another simple memristor model assumes non-linear 
behavior with a fixed threshold voltage VON. For an applied 
voltage below VON, the memristance is unchanged. To produce 
correct logical behavior, the initial applied voltage on Q must 
be above the threshold voltage in case 1 and below the 
threshold voltage in case 3. Adding this assumption to the 
initial applied voltage (see Table 2) leads to the following two 
conditions on the circuit parameters, 
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TABLE 2. APPLIED LOGIC GATE VOLTAGES VQ AND VP, RESPECTIVELY, ON 

MEMRISTORS P AND Q AT t = 0, UNDER THE ASSUMPTIONS THAT THE 

MEMRISTANCE OF LOGIC 1 AND LOGIC 0 IS, RESPECTIVELY, RON AND ROFF, 
WHERE ROFF >>RON. 

 
Case VQ(t=0) VP(t=0) 

1 
2 2

OFF G G
SET COND

OFF G OFF G

R R R
V V

R R R R

+ ⋅ − ⋅
+ +

 

2 2
G OFF G

SET COND
OFF G OFF G

R R R
V V

R R R R

⎡ ⎤+− ⋅ − ⋅⎢ ⎥+ +⎣ ⎦

2 ON OFF G
SET SET

OFF ON G

R R R
V V

R R R

+⋅ ⋅ ≈
+

 
G

SET COND
ON G

R
V V

R R

⎡ ⎤
− ⋅ −⎢ ⎥+⎣ ⎦

3 G
SET COND

ON G

R
V V

R R
− ⋅

+

 
CONDV

4 
2 2

ON G G
SET COND

ON G ON G

R R R
V V

R R R R

+⋅ − ⋅
+ +

 

2 2
G ON G

SET COND
ON G ON G

R R R
V V

R R R R

⎡ ⎤+− ⋅ − ⋅⎢ ⎥+ +⎣ ⎦

 

 
Figure 4. Write time T in case 1 for three values of ROFF (5 kΩ, 10 kΩ, 

and 100 kΩ) under the assumptions of a binary resistance model and Q' = 
5·10-14 C. 

 

 
Figure 5. Allowed values of VSET for limited state drift in case 3 of Q'/4. 

VSET is allowed if qq(T) is smaller than Q'/4 (the horizontal line in the 
figure). 
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The allowed value for RG for several circuit parameters and 
varying VSET are shown in Figure 7. 

 
Figure 6. Tradeoff between the logic gate speed (write time) and 

robustness (the state drift in case 3 for memristor Q), for three values of 
ROFF (5 kΩ, 10 kΩ, and 100 kΩ) under the assumptions of a binary 

resistance model and Q' = 5·10-14 C. 
 

 
Figure 7. Allowed value of RG depends on VSET. The upper line is the 

upper bound for allowed RG and the lower line is the lower allowed bound 
for RG. Under the assumption of a threshold voltage VON = 0.55 V, VCOND = 

0.5 V, RON = 100 Ω, and ROFF = 10 kΩ. 
 

IV. DESIGN EXAMPLE 

As a specific example of applying the flow chart of Figure 
3, assume the requirements for a circuit are a maximum write 
time of 0.5 µsec (note that the write time is normalized. A 
practical memristor write time is significantly faster [14]) and 
the maximum state drift is 0.025ROFF (2.5% of the state drift as 
compared to full switching). 

Assume a memristor with RON and ROFF, respectively, of 1 
kΩ and 100 kΩ. Set one circuit parameter VCOND to 0.5 V. The 
behavior of an ideal IMPLY logic gate (zero write time, no 
state drift) is shown in Figures 8 and 9. Practical logic gates, 
however, have non-zero write time and state drift. From 
Figures 4 and 5, note that as VSET rises, the logic gate write 
time T decreases and the gate response is faster; however, the 
state drift phenomenon is more significant. From (5),  

 0.5 50SETV V V< < . (6) 

This expression only produces a lower bound on VSET, since 
the upper bounds are significantly higher than practical on-
chip supply voltages. For a current-controlled memristor, it is 
unrealistic to determine an exact equivalent voltage threshold 
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(which depends on the transient memristance of the device). A 
good approximation for an equivalent voltage threshold is 

 
ON ON OFFV i R= ⋅ , (7) 

where VON is the voltage threshold, and iON is the current 
threshold. For a memristor with a current threshold of 7 µA, 
the equivalent voltage threshold is 0.7 volts. From (4), RG is 

 1.5 33.3Gk R kΩ < < Ω . (8) 

The widely used linear ion drift memristor model [15] is 
incompatible with IMPLY logic gates. In this model, the 
memristance changes linearly for any applied voltage; the state 
drift phenomenon is therefore significant, as shown in Figures 
10 and 11. Hence, a different memristor model with a current 
threshold is preferable [16]. With this model, the exact circuit 
parameters are selected. The chosen circuit parameters are RON 
= 1 kΩ, ROFF = 100 kΩ, VCOND = 0.5 V, VSET = 1 V, and RG = 5 
kΩ. SPICE simulation results for these parameters are shown 
in Figures 12 and 13. The write time and state drift for several 
circuit parameters are listed in Table 3. An increase in the 
resistance of RG or decrease in the voltage level of VSET delays 
the gate, but lowers the state drift (and vice versa). 

 

 
Figure 8. State drift of an ideal IMPLY logic gate. While the logic state in 

case 1 changes to a zero write time, the drift for case 3 is zero. 

  

 
Figure 9. Memristance of an ideal IMPLY logic gate. While the 

memristance in case 1 decreases to RON within a zero write time, the 
memristance in case 3 does not change. 

 
Figure 10. State variable w of q when applying IMPLY logic gate for 
cases 1 (dashed line) and 3 (solid line) for a memristor with linear ion 

drift. T is 468.1 nsec. The state drift for case 3 is 48.9%, which makes this 
model impractical for an IMPLY logic gate. 

 

 
Figure 11. The memristance of q when applying an IMPLY logic gate for 

cases 1 (dashed line) and 3 (solid line) for a memristor with linear ion 
drift. 

 

 
Figure 12. State variable w of q when applying an IMPLY logic gate for 
cases 1 (dashed line) and 3 (solid line) for a memristor with a threshold 

model (current threshold is 7 µA). T is 470.3 nsec. The state drift for case 
3 is 2.44%. 
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Figure 13. Memristance of q when applying an IMPLY logic gate for 
cases 1 (dashed line) and 3 (solid line) for a memristor with threshold 

model (current threshold is 7 µA). 
 

TABLE 3.  WRITE TIME AND STATE DRIFT FOR DIFFERENT VALUES OF VSET AND 

RG. ALL VALUES SATISFY (6) AND (8). VCOND IS SET TO 0.5 V. 
 

VSET [V] RG [kΩ] T [µsec] State Drift [% ROFF]
1 5 0.47 2.44 

0.8 5 0.592 ~ 0 
1.5 5 0.31 6 
1 3.5 0.453 2.53 
1 15 0.579 2.15 

 

V. CONCLUSIONS 

The logic design of a memristor-based IMPLY logic gate is 
presented. Investigating and characterizing the behavior of a 
memristor and IMPLY logic gate reveals several design 
limitations and considerations. The IMPLY logic gate trades 
off performance (write time) with robustness (internal state 
drift). This tradeoff requires the circuit to be occasionally 
refreshed. 

Several heuristics for designing IMPLY logic gates with 
memristors are proposed and organized into a design 
procedure. This design procedure considers the influences and 
tradeoffs among the different input cases, initial conditions, 
and circuit parameters of the memristor. 

A design example based on the proposed design procedure 
is presented and compared with simulation. It is shown that 
the widely used linear ion drift model is incompatible with the 
IMPLY logic gate, since under this model, the state drift 
phenomenon is excessively high. To accurately characterize 
the IMPLY logic gate operation, a highly non-linear 
memristor model needs to be used; or alternatively, a device 

with a threshold. The proposed design procedure is the first 
step in the development of a general design methodology for 
logic gates based on memristors. 
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Abstract— Memristors are novel devices, useful as memory at
all hierarchies. These devices can also behave as logic circuits.
In this paper, the IMPLY logic gate, a memristor-based logic cir-
cuit, is described. In this memristive logic family, each memristor
is used as an input, output, computational logic element, and latch
in different stages of the computing process. The logical state is
determined by the resistance of the memristor. This logic family
can be integrated within a memristor-based crossbar, commonly
used for memory. In this paper, a methodology for designing this
logic family is proposed. The design methodology is based on
a general design flow, suitable for all deterministic memristive
logic families, and includes some additional design constraints
to support the IMPLY logic family. An IMPLY 8-bit full adder
based on this design methodology is presented as a case study.

Index Terms— Design methodology, IMPLY, logic, memristive
systems, memristor, Von Neumann architecture.

I. INTRODUCTION

MEMRISTORS [1] and memristive devices [2] are novel
structures, useful in many applications. These devices

are basically resistors with varying resistance, which depends
on the history of the device. It can be used for memory,
where the data is stored as a resistance. While memory is
the common application for memristive devices, additional
applications can also use memristive devices as functional
blocks, such as analog circuits, neuromorphic systems, and
logic circuits. Although the definition of memristive devices
is broader than the definition of memristors, it is common
to use the term memristor for all memristive devices [10],
[11]. In this paper, for simplicity, the terms memristor and
memristive device are used interchangeably.

The use of memristors to perform logical operations has
been proposed in several different ways. In some logic fam-
ilies, memristors are integrated with CMOS structures to
perform the logical operation, while the logical values are
represented by voltage levels. In [3], memristors are used as a
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reconfigurable switch. In [4], a hybrid memristor-CMOS logic
family is proposed, memristor ratioed logic (MRL). In MRL,
the memristors act as computational elements, performing
OR and AND Boolean functions, while the CMOS transistors
perform logical inversion and amplification of the logical
voltage signals. A similar approach is proposed in [5].

Another approach for logic with memristors is to treat
resistance as the logical state, where the high and low resis-
tance are considered, respectively, as logical zero and one.
For this approach, the memristors are the primary building
blocks of the logic gate. Each memristor acts as an input,
output, computational logic element, and latch in different
stages of the computing process [6]. This approach is suitable
for crossbar array architectures and can therefore be integrated
within a standard memristor-based crossbar, commonly used
for memory. This approach is appealing since it provides
an opportunity to explore advanced computer architectures
different from the classical von Neumann architecture. In these
architectures, the memory can perform logical operations on
the same devices that store data, i.e., performing computation
inside the memory. This paper focuses on this approach.

Material implication (IMPLY logic gate) [7] is one example
of a basic logical element using this approach, combining
state memory and a Boolean operator. Additional logic fam-
ilies, which extends the IMPLY logic gate by using certain
variations of a regular memristor-based crossbar, have also
been proposed [8], [9] and are not considered in this paper.
A specific modification of the crossbar structure is, however,
presented in this paper to enhance the performance of the logic
gate.

In this paper, the IMPLY logic gate is described in
Section III, and a memristor-based crossbar in Section IV.
A design methodology for the IMPLY logic gate is proposed
in Section V. This design methodology consists of a design
flow appropriate for all memristor-based logic families, as
well as the IMPLY logic family. This design methodology
is demonstrated by a case study of an 8-bit IMPLY full adder
in Section VI. Logic inside a memristor-based memory is dis-
cussed in Section VII. This paper is concluded in Section VIII.

II. MEMRISTORS

Memristors were conceived in 1971 by Chua [1] based on
fundamental principles of symmetry. Chua proposed a fourth
fundamental electronic component in addition to the three
already well-known fundamental electronic components: the
resistor, capacitor, and inductor. The memristor has varying

1063-8210 © 2013 IEEE
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Fig. 1. Memristive device symbol. The thick black line on the left side of
the device represents the polarity of the device. If the current flows into the
device, the resistance of the device decreases. If the current flows out of the
device, the resistance increases.

resistance (also named memristance). Changes in the mem-
ristance depend upon the history of the device (e.g., the
memristance may depend on the total charge passing through
the device, or alternatively, on the integral over time of the
applied voltage across the ports of the device).

The theory of memristors was extended to memristive
devices in 1976 [2]. Formally, a current-controlled time-
invariant memristive system is represented by

dx

dt
= f (x, i) (1)

v(t) = R(x, i) · i(t) (2)

where x is an internal state variable, i (t) is the memristive
device current, v(t) is the voltage of the memristive device,
R(x, i) is the memristance, and t is time. The symbol of a
memristor is illustrated in Fig. 1. Note that the polarity of the
symbol defines the sign (positive or negative) of the current.

Since Hewlett–Packard announced the fabrication of a
working memristor in 2008 [12], there has been increasing
interest in memristors and memristive systems. New devices
exhibiting memristive behavior have been announced [13],
[14], and existing devices such as spin-transfer torque
magnetoresistive random access memory (STT-MRAM)
have been redescribed in terms of memristive systems [15].
Actually, most emerging memory technologies obey (1) and
(2) and can therefore be described as memristive devices or
memristors [11].

Several memristor models have been proposed to describe
the behavior of physical memristors [16]–[23]. These models
are deterministic and do not consider stochastic switching [40],
[41]. In this paper, the threshold adaptive memristor (TEAM)
model [23] is used. In the TEAM model, memristors have an
adaptive nonlinearity and a current threshold. For this model,
(1) becomes

dx(t)

dt
=

⎧
⎪⎪⎨

⎪⎪⎩

kOFF ·
(

i(t)
iOFF

− 1
)αOFF · fOFF(x), 0 < iOFF < i 3(a)

0, iON < i < iOFF 3(b)

kON ·
(

i(t)
iON

− 1
)αON · fON(x), i < iON < 0 3(c)

where kOFF and kON are fitting parameters, αON and αOFF are the
adaptive nonlinearity parameters, iOFF and iON are the current
threshold parameters, and fON(x) and fOFF(x) are window
functions. An I–V curve for the TEAM model is shown in
Fig. 2 for memristors where (2) is

v(t) =
[

RON + ROFF − RON

xOFF − xON
(x − xON)

]

· i(t) (4)

where RON and ROFF are, respectively, the minimum and
maximum resistance of the memristor, and xON and xOFF are,

Fig. 2. I–V curve of a memristor based on the TEAM model driven with
a sinusoidal input of 1 volt, where RON = 50�, ROFF = 1 k�, kOFF =
1.46e−9 nm/s, αOFF = 10, iOFF = 115 μA, kON = −4.68e−13 nm/s, αON =
10, iON = 8.9 μA, xON = 1.2 nm, and xOFF = 1.8 nm.

Fig. 3. Schematic of the physical model proposed in [20] for a TiO2
memristor.

respectively, the minimum and maximum allowed value of the
internal state variable x .

Memristors are nonvolatile and compatible with standard
CMOS technologies [24]. These devices are fabricated in the
metal layers of an integrated circuit, where the memristive
effects occur in the oxide between the metal layers (e.g.,
in TiO2 and TaOx ) [25] or within the metal layers (e.g.,
in STT-MRAM). The physical model of a TiO2 memristor,
proposed in [20], is shown in Fig. 3. The size of a typical
memristor is relatively small, since the fabrication process
is similar to processing the cross-layer via between metal
layers. Memristors therefore exhibit high density and good
scalability. The read and write time for these devices can be
as fast as 120 picoseconds [25]. Currently, except for STT-
MRAM, memristors suffer from endurance limitations, where
the number of allowed writes per cell is approximately 1010

[26]. It is believed, however, that this limit will increase
to at least 1015 [27]. Memristors may therefore solve many
significant problems in the semiconductor industry, providing
nonvolatile, dense, fast, and power-efficient memory.

III. IMPLY LOGIC GATE

The logic function p→q or p IMPLY q (also known as p
IMPLIES q, material implication, and if p then q) is described
in [7] and a truth table is listed in Table I. The IMPLY logic
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TABLE I

TRUTH TABLE OF IMPLY FUNCTION

Fig. 4. IMPLY logic gate. The initial state of memristors p and q is the
input of the logic gate and the output is the final state of the memristor q after
applying the voltages VSET and VCOND. A load resistor RG is connected to
both memristors.

function together with FALSE (a function that always yields
the value zero as an output) comprises a computationally
complete logic structure. Since the IMPLY function can be
integrated within a memristor-based crossbar, IMPLY logic
provides a basic logic element for a memristor-based circuit.

A. Basic Logic Gate Operation

The proposed memristor-based IMPLY logic gate uses a
resistor RG (RON < RG < ROFF) connected to two memristors,
named P and Q, acting as digital switches. The corresponding
initial memristances p and q are the inputs of the gate;
while the output of the gate is the final memristance of Q
(the result is written into the logic state q). Note that the
memristance of both memristors changes during operation, i.e.,
the computation is destructive to both inputs. A schematic of
an IMPLY gate is shown in Fig. 4.

The basic concept is to apply two different voltages to
P and Q, where VSET, the applied voltage on Q, has a
higher magnitude than VCOND, the applied magnitude on P
(|VCOND|< |VSET|). If p = 1 (low resistance), the voltage on
the common terminal is approximately VCOND and the voltage
on the memristor Q is approximately VSET − VCOND, which is
sufficiently small to maintain the logic state of q . In the case
of p = 0 and q = 0 (high resistances), the applied voltage on
Q is approximately VSET and Q is switched ON (q = 1). In the
case of p = 0 and q = 1, the logic state of q is maintained.
The memristance of an ideal IMPLY logic gate (zero delay
time) for input cases 1 and 3 is shown in Fig. 5.

B. Analyzing the Behavior of a Logic Gate

VSET and VCOND, the applied voltages on P and Q, are
fixed. For any initial state, the memristor state q tends to drift

Fig. 5. Behavior of an ideal IMPLY logic gate. (a) Applied voltages on
both memristors P and Q. (b) Memristance of Q for cases 1 and 3. While
the memristance in case 1 decreases to RON within a zero write time, the
memristance in case 3 does not change. (c) Current of memristor Q. The
current in case 1 is sufficiently high to decrease the resistance of Q.

toward the ON state. For digital operation, the state of q should
either stay unchanged or switch fully ON (changing the logic
state from logical zero to logical one).

The different input combinations are listed in Table I. Due
to the polarity of the memristors and the applied voltages, the
memristance of memristor Q can only be reduced. Note that
in cases 2 and 4, the initial logic state of q is logical one and
the logic gate output q is also logical one. The gate operation,
therefore, electrically reinforces the logic state of q since the
memristance of Q is reduced.

In case 1, the initial state of q is logical zero; after applying
the external voltages, q is switched ON. This case determines
the time required to apply VSET and VCOND until the logic
state of q reaches the desired state (above a certain level of
conduction that maintains correct logical behavior). This case
determines the write time of the circuit (the delay time of the
logic gate).

In case 3, the initial state of q is logical zero. This logic state
should remain unchanged after applying VSET and VCOND,
although the voltages tend to change the internal state of
q toward the ON state of logical one. This phenomenon is
state drift. The logical zero state of q , which is the output
of the gate, is electrically weaker than the input logical state
of q (the memristance of Q after applying the voltages is
lower than the initial memristance). State drift may require
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refreshing the state; otherwise, repeated or prolonged sensing
action may incorrectly switch the logic state of q . Note that
the state drift phenomenon is a deterministic phenomenon.
Stochastic switching [40], [41] can change the logical state
of the memristors, and is not considered in this paper.

C. Speed–Robustness Tradeoff

The permissible value of the time required to apply VCOND
and VSET is determined from case 1. This write time is the
delay time of the logic gate and determines the performance of
the logic gate. Since the initial logical state of the memristors
is unknown during operation (no preliminary read operation
is applied), the voltages are applied at the same time for all
input cases.

The state drift is determined from case 3, which depends
upon the write time determined for case 1. Furthermore, any
improvement in the performance due to changes in the applied
voltage increases the state drift and degrades the robustness of
the logic gate [28].

D. Extended Logic Functions Based on IMPLY

Any general Boolean function f :Bn → B can be imple-
mented with only n + 3 memristors [29], where three addi-
tional memristors carry out the computation. Only two mem-
ristors are required for up to three inputs. Computation of the
function is performed in steps. In each step, either FALSE
is applied to one memristor, or an IMPLY is applied to two
memristors, where the output is written to a memristor (which
is one of the inputs of the computational IMPLY stage). This
process requires a long sequence of operations depending upon
the number of inputs. This methodology has been improved
in [30], where only two additional memristors are used rather
than three. While a general algorithm to compute any Boolean
function with a minimal number of memristors has been
developed [29], [30], the computational process requires a
large number of functional stages, and therefore requires
significant computational time.

The schematic and sequence of a two input NAND, based on
a memristor-based IMPLY gate and a FALSE logic gate, are
shown in Fig. 6. This NAND gate is designed to minimize
the computational time and number of memristors and is
comprised of three memristors. The operation of this NAND

logic gate changes the function of each memristor during the
computing process. Two memristors act as inputs in the initial
stage, one memristor acts as the output in the last stage, and all
memristors act together as a computational logic element (as
a memristor-based IMPLY gate) during different stages of the
computing process. This application requires three computing
stages (one FALSE and two IMPLY).

The IMPLY logic gate can also be extended to a multiple
input NOR logic gate [31]. In this extension, as illustrated in
Fig. 7(a), k input memristors P1, P2, . . . , Pk , and a separate
output memristor Q are assumed. The operation of this NOR

gate requires two computational stages, the first stage initial-
izes Q to logical zero (q = 0) and the second stage applies
VSET and VCOND in a manner similar to regular IMPLY. The
extended NOR suffers from low fan-in since RG needs to be

Fig. 6. IMPLY NAND, (a) The logic gate requires three sequential steps.
(b) Schematic of IMPLY-based NAND gate.

Fig. 7. Extension to IMPLY, a k-input NOR. (a) Schematic based on execution
of multiple implications in a single step and (b) improved fan-in structure,
where the load resistors are dedicated to the participating logic devices.

scaled to all possible number of inputs. To solve this issue,
a different structure has been proposed where a load resistor
RG is connected to every memristor and the load resistance
varies, as shown in Fig. 7(b).

IV. IMPLY INSIDE A MEMRISTOR-BASED CROSSBAR

The IMPLY logic gate cannot be easily integrated with
standard CMOS logic since both circuit structures are sig-
nificantly different. In the IMPLY logic family, a resistance,
rather than a voltage, represents the logical state. Furthermore,
to operate the logic gate, a sequence of specific voltages is
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Fig. 8. Basic structure of a memristor-based crossbar. Each junction of the
parallel lines is a memory cell with varying resistance Rjunction.

applied to the memristors. The IMPLY logic gate therefore
requires several computational stages (usually a different com-
putational stage is executed during each clock cycle), and a
separate mechanism to read the result of the computation and
control the voltages. To integrate the IMPLY logic gate with
standard voltage-based CMOS logic, a conversion mechanism
is required. This mechanism includes a sense amplifier as well
as additional components. The additional circuitry reduces
the efficiency of integrating CMOS with a memristor-based
IMPLY logic gate.

Alternatively, the IMPLY logic gate can be integrated inside
a memristor-based crossbar array, commonly used for memory,
where the input and output are values stored in the memory
cells. This integration reduces power and provides an opportu-
nity for novel non-von Neumann architectures. In this section,
the basic structure of a memristor-based crossbar is presented,
and a version of the IMPLY logic gate is illustrated.

A. Memristor-Based Crossbar

The basic structure of a memristor-based crossbar consists
of two sets of parallel conductive (metal) lines. The conductive
lines are perpendicular and behave as top and bottom elec-
trodes to the memristive material, located between the lines
[33]. The basic structure of a memristor-based crossbar is
shown in Fig. 8. The write operation to a cell within the
crossbar is achieved by applying a specific voltage to the
junction, where a voltage is applied to both lines. For example,
to write a logical one (low resistance), a positive voltage is
applied to the column line and ground is connected to the row
line (a positive voltage is applied to the memristor). To write
a logical zero (high resistance), the column line is connected
to ground and a positive voltage is connected to the row
line (a negative voltage is applied to the memristor). These
voltages are sometimes called VSET (positive voltage to write
a logical one, not necessarily the same voltage as in IMPLY)
and VRESET (negative voltage to write a logical zero). Since
memristors are nonvolatile, the data does not change when no
voltage is applied to the lines. The crossbar structure allows
the density of the memory to be relatively high, since CMOS
transistors are not used for each memory cell, but rather only
to select the line. This memory structure is more than 20 times
denser than DRAM [34].

The read operation of the crossbar is achieved by applying
a relatively low voltage (e.g., lower than VSET) to a junction
and measuring the current. From Ohm’s law, the resistance

Fig. 9. Sneak path in a memristive crossbar. (a) Example sneak path. Every
node in the grid is a memristor. The desired path is marked by a solid line
and a sneak path is marked by a dashed line. (b) Equivalent circuit. All sneak
paths have an equivalent resistance RSP connected in parallel to the resistance
of the memristor RM .

of the memristor is determined from this measured current.
The current measurement is usually achieved by converting
the current into a voltage through a voltage divider with a
known resistance Rpu. The sensed voltage vs is compared to
a known voltage.

An undesired phenomenon in crossbars is sneak paths
[35]–[38], which are undesired paths for the current flow.
When a voltage is applied to a junction in the crossbar, current
also flows through paths different than the desired path. These
paths cross more than one memristor and add a resistance in
parallel to the resistance of the memristor in the junction being
read. An illustration of the sneak path phenomenon is shown
in Fig. 9. This parallel resistance depends upon the stored
data in the memristors in the undesired paths and changes
the sensed voltage vs from a simple voltage divider between
Rpu and the resistance of the memristor to a voltage divider
between Rpu and the total resistance of all memristors in all
paths. A practical sensing operation should therefore consider
all possible sneak paths. A schematic of a crossbar, including
the read and write mechanisms, is depicted in Fig. 10. Several
approaches exist to eliminate or reduce sneak paths, e.g.,
grounding inactive rows. In this paper, it is assumed that these
approaches are used.

B. IMPLY in a Crossbar

The IMPLY logic gate can be integrated inside a crossbar,
where P and Q are two memristors in the same row within
the crossbar. The voltages VSET and VCOND are the voltages
of the word line, and the bit line is connected to a resistor RG .
To compute different Boolean functions with more than two
memristors, the memristors are placed within the same row
within the crossbar. Since the IMPLY operation is destructive
to P and Q, if the data of the input to P is significant, a
copy is assigned to a designated memristor. A schematic of a
crossbar-based IMPLY logic gate is shown in Fig. 11.

V. LOGIC GATE DESIGN METHODOLOGY

In this section, design considerations and constraints for a
memristor-based IMPLY logic gate in a crossbar are described.
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Fig. 10. m × n memristive crossbar. The columns show the word lines and
the rows identify the bit lines. Each M − i j is a memristor. The resistance of
the conductive line is nrw for the column line and mrw for the row line. Rw
and Rb are, respectively, the word and bit line resistance.

Fig. 11. IMPLY logic gate inside a memristor-based crossbar.

It is assumed that the memristor behavior is deterministic,
rather than stochastic.

A. Design Flow and Constraints

Although no complete and accurate memristor model yet
exists, all of the proposed memristor models are relatively
complicated and the exact behavior of a memristive logic
circuit is therefore mathematically cumbersome. A need there-
fore exists for heuristics for designing memristive circuits. For
memristor-based IMPLY logic gates, the appropriate circuit
parameters (RG ,VSET, VCOND, and the time to apply the volt-
ages T ) need to be determined under some general constraints.
These constraints include minimizing power consumption
(only dynamic power consumption in a memristor-based cross-
bar), reducing area (the number of active memristors in a
crossbar and the number of transistors in the controller),
lowering the delay time of the logic gate, and increasing the
robustness of the circuit (by reducing resistance drift during
operation for those input cases where the logical output does

Fig. 12. Design flow for memristor-based IMPLY logic gates.

TABLE II

INPUT GATE VOLTAGES VQ AND VP , RESPECTIVELY, AT MEMRISTORS

P AND Q AT t = 0, UNDER THE ASSUMPTIONS THAT THE

MEMRISTANCE OF LOGIC ONE AND LOGIC ZERO IS,

RESPECTIVELY, RON AND ROFF , WHERE ROFF � RON

not change). The parasitic capacitance of the CMOS transistors
connected to the crossbar and the parasitic resistance of the
metal lines as well as the sneak path phenomenon also need
to be considered.

A general flow for the design of a memristor-based IMPLY
logic gate is shown in Fig. 12. The design of a general Boolean
function is demonstrated through a case study in Section VI.
After determining the topology of the circuit, the conditions at
the beginning of operation need to be determined. These static
conditions do not depend on the memristor model and provide
necessary conditions for correct circuit behavior. Simplified
memristor models use several heuristics to approximate the
circuit characteristics. The TEAM model [23] is used here to
estimate the circuit parameters.

B. Design Constraints and Parameter Determination for
IMPLY Logic Gate

In the design of a basic IMPLY logic gate, the circuit
parameters VSET, VCOND, and RG and the time to apply the
voltages T need to be determined. The memristor parameters
(RON, ROFF, kON, kOFF, αON, αOFF, iON, and iOFF in the TEAM
model) are fixed for a given technology.
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Fig. 13. Allowed write time T in case 1 for three values of ROFF

(5, 10, and 100 k�) under the assumptions of a binary resistance model and
Q′ = 5 × 10−14C.

Although difficult to compute the time evolution of the
voltage at Q (Fig. 4), it is possible to determine the voltage at
Q at the beginning of the logic gate activity. The initial applied
voltage at Q is different for each input case (a different initial
memristance for Q and P). The initial voltages at P and Q are
listed in Table II under the assumptions that the memristance
of the logic one and logic zero is, respectively, RON and ROFF,
where ROFF � RON.

From the initial applied voltages, some necessary conditions
for correct logic behavior can be determined. The basic design
principle is that the write (delay) time of the logic gate is
determined from input case 1 (see Table II), but the circuit
should also not exceed a specific state drift in input case 3.

A useful switching model is a binary memristance model
[28]. Assume only two allowed memristances, RON and ROFF.
A total charge Q′ flows through the memristor to cause the
memristance ROFF to switch to memristance RON. Under these
assumptions and by solving both the switching behavior in
case 1 and the write time T as a function of Q′, the circuit
parameter T is

T =
[

R2
OFF + 2ROFF RG

ROFFVSET + RG [VSET − VCOND]

]

· Q′. (5)

The write time for different circuit parameters and varying
VSET is shown in Fig. 13. Note that the logic gate is faster
with a higher applied voltage or a smaller ROFF.

Under this model, it is possible to limit the state drift (case
3 in Table II) for a fixed drift. The state drift is

qq(T ) ≈
[

VSET − RG

RON + RG
VCOND

]

·
[

ROFF + 2RG

ROFFVSET + RG [VSET − VCOND]

]

· Q′ (6)

where qq(T ) is the total charge flowing through memristor
Q after time T , as in case 3. If the state drift is limited
to a value of Q′/4 as the maximum state drift, after four
executions of the logic gate in case 3 the state drift would
change the memristive logic state of q . This phenomenon
requires a refresh every three executions of the logic gate
since the logic state would change to an invert value during
the fourth time. The allowed value of VSET for several circuit
parameters is shown in Fig. 14. Note that the state drift is more

Fig. 14. Allowed values of VSET for limited state drift in case 3 of Q′/4.VSET
is allowed if qq (T ) is smaller than Q′/4 (horizontal line).

Fig. 15. Tradeoff between the speed (write time) and robustness (the state
drift in case 3 for memristor Q) for three values of ROFF (5, 10, and 100 k�)
under the assumptions of a binary resistance model and Q′ = 5 × 10−14C.

significant with a higher applied voltage, or with a smaller
ROFF. Combining Figs. 13 and 14, the tradeoff between the
speed and robustness of a memristive IMPLY logic gate is
illustrated in Fig. 15.

Another simple and useful memristor model assumes non-
linear behavior with a fixed threshold voltage VON [28]. Under
this model, for an applied voltage below VON, the memristance
is unchanged. To produce correct logical behavior, the initial
applied voltage on Q must be above the threshold voltage in
case 1 and below the threshold voltage in case 3. Adding this
assumption to the initial applied voltage (see Table II) leads
to the following two conditions on the circuit parameters:

RON · VSET − VON

VON − [VSET − VCOND]
< RG

< ROFF · VSET − VON

2VON − [VSET − VCOND]
(7)

VSET

VCOND
<

ROFF

RON

. (8)

The allowed value for RG for several circuit parameters with
varying VSET is shown in Fig. 16. A reasonable value of RG

is the geometric mean of RON and ROFF

RG = √
RON · ROFF (9)

to maintain a constant ratio between each pair of resistances,
RON and RG , and RG and ROFF. Other values of RG are also
possible.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 16. Allowed value of RG depends on VSET. The upper line is the upper
bound for allowed RG and the lower line is the lower allowed bound for RG .
Under the assumption of a threshold voltage VON = 0.55 V, VCOND = 0.5 V,
RON = 100 �, and ROFF = 10 k�.

Fig. 17. State variable of q when applying an IMPLY logic gate for cases 1
(dashed line) and 3 (solid line). The parameters of the circuit are VSET = 1 V,
VCOND = 0.5 V, and RG = 10 k�. The parameters of the memristors are
kON = 0.05, iON = 7μA, and αON = 3. The delay of the IMPLY logic gate
is 397.1 ns and the state drift is 0.0007%, equivalent to 145,000 executions
before the need to refresh.

C. Example of 1-Bit IMPLY Logic Gate

As a specific example of applying the flow chart of Fig. 12,
assume the requirement is a maximum write time (delay)
of 0.5 μsec. Note that the actual write time of a practical
memristor is significantly faster [25]. The maximum allowed
state drift is 0.00001 ROFF (0.001% of the state drift as
compared to full switching, equivalent to 105 executions of
the logic gate before completely switching).

Assume a memristor with RON and ROFF, respectively, of 1
and 100 k�. Set one circuit parameter VCOND to 0.5 V. From
Figs. 13 and 14, note that as VSET rises, the logic gate write
time T decreases and the gate response is faster; however, the
state drift phenomenon is more significant. From (8)

0.5 V < VSET < 50 V. (10)

This expression only produces a lower bound on VSET,
since the upper bound is significantly higher than practical
on-chip supply voltages. For a current-controlled memristor
(e.g., TEAM model), it is unrealistic to determine an exact
equivalent voltage threshold (which depends on the transient
memristance of the device). A sufficient approximation for an
equivalent threshold voltage is

VON = iON · ROFF (11)

where VON is the voltage threshold, and iON is the cur-
rent threshold. For a memristor with a current threshold of

TABLE III

WRITE TIME AND STATE DRIFT FOR DIFFERENT VALUES OF RG .

ALL VALUES SATISFY (10) AND (12). VCOND IS SET TO

0.5 V, KON = 0.05, ION = 7 μA, AND αON = 3

TABLE IV

WRITE TIME AND STATE DRIFT FOR DIFFERENT VALUES OF VSET AND

MEMRISTOR PARAMETERS. ALL VALUES SATISFY (19) AND (12).

USING THE SAME DEFAULT VALUES AS TABLE III. RG = 10 K�

7 μA, the equivalent voltage threshold is 0.7 volts. From (7),
RG is

1.5 k� < RG < 33.3 k�. (12)

The widely used linear ion drift memristor model [12], [23]
is incompatible with IMPLY logic gates. In this model, the
memristance changes linearly for any applied voltage; the state
drift phenomenon is therefore significant and intolerable for
IMPLY logic gates [28]. Hence, a different memristor model
with a current threshold, such as the TEAM model [23], is
preferable. The TEAM model accurately describes the physical
behavior of memristors. The chosen circuit parameters for this
example are RON = 1 k�, ROFF = 100 k�, VCOND = 0.5 V,
VSET = 1 V, and RG = 10 k�. SPICE simulation based
on these parameters for the memristance of q are shown in
Fig. 17, where the write time (delay) of this logic gate is
397.1 ns and the state drift is 0.00069%, equivalent to about
145,000 executions before switching.

The write time (delay) and state drift for varying RG and
VSET are listed in Tables III and IV. An increase in the
resistance of RG or decrease in the voltage level of VSET
increases the delay of the gate, but lowers the state drift
phenomenon (and vice versa). The write time (delay) and
state drift for different memristor parameters are listed in
Table IV. An increase in the nonlinearity of the memristors
(αON) increases the delay of the gate, but lowers the state drift
phenomenon (and vice versa). An increase in kON decreases the
delay of the gate without changing the state drift phenomenon.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KVATINSKY et al.: IMPLY LOGIC: DESIGN PRINCIPLES AND METHODOLOGIES 9

TABLE V

RESISTANCE OF A CMOS DRIVER FOR 0.12 μm CMOS PROCESS

Fig. 18. Write time of an IMPLY logic gate with CMOS drivers for various
CMOS widths (solid blue line) as compared to the write time with ideal
voltage source (dashed red line). A 0.12 μm CMOS process is used; other
circuit parameters are the same as in Fig. 17.

D. Variations in VSET and VCOND

In previous sections, it is assumed that ideal voltage sources
are used for VSET and VCOND. Practical implementations,
however, suffer from variations in the voltage level, mainly
due to the resistance of the CMOS drivers. The CMOS
drivers add resistance in series with the circuit and change the
applied voltages. These voltage drops change the performance
(as determined from input case 1) and the state drift (as
determined from input case 3).

To evaluate the influence of CMOS drivers on performance
and state drift, the IMPLY logic gate is simulated with similar
circuit parameters as in Section V-C. The equivalent resistance
of the CMOS driver for various CMOS widths is listed in
Table V. The write time for different driver widths is shown
in Fig. 18. For a W/L ratio of 10, the write time of the IMPLY
logic gate with CMOS drivers increases by approximately
15%, as compared to ideal voltage sources. For a W/L ratio
of 75, the increase in the write time is negligible (less than
1%).

To evaluate the change in the state drift phenomenon, the
IMPLY logic gate is evaluated for input case 3. The difference
in the state drift is listed in Table VI, exhibiting negligible
difference for all W/L ratios. To overcome variations in the

TABLE VI

STATE DRIFT OF THE IMPLY LOGIC GATE WITH CMOS BUFFERS AS

COMPARED TO IDEAL VOLTAGE SOURCES FOR VARIOUS W/L RATIO

voltage source, the applied voltages (VSET and VCOND) can
be increased. Alternatively, the resistance of the circuit can be
increased, by increasing RG or using memristors with higher
RON and ROFF (e.g., the memristors in [42] have RON of
approximately 300 k�), or the resistance of the CMOS driver
can be decreased by increasing the W/L ratio.

VI. 8-BIT IMPLY FULL ADDER: A CASE STUDY

IMPLY together with FALSE (the function that always
yields zero as an output) provide a complete logical structure.
While any Boolean function can be executed, an efficient
procedure is required to reduce the area and computational
time. In this section, a case study of an 8-bit full adder is
presented to discuss several design constraints and issues for
general Boolean functions. In this case study, three approaches
are considered: a general algorithm [29] is considered first,
which requires a long sequence and only two additional
memristors. Two other specific approaches–serial and parallel–
are also considered. These approaches significantly reduce
the required sequence of operational steps, where the parallel
approach requires more memristors for faster execution as
compared to the serial approach.

A. General Boolean Functions

An algorithm to implement any general Boolean function
using only IMPLY and FALSE has been proposed in [29]. This
algorithm requires n + 3 memristors for any general Boolean
function f :Bn → B . While this algorithm is efficient in terms
of area (the number of memristors to compute a function),
it is inefficient in terms of computational time and requires
O(2kn) computational steps, where n is the number of input
memristors and k is the number of additional functional mem-
ristors for the computational process. A different approach is
therefore required to improve the computational time. This
new approach is demonstrated in this section through a case
study.

Several Boolean functions being implemented by IMPLY
and FALSE are listed in Table VII. These functions are
the basic building blocks of any general Boolean function.
Choosing the proper building blocks and computing sequence
are key when the objective is to minimize the number of
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TABLE VII

BASIC BOOLEAN OPERATIONS BASED ONLY ON IMPLY AND FALSE

Fig. 19. Full adder consisting of two XOR gates, two AND gates, and an OR

gate.

computational steps and memristors. To reduce the number
of computational steps, parallelism can be exploited, where
several IMPLY and FALSE operations occur during the same
clock cycle. Since the operation is accomplished within the
crossbar structure, the topology of the entire array needs to be
considered, including possible sneak paths. Other methods for
parallelism that do not suffer from sneak paths use unipolar
memristors or, alternatively, insert switches between rows,
which deviates from the crossbar structure. Modifying the
crossbar structure to parallelize the execution is discussed in
Section VI.

It is sometimes necessary to copy the value from a memory
cell to other cells. The copy operation is also required when
data is used multiple times, since the destruction of the input
is undesired, or there is a need to transfer data to different
rows within the crossbar. The copy operation is also listed in
Table VII.

B. CMOS Full Adder

The input of the full adder are two 8-bit numbers and the
output is one 8-bit number S7, S6, . . . , S0 and 1-bit carry Cout.
The basic structure of a CMOS 8-bit ripple carry adder consists
of eight full adders, where the logical operation of each
adder is

Si = Ai ⊕ Bi ⊕ Ci (13)

Cout = (Ai · Bi ) + (Ci · (Ai ⊕ Bi )) . (14)

A single CMOS 8-bit adder consists of 400 CMOS transis-
tors, as shown in Fig. 19 for a basic full adder.

TABLE VIII

COMPARISON OF N-BIT FULL ADDERS. THE NUMBERS IN THE

BRACKETS ARE FOR AN 8-BIT FULL ADDER

C. IMPLY Full Adder

Several approaches exist to design an 8-bit full adder
based solely on IMPLY and FALSE operations. The basic
approach is to follow the algorithm proposed in [29]. Two
additional approaches are considered–serial and parallel. To
evaluate these approaches, the total number of memristors and
the number of computation steps are compared. The general
algorithm from [29] requires 712 computational steps, while
the serial approach lowers the computational time to 232
computational steps with approximately the same number of
memristors, and the parallel approach has the best performance
of 58 computational steps but requires double the number of
memristors. A comparison among the approaches is listed in
Table VIII.

To execute a XOR operation, two functional memristors M1
and M2 are required, where the complete sequence, as listed
in Table VII, is

A XOR B : FALSE(M1), FALSE(S), A → S, S → M1
FALSE(M2), FALSE(S), B → S, S → M2
B → M1, FALSE(S), M1 → S
A → M2, M2 → S.

The first two rows are copy operations of A and B , respec-
tively, to M1 and M2 since the IMPLY operation destroys both
inputs. To execute Si , the execution process is divided into two
XOR operations, where (13) is

Si = (Ai ⊕ Bi ) ⊕ Ci . (15)

This execution requires two functional memristors and 26
computational steps for Si , while the intermediate XOR of Ai

and Bi is also used for Cout,i , where (14) becomes

Cout,i = (
Ai → (

Bi →′ 0′))

→ ((
Ci → ((

Ai ⊕ Bi
) →′ 0′)) →′ 0′). (16)

Several possible sequences exist for executing Ci using
three functional memristors to decrease the number of com-
putational steps. Furthermore, Ai , Bi , and Ci can also be
treated as functional memristors after the initial value is
changed during the execution process. The complete sequence
is described in the supplementary material.
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Fig. 20. 8-bit full adder for (a) serial approach and (b) parallel approach.
For the serial approach, 27 memristors are used in the same row of a
standard crossbar structure. The parallel approach requires a more complex
crossbar structure, where a switched connection between rows exists. Each
bit execution is done in a different row using nine memristors.

For an 8-bit full adder, two approaches have been examined
in the case study. The serial approach executes one operation
every clock cycle–IMPLY or FALSE. For the serial approach,
all memristors are in the same row, as shown in Fig. 20(a).
In the parallel approach, independent operations are executed
during the same clock cycle, reducing the number of required
computational stages. For the parallel approach, each bit in
the full adder is in a different row, as shown in Fig. 20(b).
The carry is passed between the different rows and the
FALSE operations are simultaneously completed for several
memristors. The parallel approach requires some modifications
which differ from the crossbar structure, adding connections
between the rows of the crossbar. These modifications also
eliminate the sneak path phenomenon while increasing the area
as compared to a conventional crossbar.

VII. BEYOND VON NEUMANN: LOGIC

INSIDE THE MEMORY

IMPLY logic is a natural method to execute logical oper-
ations within the memristors. Memristor-based IMPLY logic
has the same crossbar structure as a memristor-based mem-
ory and therefore enables the capability of performing logic

operations inside the memory with the same cells used to
store data. This combination enables innovative computing
architectures, rather than the classical von Neumann architec-
ture where the computing operations and the data storage are
separated.

For these novel architectures, part of the computation is
achieved inside the memory, with no separation with the
data read and write operations. These architectures are par-
ticularly appropriate for massive parallel applications, where
vast amount of data need to be processed. In von Neumann
architecture for massive parallel applications, the data transfer
requires a wide data bus, long latency, and consumes relatively
high power. In these novel architectures, the memory and
logical operations are in the same crossbar structure, almost
no data transfer is required, and the latency and power are
significantly reduced, although the memristor IMPLY logic
delay is greater than the CMOS logic delay.

In these innovative architectures, the memristive memory
serves two roles–as memory to store data and as a com-
putational unit. The function of a specific memristor can
be decided dynamically. Each memristor can act as either a
memory cell or as part of an IMPLY logic gate in different
stages of the operation. The effective size of the memory and
the computational unit is flexible and can vary for different
applications. A memristor-based memory requires a relatively
complex controller that behaves as a regular memory controller
and also sends control signals (VSET and VCOND) to the IMPLY
logic gates. This novel architecture requires a new instruction
set, requiring specific instructions for logic operations inside
the memory.

VIII. CONCLUSION

An IMPLY logic gate is a natural way to perform logic
operations with memristors. This logic gate can be integrated
within a memristor-based memory and, together with FALSE,
provide a complete logic family. This memristive logic gate
also enables non-von Neumann architectures, which may open
a new era in computer architecture.

The potential benefits of memristive circuits in terms of
density and power support further work in this field. The
results described in this paper can be used to direct further
research on device structure optimization, logic synthesis
methods, array structures, and computing architectures.
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Abstract— Memristors are passive components with a varying 

resistance which depends on the previous voltage applied across 

the device. While memristors are naturally used as memory, 

memristors can also be used for other applications, including logic 

circuits. In this paper, a memristor only logic family, MAGIC 

(Memristor Aided LoGIC), is presented. In each MAGIC logic 

gate, memristors serve as an input with previously stored data 

and an additional memristor serves as an output. The topology of 

a MAGIC NOR gate is similar to the structure of a common 

memristor-based crossbar memory. A MAGIC NOR gate can 

therefore be placed within a memory, opening opportunities for 

novel non-von Neumann computer architectures. Other MAGIC 

gates also exist (e.g., AND, OR, NOT, and NAND) and are 

described in the paper. 

 

Index Terms—Memristive systems, memristor, IMPLY, 

MAGIC, in-memory computing. 

I. INTRODUCTION 

n recent years, the concept of a memristor, originally 

proposed by Leon Chua in 1971, has generated renewed 

interest. In [1], Chua proposed a fourth fundamental 

component in addition to the three already well known 

fundamental electronic components: the resistor, capacitor, 

and inductor. In [13], Chua and Kang extended the theory of 

memristors to memristive systems. Memristors and memristive 

devices are two-terminal devices, where the resistance of the 

device is changed by the electrical current, as shown in Figure 

1. The resistance of the memristor is bounded by a minimum 

resistance RON and a maximum resistance ROFF. In this paper, 

for simplicity, the terms memristor and memristive device are 

used interchangeably [14]. 

For almost forty years, the concept of a memristor was just 

theory, as no device exhibiting the behavior of a memristor 
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had been produced. In 2008, Hewlett Packard Laboratories [2] 

announced that they had succeeded in producing a memristor. 

Since 2008, several possible applications of memristors have 

been presented. Nonvolatile emerging memory technologies, 

including Resistive RAM (RRAM) and Spin-Transfer Torque 

Magnetoresistive RAM (STT-MRAM), can be considered as 

memristors [14]. The primary application of memristors has 

been memory [3, 16, 22], where the resistance serves to store 

data. Another interesting and new application is memristor-

based logic [4-5, 9-12, 17-18]. 

Material implication (IMPLY) as a memristor-based logic 

gate is presented in [5], [9], [11], and [17]. The memristor-

based IMPLY logic gate is built within a memristive crossbar, 

the most commonly used memristive memory structure 

(particularly for RRAM). The stored data within the 

memristors are the input and output of the logic gate. This 

method, however, requires sequential voltage activation at 

different locations within the circuit. Furthermore, with 

IMPLY, the result is stored by one of the inputs and not a 

dedicated output memristor. The technique also requires 

additional circuit components (for example, a controller and an 

additional resistor within each row of the crossbar), dissipates 

high power, has high computational complexity, and requires 

complicated control circuitry. 

In this paper, Memristor Aided LoGIC (MAGIC) - a method 

for memristive-only logic - is presented. This method does not 

require a complicated structure and enables stable evaluation 

of the gate function. Stable evaluation is achieved by applying 

a single voltage pulse at the gateway of the circuit. MAGIC 

NOR gates can also be fabricated within a crossbar, enabling 

computing within memory. 

II. OPERATING PRINCIPLE OF MAGIC  

MAGIC requires only memristors within the logic gates. 

The logical state in a MAGIC gate is represented as a 

resistance, where the high and low resistances are considered, 

respectively, as logical zero and one (for simplicity, the 

resistance of logical zero and logical one is considered, 

respectively, as Roff and Ron). The inputs and output of the 

logic gates are the logical states of the memristors. Unlike an 

IMPLY logic gate, separate memristors are required for the 

input and output. The inputs of the MAGIC gates are the initial 

logical state of the input memristors and the output is the final 

logical state of the memristor. 

MAGIC – Memristor Aided LoGIC 
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Figure 2. Example of placing a memristor into the initialization 

stage. This example is similar to writing a configurable analog 

circuit [19]. A different initialization scheme is presented in Section 

III for MAGIC within memory. 

Out In 

Resistance decreases 

Resistance increases 

 

Figure 1. Memristor symbol. The polarity of the memristor is 

represented by a thick black line. When current flows into the device 

(the upper arrow), the resistance of the device increases. When 

current flows out of the device (the lower arrow), the resistance of 

the device decreases. 

Operation of a MAGIC gate consists of two sequential 

stages. The first stage initializes the output memristor to a 

known logical state. In the second stage of operation, a voltage 

V0 is applied across the logic gate. While applying V0, the 

voltage across the output memristor depends upon the logical 

state of the input and output memristors. The nonlinear 

characteristics of the memristor, namely the threshold currents 

or voltages [8], are exploited to maintain correct operation. 

For specific input combinations, the voltage is sufficient to 

change the logical state of the output memristor, i.e., the 

memristor voltage/current is greater than the threshold 

voltage/current, while for other input combinations, the output 

remains at the initialize state, i.e., the memristor 

voltage/current is below the threshold current or voltage. 

Initialization of the memristors can be achieved in several 

ways. For example, it is possible to use a similar topology as 

the circuit used in [19] for configurable memristive analog 

circuits, as shown in Figure 2. For MAGIC gates within 

memory (as described in Section III), initialization is achieved 

as a regular write operation within the memory cells. 

In the next section, the basic MAGIC NOR gate is 

described. Additional MAGIC gates for different Boolean 

functions based on the MAGIC topology are also available, 

and described in Section VI. 

III. MAGIC NOR GATE 

A two input NOR gate consists of two input memristors 

(in1, in2) connected in parallel and an additional memristor 

(out) as the output. A schematic of a two input NOR gate is 

shown in Figure 3a. The initial execution step includes writing 

a low resistance into the output memristor (initialization to 

logical one) and, if necessary, writing the input value into 

memristors in1 and in2. In the final execution step, the 

evaluation is achieved by applying a voltage pulse V0 at the 

gateway of the logic gate (the gateway is defined as shown in 

Figure 3a). 

The applied voltage produces a current that passes through 

the circuit and appears at memristor out. For the case where 

both input memristors are logical zero (high resistance), the 

voltage/current of the output memristor is lower than the 

memristor threshold voltage/current. Hence, the logical state of 

the output memristor does not change and remains at logical 

one. For all other input combinations, the voltage/current is 

greater than the memristor threshold voltage/current. The 

logical state of the output memristor for these input 

combinations switches to logical zero. The behavior of the 

MAGIC NOR gate is shown in Figure 3b. 

Assume a memristor with voltage thresholds of VT,ON and 

VT,OFF. For correct circuit behavior, the voltage at the output 

memristor is lower than VT,OFF when both inputs are logical 

zero. For all other input combinations, the voltage across the 

output memristor should be greater than VT,OFF. The minimum 

voltage at the output memristor greater than VT,OFF is achieved 

when one input is logical one and the other input is logical 

zero. Combining the cases where the voltage at the output 

memristor is above and below the threshold voltage leads to a 

design constraint on the applied voltage V0. The constraint is 

(assuming Roff >> Ron) 

, 0 ,2 .
2

OFF
T OFF T OFF

ON

R
V V V

R
< < ⋅          (1) 

When an input memristor is logical zero, the operation of a 

MAGIC NOR can be destructive, changing the input to logical 

one during execution. To eliminate destroying the input, the 

voltage across the input memristor needs to be below the 

threshold voltage VT,ON. The maximum applied voltage for a 

two-input NOR gate is therefore 

0 , ,min , .
2

OFF
T OFF T ON

ON

R
V V V

R

 
< ⋅ 

 
          (2) 

Multiple-input (three or more) NOR logic gates can also be 

produced in a similar manner, as shown in Figure 3c. For χ 

input memristors, the design constraints are 

,

0 ,|| 1 .
1

T OFF OFF OFF
ON ON T OFF

ON ON

V R R
R R V V

R Rχ χ
    

⋅ + < < ⋅ +    −    
 (3) 

For non-destructive operation of a χ-input NOR, the maximum 

applied voltage is  

 
0 , ,min 1 , 1 | | .OFF ON

T OFF T ON

ON OFF

R R
V V V

R R

χ
χ

    
< ⋅ + + ⋅    

    

  (4) 

IV. MAGIC WITHIN A CROSSBAR ARRAY 

RRAM commonly utilizes a crossbar structure. The crossbar 

structure enables dense memory of 4 F
2
, where F is the feature 

size. Memristive-only logic gates within a memristive crossbar 

reduce power and provide an opportunity for novel non-von 

Neumann architectures, where the logical operations are 

executed within the memory [11]. When performing logic 

within the memory, the input is the stored data within the 

memristors and the output is the stored data after execution. 

Initialization of the input and output is achieved as a regular 
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Figure 4. MAGIC NOR gate within a crossbar array. (a) Schematic 

of a memristive crossbar structure. A two input NOR gate is 

achieved in row i, where in1 and in2 are, respectively, in columns j+1 

and j and out is in column j-1, as marked by an oval. (b) Schematic of 

a two input NOR gate within a crossbar array. The voltage at the 

gateway V0 is the applied voltage at columns j and j+1, while column 

j-1 is connected to ground. Note that the schematic is identical to the 

figure shown in Figure 3a. 

TABLE I. COMPARISON BETWEEN IMPLY AND MAGIC 

 IMPLY [11] MAGIC 

No. of voltages 2 (VSET, VCOND) 1 (V0) 

Separate input and 

output 
No Yes 

Basic functions IMPLY (+ FALSE) 
OR, AND, NOR, 

NAND, NOT 

No. of memristors 

for NOR/NAND 
3 (+ a resistor) 3 

No. of steps for 

NOR/NAND 
4 2 

Within memory Yes Yes (for NOR) 

Logically complete Requires FALSE Yes (NOR, NAND) 

 

 
Figure 3. MAGIC NOR. (a) Schematic of a two input NOR logic 

gate. The logic gate consists of two input memristors in1 and in2, 

and an output memristor out. During execution, a voltage V0 is 

applied at the gateway of the circuit (marked by an arrow). (b) 

Simulations of a two input NOR gate for all input combinations. The 

different curves show the currents read from each memristor prior 

to execution and after applying V0.  (c) Schematic of an N input NOR 

gate. 

memory write operation, and sensing the result is achieved as a 

regular memory read operation. 

To integrate a memristive-only logic gate within a crossbar 

array, two requirements need to be satisfied: the structure and 

connections of the logic gate should be placed within a 

crossbar array and the logical state of the logic gate is 

represented as a resistance, as in a memristive memory. A 

MAGIC NOR gate fulfills both of these requirements. The 

structure of a memristive crossbar array and two-input MAGIC 

NOR gate within a crossbar is shown in Figure 4. 

 While a memristive IMPLY logic gate can also be 

integrated within a memristive crossbar array [11], this 

memristive logic family requires an additional resistor within 

each row of the crossbar. Additionally, unlike the NOR 

Boolean operation, the IMPLY operation is not logically 

complete and requires the operation of FALSE (writing a 

logical zero to a memristor). A comparison between 

memristive IMPLY and MAGIC is listed in Table 1. 

V. EVALUATION AND DESIGN CONSIDERATIONS FOR A 

MAGIC NOR GATE 

The speed of a MAGIC NOR gate is evaluated in SPICE for 

a 0.18 µm CMOS process. A memristor model, the VTEAM 

model [20], which extends the TEAM model with a threshold 

voltage, is used with a Biolek window function [8]. The 

parameters of the memristors are chosen to produce a 

switching time of 1 ns for a voltage pulse of 1 volt for RESET 

and 2 volts for SET, and to fit practical devices, as reported in 

[21]. The parameters of the circuit simulations are listed in 

Table 2. 

The behavior and speed of a MAGIC NOR gate for 

different values of V0 are shown in Figure 5. To evaluate the 

delay of the logic gate, the slowest input case is considered. 

The delay of a MAGIC NOR gate is determined from an input 

combinations of {1,0} or {0,1}. 

From (1) and (2), V0 can vary from 0.6 to 1.5 volts for the 

parameters listed in Table 2. As shown in Figure 5b, 

increasing the applied voltage V0 decreases the delay of the 

logic gate. For V0 at 1 volt, the delay of the logic gate is 1.3 ns, 

an increase of 30% as compared to the switching time of a 

single memristor. 

VI. ADDITIONAL MAGIC GATES 

With the same design principles described in Section II, 

additional Boolean functions can be provided as part of the 

MAGIC family. The additional MAGIC gates described in this 

section are not placed within a crossbar array (except for the 

NOT gate), but can be used as standalone logic. 
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Figure 6. MAGIC NAND gate. (a) Schematic of a two input NAND 

gate. The logic gate consists of two input memristors in1 and in2, 

and an output memristor out. During execution, a voltage V0 is 

applied at the gateway of the circuit. (b) Simulation results for a two 

input NAND gate for all input combinations. The different curves 

exhibit the currents of each memristor prior to execution and after 

applying V0, and (c) schematic of an N input NAND gate. 

 

 
Figure 7. MAGIC OR and AND gates. The structure of the logic 

gates is similar to MAGIC NOR and NAND gates. The output 

memristor out is connected with the same polarity as the input 

memristors, and is initialized to logical zero. (a) Schematic of a two 

input OR gate. (b) Simulation results for a two input OR gate for all 

input combinations. (c) Schematic of a two input AND gate. (d) 

Simulation results for a two input AND gate for all input 

combinations. 

TABLE II. MEMRISTOR PARAMETERS (FOR VTEAM MODEL [20]) 

kon  -216.2 m/sec 

koff 0.091 m/sec 

VT,ON -1.5 volt 

VT,OFF 0.3 volt 

xon 0 

xoff 3 nm 

αon 4 

αoff 4 

RON 1 kΩ 

ROFF 300 kΩ 

 

 

Figure 5. SPICE simulations of a two input MAGIC NOR gate. (a) 

Output memristor for different input combinations, V0 = 1 volt. The 

delay is evaluated as the time required to switch the output 

memristor to logical zero when one input is logical one and the other 

input is logical zero (dashed line), and (b) delay for different values 

of voltage V0. 

Connecting the input memristors in series within the same 

topology as in the MAGIC NOR gate produces a NAND gate, 

as shown in Figure 6. OR and AND logic gates have a similar 

structure as, respectively, NOR and NAND, except for the 

opposite polarity of the output memristor out. Unlike NAND 

and NOR, out is initialized to logical zero prior to execution. 

The schematic and behavior of OR and AND MAGIC gates 

are shown in Figure 7. Similar to MAGIC NOR and NAND 

gates, multi-input logic gates are also possible for MAGIC OR 

and AND gates. 

A MAGIC NOT gate (inverter) consists of an input 

memristor in and an output memristor out. The memristors are 

connected in series with an opposite polarity in a 

complementary memristor structure (or complementary 

resistive switches) [15], as shown in Figure 8a. In the first 

stage of execution, the output memristor is initialized to 

logical one. When applying V0 at the gateway of the circuit, 

the voltage divider between in and out determines whether the 

resistance of the output memristor changes. For the case where 

in is logical zero, the voltage across out is below the threshold 

voltage and the logical state of out remains logical one, as 

desired. Note that in this case, the voltage at in is relatively 

high and the logical state at in therefore may be switched to 

logical zero. Hence, the MAGIC NOT operation can be 

destructive to the input unless the applied voltage at memristor 

in is below VT,ON. For the case where in is logical one, the 

voltage across memristor out is sufficient to switch the logical 

state of out (greater than the threshold voltage) to logical zero. 

Simulation results for a NOT gate are shown in Figure 8b. A 

summary of several MAGIC gates, including the design 

constraints, is listed in Table 3. 
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TABLE III. SUMMARY OF MAGIC GATES 

Function Design Constraints Design Constraints – Multiple Inputs 
Within 

Crossbar? 

NOR , 0 , ,2 min ,
2

OFF
T OFF T OFF T ON

ON

R
V V V V

R

 
< < ⋅ 

 

 
,

0 , ,|| min 1 , 1 | |
1

T OFF OFF OFF ON
ON ON T OFF T ON

ON ON OFF

V R R R
R R V V V

R R R

χ
χ χ

       
⋅ + < < ⋅ + + ⋅      −        

 
Yes 

NAND , 0 , ,3 min , 2 OFF

T OFF T ON T OFF

ON

R
V V V V

R

  
< < + ⋅  

  

 
( ) , 0 , .

1 min 1 ,ON OFF
T OFF T ON T OFF

OFF ON

R R
V V V V

R R

χ
χ χ

    
+ ⋅ < < ⋅ + + ⋅    

    

 
No 

OR , 0 ,1.5
T ON T ON

V V V< <  
, 0 ,

1
1T ON T ONV V V

χ
 

< < + 
 

 
No 

AND , 0 ,2T ON T ONV V V< <  
, 0 ,1 2 ( 1)ON ON

T ON T ON

OFF OFF

R R
V V V

R R
χ χ

   
+ < < + −   

   

 
No 

NOT ( ), 0 , ,2 min ,| |OFF

T OFF T OFF T ON

ON

R
V V V V

R
< < ⋅

 
- Yes 

 

 

Figure 8. MAGIC NOT gate. (a) Schematic of a NOT gate. The logic 

gate consists of an input memristor in and an output memristor out, 

and (b) simulation results for a NOT gate. 

VII. CONCLUSIONS 

MAGIC, a novel method for memristor-based logic, is 

presented in this paper. Five basic logic functions, NOT, 

AND, NAND, NOR, and OR, use simple connections among 

memristors, where the number of memristors is equal to the 

number of inputs plus one additional memristor at the output. 

Only one applied voltage controls these logic gates, 

different than the memristor-based IMPLY logic gate. Unlike 

the IMPLY gate, the input and output in MAGIC are 

separated, and the output is written to a dedicated memristor. 

The use of MAGIC NOR gates within a memristive crossbar 

can lead to more efficient systems in terms of performance and 

power consumption, and to novel non-von Neumann 

architectures. 
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Figure 1. Memristive device symbol. The thick black line on the left 
side of the device represents the polarity of the device. If the current 

flows into the device, the resistance of the device decreases. If the 
current flows out of the device, the resistance increases. 
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Abstract— Memristive devices are novel structures, developed 
primarily as memory. Another interesting application for 
memristive devices is logic circuits. In this paper, MRL 
(Memristor Ratioed Logic) - a hybrid CMOS-memristive logic 
family - is described. In this logic family, OR and AND logic 
gates are based on memristive devices, and CMOS inverters are 
added to provide a complete logic structure and signal 
restoration. Unlike previously published memristive-based logic 
families, the MRL family is compatible with standard CMOS 
logic. A case study of an eight-bit full adder is presented and 
related design considerations are discussed. 

I. INTRODUCTION 

Memristors [1] and memristive devices [2] are novel 
structures, useful in many applications. This device is 
basically a resistor with varying resistance, dependent on the 
history of the device. It can be used for memory, where the 
data is stored as a resistance. While memory is the common 
application for memristive devices, additional applications 
can also use memristive devices as building blocks, such as 
analog circuits, neuromorphic systems, and logic circuits. 

This paper is focused on bipolar memristive devices [3], 
such as TiO2 memristive devices and STT-MRAM (Spin 
Transfer Torque Magnetoresistance Random Access 
Memory). In bipolar memristive devices, the resistance of the 
device increases due to current flow in one direction, and 
decreases due to current flow in the other direction. The 
symbol and polarity of a memristive device are shown in 
Figure 1. Several memristive device models have been 
developed. In this paper, the TEAM model [4] is used since 
this model can fit any memristive device. 

Practical memristive devices are nonvolatile and compatible 
with standard CMOS technology [5]. These devices are 
fabricated in the metal layers of an integrated circuit, where 
the memristive effects occur in the oxide between the metal 
layers (e.g., in TiO2) or within the metal layers (e.g., in STT-
MRAM). Memristive devices can therefore be fabricated 
above the CMOS transistors. The size of a typical memristive 
device is relatively small, since the fabrication process is 
similar to the processing of a via between metal layers. Hence, 

memristive-based circuits may be smaller than transistor-only 
CMOS circuits. Memristive devices therefore exhibit high 
density and good scalability. The read and write time for these 
devices can be as fast as one nanosecond [6]. Currently, 
except for STT-MRAM, memristive devices suffer from 
endurance limitations, where the number of allowed writes per 
cell is approximately 1010 [7]. It is believed however that this 
limit will increase to at least 1015 [8]. Memristive devices may 
therefore solve many major problems in the semiconductor 
industry, providing nonvolatile, dense, fast, and power 
efficient memory. 

Integrating memristive devices and CMOS for performing 
logical operations may be beneficial. Since memristive 
devices are fabricated within the metal layers, the integration 
saves physical area and therefore increases the logic density. 
Furthermore, with deeply scaled CMOS, CMOS logic suffers 
from problems such as leakage current, requiring novel logic 
structures. 

Logic operations with memristive devices open 
opportunities for novel functionality. Although the use of 
memristive devices as logic gates is early, several approaches 
have been proposed, mainly for logic gates designed within 
the structure of a crossbar array originally targeted for 
memory [9]. Logic in a memristive-based crossbar opens an 
opportunity to explore advanced computer architectures 
different from the classical Von Neumann architecture. In 
these architectures, the memory can perform logic operations 
on the same devices that store data. The decision regarding 
which elements act as logic gates and which act as memory 
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cells can be done dynamically during the operation of the 
memory [10]. 

Material implication (IMPLY logic gate) [11] is one option 
for logic inside a memristive-based crossbar. The IMPLY 
logic gate is extended in [12] to a NOR logic gate. Another 
logic family within a crossbar is MAGIC [13]. In MAGIC, all 
basic Boolean functions can be produced, e.g., AND, NAND, 
NOR, and OR logic gates. All of these logic gates require a 
sequencer to operate the logic gate, i.e., any basic Boolean 
function requires more than one clock cycle to execute the 
computation. The logic within a crossbar is therefore 
relatively slow. These logic gates also suffer from state drift 
and lack signal restoration [14]. 

Memristive-based logic families within a crossbar cannot 
be easily integrated with standard CMOS logic. In these logic 
families, a resistance, rather than a voltage, represents the 
logical state. To integrate memristive devices with CMOS for 
logic circuits, several requirements need to be fulfilled: the 
technology of the memristive devices needs to be compatible 
with a standard CMOS process, the logical state, used for 
input and output signal transfer between the logic gates, 
needs to be converted from a resistance into a voltage, and 
the interface between the memristive device layers and the 
CMOS layer should require minimal additional circuitry. To 
integrate these logic families with standard voltage based 
CMOS logic, a conversion mechanism is required. This 
mechanism includes a sense amplifier as well as additional 
components. The additional required circuitry reduces the 
efficiency of integrating CMOS and memristive-based logic 
families within a memory [10]. 

In this paper, MRL (Memristor Ratioed Logic) for 
integration with CMOS is described. This logic family uses 
the programmable resistance of memristive devices for 
computation of Boolean AND/OR functions with voltage as 
the state variable, hence it avoids the drawbacks described 
above.  Design principles and constraints of this logic family 
are discussed in Section II. A case study of an eight-bit full 
adder is used to demonstrate the MRL design process in 
Section III. The dependence of the MRL gates on the behavior 
of the memristive device, as well as several tradeoffs in the 
design procedure is discussed in Sections III and IV. 

II. MEMRISTOR RATIOED LOGIC (MRL) FAMILY 

An interesting method for integrating memristive devices 
with standard CMOS logic is using memristive devices as 
computational elements, OR and AND logic gates [15]. Since 
these functions are non-inverting logic gates, a complete logic 
structure can be achieved by adding a standard CMOS 
inverter. In this logic family, the logical is represented as a 
voltage, consistent with CMOS. The memristive devices are 
utilized solely for logic computation and not for storing a 
logical state. The computational result is independent of the 
initial state of the memristive devices, and the initial state 
only affects the computational time. Unlike other logic 
methods (such as IMPLY), the computational process is 

composed of only a single step. Similar to standard 
combinatorial logic using CMOS, the topology of the circuit 
determines the logical function. 

A. Description of Logic Gates 

Both OR and AND logic gates consist of two memristive 
devices connected in series with opposite polarity, as shown 
in Figures 2a and 2b. The output node is the common node of 
the memristive devices, while the signals on the other 
terminal of each memristive device are the inputs of the logic 
gate. 

Due to the polarity of the memristive devices, in an OR 
logic gate, when current flows into the logic gate through one 
of the inputs, the resistance of this memristive device 
decreases. Similarly, in an AND logic gate, the opposite 
polarity is used, and the resistance of the memristive device 
increases when current flows into the device. 

Both the OR and AND logic gates react similarly to 
identical inputs (where either both inputs are logical 1 or both 
are logical 0). For identical inputs, the voltage drop between 
inputs is zero; hence no current flows within the circuit. The 
output voltage is therefore equal to the input voltage. For the 
case where both inputs are logical zero (one), the ground 
(supply) voltage is at the inputs, the output voltage is ground 
(supply) and the logical state of the output is logical zero 
(one). 

For the case where the inputs are different, i.e., one input is 
logical one and the other input is logical zero, current flows 
from the high voltage (the terminal of the memristive device 
where the input is logical one) to the low voltage (the 
terminal of the memristive device where the input is logical 
zero), thus changing the resistance of both memristive 
devices. This case for an OR logic gate is illustrated in Figure 
2c. The resistance of the memristive device connected to the 
logical one input R1 is lower, and the resistance of the 
memristive device R2 is higher, as shown in Figure 2e. At the 
end of the computational process, the resistance of both 
memristive devices is approximately RON and ROFF, 
respectively, the minimum and maximum resistance of the 
device. Assuming ROFF >> RON, the output voltage of the 
logic gate is determined by the voltage divider across both of 
the memristive devices, 
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In the AND logic gate, the opposite polarity, as compared 
to the OR logic gate, is used. For the case where the inputs 
are different, the resistance of the memristive devices is the 
opposite of the resistance of the OR logic gate. This behavior 
is illustrated in Figures 2d and 2f. The output voltage of the 
AND logic gate in this case is therefore  
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 Note that the initial resistance of both memristive devices 
has no effect on the result of the computation. The only effect 



Figure 2. Schematic and behavior of MRL gates.  (a) The schematic of 
an OR logic gate, and (b) an AND logic gate. Both logic gates consists 

of two memristive devices where the polarity of the memristive devices 
is the only structural difference. The behavior of (c) an OR logic gate, 
and (d) an AND logic gate when VIN1 = '1' and VIN2 = '0'. The current 
flows from VIN1 to VIN2 and the resistance of the memristive devices 

changes for the (e) OR, and (f) AND logic gates. The continuous and 
dashed lines are, respectively, the resistance of R1 and R2. 

of the initial resistance on the behavior of the logic gate is the 
delay time of the execution for the case where the inputs are 
different, i.e., the time required to change the resistance of 
both memristive devices to either the maximum or minimum 
resistance. The delay time is also dependent on the voltage 
level. A relatively low voltage level increases the delay time. 
It is possible that the memristive devices do not fully switch 
and achieve the maximum and minimum resistance since the 
input voltages are not applied for a sufficiently long time or 
the input voltage is too low. In this case, it would be difficult 
to distinguish between the different output levels. The MRL 
family is inspired by Diode Logic [16] and shares some 
characteristics, such as both logic families are non-inverting 
and non-restoring [17]. The number of inputs for both MRL 
gates can be extended in a similar way as diode logic, as 
shown in Figures 3a and 3b. 

To provide a complete logic family, an inverter is needed 
in addition to OR and AND logic gates. Furthermore, 
memristive devices are passive elements and therefore cannot 
amplify signals. The MRL OR and AND logic gates therefore 
lack signal restoration, i.e., the output voltage levels degrade, 
as expressed by (1) and (2). These logic gates cannot 
therefore be cascaded for too many stages before signal 
amplification is required. CMOS logic, alternatively, exhibits 

signal restoration. Since the logical state of the input and 
output in MRL OR and AND logic gates is represented as a 
voltage, these logic gates can be integrated with standard 
CMOS inverters. To provide a complete logic structure and 
signal restoration, the addition of a CMOS inverter to the 
MRL family is therefore proposed. The schematic of a two 
input MRL NAND and NOR is shown in Figures 3c and 3d. 

B. General design considerations 

In the design process of an MRL gate, several issues need 
to be considered. When the input changes from one input case 
to another input case, i.e., changing the inputs from (0,1) to 
(1,0) and vice versa, the output produces a dynamic hazard 
until the switching process is completed. Another issue may 
occur when both initial resistances are high (approximately 
ROFF). In this case, the current through the logic gate is 
relatively small, and the settling time is therefore relatively 
long, also producing a dynamic hazard. The dynamic 
behavior of the OR and AND logic gates is illustrated in 
Figures 4a and 4b. 

Power consumption is another issue. When both inputs are 
identical, no current flows in the circuit and the power is zero. 
If the inputs are different, current flows and power is 
consumed. The power consumed during the switching of the 
memristive devices is dependent on the resistance of both 
memristive devices and changes during the computational 
process. Generally, the power consumption of an MRL gate 
for these input cases is 
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where Vhigh is the voltage of logical one and is assumed to be 
constant, and R1(t) and R2(t) are the resistance of the 
memristive devices, which change during the computational 
process. The value of R1(t) and R2(t) is dependent on the 
initial states and the value of Vhigh. For the case of different 
inputs, a constant current flows from one input to the other 
input, even after the resistance of the memristive devices 
reaches the desired magnitude and the output becomes stable. 
The static power consumed in these cases is approximately 
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The power consumption for all input cases is illustrated in 
Figure 4c. The output voltage is dependent on the voltage 
divider across the two memristive devices. This voltage 
divider degrades the output signal. Although the degradation 
is minor when ROFF >> RON, for cascaded logic gates, this 
degradation accumulates and may become significant. This 
phenomenon can be avoided by occasionally amplifying the 
signal by CMOS inverters or buffers. Integrating a CMOS 
inverter into an MRL OR or AND logic gate however adds 
capacitance to the circuit. The delay time of the logic gates is 
dependent on the CMOS gate capacitance and therefore needs 
to be optimized. The delay of the logic gates is the time 
required for the memristive devices to be fully switched, and 



Figure 3. Schematic of an (a) N-input MRL OR, (b) N-input MRL 
AND, (c) two-input MRL NAND, and (d) two-input MRL NOR. 

is dependent on the determined by the case of different 
inputs. 

The MRL logic gates can be inserted into a standard cell 
library as in standard CMOS logic. These standard cell 
libraries can consist of OR and AND logic gates. 
Alternatively, NOR and NAND logic gates, consisting of a 
memristive-based OR (AND), and a CMOS inverter, can 
produce the functionality of a NOR (NAND) logic gate. 

III. EIGHT-BIT FULL ADDER CASE STUDY 

An eight-bit full adder is considered as a case study for the 
MRL family. Five different parameter sets of memristive 
devices are chosen to evaluate a variety of memristive 
devices. The primary parameters are the linearity coefficient 
and the current threshold (respectively, α, ion, and ioff in the 
TEAM model [4]). All other parameters are chosen to exhibit 
a hysteretic behavior. The parameters for the memristive 
devices are listed in Table 1. 

To provide a standard cell design methodology, the 
standard cell is a NAND (NOR) logic gate, as described in 
Section IIB. No current flows from the output node in steady 
state since the output node of the AND (OR) logic gate is 
connected to an MOS gate. In this approach, every standard 
cell requires two connections between the CMOS and 
memristive layers, one for the middle stage transition and one 
for the output. This approach is robust, albeit inefficient in 
terms of power consumption and area as compared to an 
optimized circuit, where the CMOS inverter is only applied 
when signal restoration is needed or when the logic function 
requires signal inversion. In this case study, the optimized 
approach is used. 

For the optimized approach, when connecting cascaded 
memristive-based MRL gates, current can flow from the 
output node into the input of the next logic gate. In this case, 

the current flowing through the two memristive devices of 
one gate is not equal, and the smaller current may drop below 
the current threshold of the memristive devices, causing the 
logic gate to partially switch. This phenomenon can degrade 
the output voltage, and may perhaps cause the logic to fail 
after a single logic stage. 

 
TABLE 1. DIFFERENT PARAMETERS OF THE MEMRISTIVE DEVICES USED IN 

THE CASE STUDY 
 

            
       Device 

 
 

Parameter 

Linear 
with no 
current 
thresh-

old 

Linear 
with 

current 
thresh-

old 

Low  
non-

linearity 

Non-
linear 

Highly  
non-
linear 

Parameter 
set number 

1 2 3 4 5 

α 1 1 3 5 10 
ion -100 fA -20 μA -5 μA -5 μA -10 μA 
ioff  100 fA  20 μA  5 μA  5 μA  10 μA 
kon -5· 10-8 -10 -0.1 -0.01 -0.001 
koff  5· 10-8  10  0.1  0.01  0.001 
Ron 1 kΩ 
Roff 100 kΩ 

 
One approach to eliminate a possible logic failure is to 

increase the voltage of the high logical state to ensure that all 
currents in the circuit are greater than the current threshold of 
the devices. The increase in voltage is limited by the CMOS 
process, since high voltages may cause breakdown in the 
CMOS transistors (e.g., gate induced drain leakage [18]), and 
also dissipate more power. 

Another approach to eliminate logic failure is to amplify 
the signal with CMOS logic gates, preventing steady state 
current leakage and performing signal restoration. In this case 
study, both approaches are used. The voltage is increased and 
signal restoration is achieved through a CMOS inverter. The 
behavior of an MRL XOR logic gate is shown in Figure 5 to 
demonstrate the signal degradation. Note that these signal 
degradation issues are circuit dependent, i.e., the degree of 
signal degradation is dependent on the logic circuit structure 
as well as the parameters of the memristive devices. A 
schematic of the one-bit full adder used in this case study is 
shown in Figure 6. 

The design of the eight-bit full adder in this case study is 
achieved using eight cascaded one-bit full adders. A tradeoff 
between signal integrity and minimizing the number of vias is 
the primary issue. To maintain a distinct value for the output 
of the eight-bit full adder (Si for i = 1, …, 8 and COUT), a set 
of CMOS buffers is added to the circuit to amplify the output 
signal. For the intermediate signals (COUT → CIN), no 
constraint is placed on the strength of the signal other than to 
maintain the correct logical polarity. A lower signal strength 
requires fewer CMOS gates and hence less area and power 
consumption. The required number of CMOS buffers is 
dependent on the signal degradation along the logic path. 

For parameter sets 1, 3 and 4 (memristive devices with a 
relatively low current threshold), the one-bit full adder shown 



Figure 5. Dynamic behavior of an MRL XOR logic gate. The high 
voltage is 4 Volts. The output voltage degrades by approximately 

15% for the input cases of ('1', '0') and ('0', '1'). 

 
Figure 4. Dynamic behavior of MRL gates. Waveforms of (a) an 

OR logic gate, and (b) an AND logic gate. The output voltage is 
shown for different input states. Dynamic hazards occur when the 

input changes to ('0', '1') or ('1', '0'), which is marked by an oval. (c) 
The power consumption for both logic gates is identical. For the cases 
where the input states are different ('0', '1') or ('1', '0'), static power 

is consumed after the output is stable. 

 
Figure 6. Schematic of an MRL one bit full adder (S = XOR[A, B, CIN], 

COUT = A·B + CIN·XOR[A, B]) for the optimized method used in the case 
study. The one-bit full adder consists of six memristive-based OR logic 

gates, three memristive-based AND logic gates, and four CMOS inverters. 
In this circuit, 18 memristive devices and eight CMOS transistors are used. 

in Figure 6 exhibits correct logic functionality, which requires 
amplifying the signal between different bit levels. Parameter 
sets 2 and 5 demonstrate a high current threshold and are 
therefore more sensitive to signal degradation due to partial 
switching. For these parameter sets, the circuit fails for all 
CMOS compatible voltages. For parameter sets 2 and 5, 
buffers have been added to the one-bit full adder circuit to 
ensure correct logic behavior. The required voltage levels and 
number of buffers for each parameter set are listed in Table 2, 
total number of devices is listed in Table 3, and normalized 
power consumption1 for each parameter set is listed in Table 
4. 

                                                           
1 The power is normalized since the parameter set of the memristive 

devices is not correlated to the CMOS process. 

Note from the data listed in Tables 3 and 4 that unlike most 
digital applications [4], a linear memristive device with no 
threshold (as in parameter set no. 1) is preferable to minimize 
the number of connections between the CMOS and 
memristive layers, and to reduce power. The optimized 
approach consumes less dynamic power but more total 
energy, as compared to a standard cell methodology, since the 
static power is non-zero. Since decreasing the operating 
voltage requires additional CMOS buffers, the number of 
CMOS buffers in parameter set no. 3 (a high voltage of 3 
Volts) is lower than in parameter set no. 1. The high voltage 
used in parameter sets number 2 and 5 significantly increases 
the power consumption. 

IV. CONCLUSIONS 

Memristor Ratioed Logic (MRL), a hybrid CMOS-
memristive logic family, is described in this paper. This logic 
family uses less die area as compared to CMOS logic. It is 
possible to reduce the design effort of an MRL circuit by 
using standard library cells composed of only NOR and 
NAND logic gates. Standard cells however limit the 
flexibility of the design process and restrict the opportunity to 
save area. Other optimization criteria are also possible, such 
as increasing the operating voltage and minimizing the 
number of connections between the CMOS and memristive 
layers. 

An eight-bit full adder is presented as a case study. This 
full adder is optimized for minimum CMOS/memristive 
connections and saves approximately 50% in area as 
compared to CMOS logic, while requiring 44% fewer 
connections and 30% less power as compared to an MRL 
standard cell library. 

It is also shown that a linear memristive device with no 
current threshold is preferable for the MRL logic family, 
unlike other digital applications, where a threshold and 
nonlinearity are desirable. MRL gates based on linear 
memristive devices are faster, smaller, and consume less 
power as compared to nonlinear memristive devices. 



TABLE 2. VOLTAGE LEVEL AND NUMBER OF BUFFERS FOR EACH 

PARAMETER SET IN THE CASE STUDY 

 
Parameter 

set 
Supply 
voltage 

Number of buffers needed 

Inside 
each one 
bit full 
adder 

Between 
each COUT 

and CIN 

After last 
stage 
COUT 

After 
each Si 

1 1V 0 2 2 1 
2 6.5V 2 1 2 2 
3 3V 0 1 1 1 
4 4V 0 2 2 1 
5 6.5V 2 2 2 2 

 
TABLE 3. SUMMARY OF CASE STUDY 

 
Parameter set Number of 

memristors 
Number of 

CMOS 
transistors 

Number of 
vias 

Supply 
voltage 

CMOS – 
based 

- 288 - 1 V 

Standard cell 
approach 

144 144 144 1 V 

1 144 160 80 1 V 
2 144 228 96 6.5 V 
3 144 128 80 3 V 
4 144 160 80 4 V 
5 144 256 96 6.5 V 

 
TABLE 4. POWER CONSUMPTION AND ENERGY FOR CASE STUDY 

 
Parameter set Average power 

[normalized] 
Total energy 
[normalized] 

Standard cell approach 
(for parameter set 1) 

1 1 

1 0.72 5.02 
2 386.4 2035.1 
3 22.5 167.9 
4 60.8 499.2 
5 354.95 2004.5 

The Memristor Ratioed Logic family opens an opportunity 
for additional memristive/CMOS integrated circuits and 
increases logic density. This enhancement can provide greater 
computational abilities to processor and other computational 
circuits. 
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 

Abstract — An attractive "beyond Moore" approach is to 

combine standard CMOS and memristors, novel devices 

developed primarily as memory, to perform logical operations. In 

this paper, MRL (Memristor Ratioed Logic) - a hybrid CMOS-

memristor logic family - is described. In this logic family, OR and 

AND logic gates are based on memristive devices, and CMOS 

inverters are added to provide a complete logic structure and 

signal restoration. The MRL family is compatible with standard 

CMOS logic since the logical state is represented by voltage as in 

CMOS. Design issues and considerations are discussed, including 

area, power, and speed, and a case study of an eight-bit full adder 

is presented. 

 

Index Terms—Memristive systems, memristor, SPICE, logic 

design.  

I. INTRODUCTION 

he advancements of computer capabilities over the past 

several decades are closely linked to the efficient 

exploitation of semiconductor technology.  Since the 1960's, 

integrated circuits have provided significant growth in the 

number of processing elements and memory bits available to 

system developers. This growth has enabled increasingly 

complex computer hardware. Simultaneously, semiconductor 

technology has provided orders of magnitude improvements in 

speed, power consumption, and reliability, together with 

significant reductions in the cost per device. These trends are 

direct consequences of frequent miniaturization of device 

dimensions in the semiconductor fabrication process. The 

exponential rate of microelectronic device scaling cannot be 

sustained indefinitely. There is broad agreement that nanoscale 

CMOS transistor sizes will approach fundamental physical 

limits within the next decade [1]. 

Once devices can no longer be scaled, microelectronic 

technology will require innovations to enable continued 

growth in the complexity of hardware systems. These 
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enhancements may include revolutionary new devices such as 

carbon nanotubes or spintronic devices rather than CMOS. 

Less radical hybrid approaches, combining standard CMOS 

with new technologies, may provide more practical and 

continuous growth paths during the next 20 to 30 years. An 

example is the fabrication of multi-layered integrated circuits 

(i.e., three-dimensional circuits [2]) which are becoming 

commercially available. Other attractive new technologies 

which will extend the capabilities of CMOS are memristors [3] 

and memristive devices [4]. These devices are added in the 

metal layers above the standard CMOS layers, providing a 

significant increase in functional density. 

In this paper, a novel logic family named MRL (Memristor 

Ratioed Logic) combining memristors with CMOS is 

described. This logic family may be useful to further extend 

CMOS technology and perform logic in the "beyond Moore" 

era. The rest of the paper is organized as follows: memristors 

and memristor-based logic circuits are described in Section II. 

Design principles and constraints of this logic family are 

discussed in Section III. A case study of an eight-bit full adder 

is used to demonstrate the MRL design process in Section IV. 

The dependence of MRL gates on the behavior of memristive 

devices and other design considerations are discussed in 

Sections IV and V. 

II. MEMRISTOR-BASED LOGIC 

In recent years, novel memory technologies have emerged, 

especially to replace Flash technology. These emerging 

technologies are based on two terminal devices with varying 

resistance and include Phase Change Memory (PCM), 

Resistive RAM (RRAM), and Spin Torque Transfer 

Magnetoresistance Random Access Memory (STT-MRAM). 

These technologies can be described as memristive devices 

[4], [15], which their existence was suggested by Chua and 

Kang in 1971 and 1976. The focus of this paper is on bipolar 

memristive devices [5], such as TiO2 resistive switch and STT-

MRAM. In bipolar memristive devices, the resistance of the 

device increases when current flows in one direction, and 

decreases when current flows in the other direction. The 

symbol, polarity, and behavior of a bipolar memristive device 

are shown in Figure 1. 

Although a memristive device is typically regarded as a 

memory device, where the resistance represents the stored 

state variable, a memristor can also be used to provide 

MRL - Memristor Ratioed Logic for Hybrid 

CMOS-Memristor Circuits 
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Figure 1. (a) Memristive device symbol. The thick black line on the 

left side of the device represents the polarity of the device. If the 

current flows into the device, the resistance of the device decreases. 

If the current flows out of the device, the resistance increases. (b) 

The current-voltage curve of a memristive device exhibit hysteresis 

for a cyclic input. 

combinational Boolean functions. Several memristive device 

models have been developed. The TEAM (ThrEshold 

Adaptive Memristor) model [6] is used in this paper since this 

model can support any memristive device. The TEAM model 

describes the behavior of the device by the following equations 
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where koff and kon are fitting parameters, αon and αoff are the 

adaptive nonlinearity parameters, ioff and ion are the current 

threshold parameters, fon(x) and foff(x) are window functions, 

RON and ROFF are, respectively, the minimum and maximum 

resistance of the memristor, and xon and xoff are, respectively, 

the minimum and maximum allowed value of the internal state 

variable x. 

Practical bipolar memristive devices are compatible with 

standard CMOS technology [7]. These devices are fabricated 

in the metal layers of an integrated circuit, where the 

memristive effects occur in the oxide between the metal layers 

(e.g., in TiO2) or within the metal layers (e.g., in STT-

MRAM). Memristive devices can therefore be fabricated 

physically above the CMOS transistors. The size of a typical 

memristive device is relatively small, since the fabrication 

process is similar to processing a via between metal layers (a 

typical area size for a RRAM cell can be less than 4 F
2
, where 

F is the feature size). Hence, memristive-based circuits may be 

more dense than transistor-only CMOS circuits. Memristive 

devices therefore exhibit high density and good scalability. 

The read and write time for these devices can be as fast as 100 

picosecond [8], although currently typical values are more than 

a nanosecond. Currently, except for STT-MRAM, memristive 

devices suffer from endurance limitations, where the number 

of allowed writes per cell is approximately 10
10

 [9]. It is 

believed however that this limit will increase to at least 10
15

 

[10]. In this paper, it is therefore assumed that endurance is not 

a critical limitation. 

With deeply scaled CMOS, logic circuits suffer from 

problems such as leakage current, requiring novel logic 

structures. The use of memristors as logic circuits can save 

physical area, increasing logical density, thereby opening 

opportunities for novel functionality. Although the concept of 

memristive devices as logic gates is at an early stage of 

development, several approaches have been proposed, mainly 

for logic gates within a crossbar array [11], [12], [16]. 

Memristive-based logic families within a crossbar cannot be 

easily integrated with standard CMOS logic since a resistance, 

rather than a voltage, represents the logical state. To integrate 

these logic families with standard voltage based CMOS logic, 

a conversion mechanism is required. This added circuitry 

reduces the efficiency of integrating CMOS and memristive-

based logic families within a memory. Furthermore, the 

operation of these memristor-based logic families requires a 

sequence of several time phases. These requirements limit the 

speed of the logic operation. 

III. MEMRISTOR RATIOED LOGIC (MRL) FAMILY 

In this section, the MRL (Memristor Ratioed Logic) family 

is presented. In MRL, the programmable resistance of the 

memristive devices is used to compute Boolean AND/OR 

functions. The memristive devices are used solely as 

computational elements and not as memory elements. In this 

proposed logic family, the logical value is represented by a 

voltage, consistent with CMOS, enabling the integration of this 

hybrid logic family with standard CMOS logic. Since OR and 

AND functions are non-inverting, a complete logic structure 

can be achieved by adding a standard CMOS inverter.  

The MRL family is different from other hybrid CMOS-

memristor circuits, where the memristors act as configurable 

switches. In previous hybrid CMOS-memristor circuits, the 

resistance of the memristive devices is programmed prior to 

operation, and does not change during execution (see e.g., [7], 

[13], [14]). 

A. Memristor-based logic gates 

Two-input OR and AND logic gates consist of two 

memristive devices connected at opposite polarities, as shown 

in Figures 2a and 2b. The output node is the common node of 

the memristive devices, while the signal on the other terminal 

of each memristive device is an input to the logic gate. 

Due to the polarity of the memristive devices, in an OR 

logic gate, when current flows into the logic gate through one 

of the inputs, the resistance of the memristive device 

decreases. Similarly, in an AND logic gate, the opposite 

polarity is used, and the resistance of the memristive device 

increases when current flows into the device. 

For identical inputs, the voltage drop between the inputs is 

zero; hence no current flows within the circuit. The output 

voltage is therefore equal to the input voltage. For the case 

where both inputs are logical zero (one), the ground (supply) 

(1a) 

(1b) 

(1c) 
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Figure 2. Schematic and behavior of MRL gates.  (a) The schematic of 

an OR logic gate, and (b) an AND logic gate. Both logic gates consist 

of two memristive devices where the polarity of the memristive devices 

is the only structural difference. The behavior of (c) an OR logic gate, 

and (d) an AND logic gate when VIN1 = '1' and VIN2 = '0'. The current 

flows from VIN1 to VIN2 and the resistance of the memristive devices 

changes for the (e) OR, and (f) AND logic gates. The continuous and 

dashed lines are, respectively, the resistance of R1 and R2. 

voltage is at the inputs, the output voltage is ground (supply), 

and the logical state of the output is logical zero (one). 

For the case where the inputs are different, i.e., one input is 

logical one and the other input is logical zero, current flows 

from the high voltage (the terminal of the memristive device 

where the input is logical one) to the low voltage (the terminal 

of the memristive device where the input is logical zero), 

thereby changing the resistance of both memristive devices. 

An OR logic gate is illustrated in Figure 2c. The resistance of 

the memristive device connected to the logical one input R1 

becomes lower, and the resistance of the memristive device R2 

becomes higher, as shown in Figure 2e. At the end of the 

computational process, the resistance of both memristive 

devices is approximately RON and ROFF, respectively, the 

minimum and maximum resistance of the device. Assuming 

ROFF >> RON, the output voltage of the logic gate is determined 

by the voltage divider across the memristive devices, 

 
, .

off

out OR high high

off on

R
V V V

R R
 


 (1) 

In the AND logic gate, the opposite polarity as compared to 

the OR logic gate is used. The behavior is illustrated in Figures 

2d and 2f. The output voltage of the AND logic gate in this 

case is 

 
, 0.on

out AND high

off on

R
V V

R R
 


 (2) 

Note that the initial resistance of both memristive devices 

has no effect on the result of the computation. The only effect 

of the initial resistance on the behavior of the logic gate is the 

delay of the execution for the case where the inputs are 

different, i.e., the time required to change the resistance of 

both memristive devices to either the maximum or minimum 

resistance. The delay is also dependent on the voltage level of 

the input signal. A relatively low voltage level increases the 

delay. It is possible that the memristive devices do not fully 

switch and achieve the maximum and minimum resistance 

since the input voltages are not applied for a sufficiently long 

time or the input voltage is too low. In this case, it would be 

difficult to distinguish between the different output levels. The 

MRL family is inspired by Diode Logic and shares some 

characteristics, as both logic families are non-inverting and 

non-restoring. The number of inputs for both MRL gates can 

be extended in a similar way as diode logic, as shown in 

Figure 3a and 3b. MRL gates can also be cascaded as shown in 

Figure 3e. 

B. Adding CMOS-based inversion 

To provide a complete logic family, an inverter is needed in 

addition to the OR and AND logic gates. Furthermore, 

memristive devices are passive elements and therefore cannot 

amplify signals. The MRL OR and AND logic gates lack 

signal restoration, i.e., the output voltage levels degrade, as 

expressed by (1) and (2). These logic gates cannot be cascaded 

for too many stages before signal amplification is required. 

Since the logical state of the input and output in MRL logic 

gates is represented as a voltage, these logic gates can operate 

with standard CMOS inverters. The addition of a CMOS 

inverter to the MRL family solves both problems. A schematic 

of a two input MRL NAND and NOR is shown in Figures 3c 

and 3d. 

C. Dynamic behavior and speed of a single logic gate 

In the design process of an MRL gate, several issues need to 

be considered. These characteristics include the delay of the 

logic gate, power dissipation, and output signal degradation. 

The speed of the logic gate is determined by the time 

required to achieve the desired resistance when the inputs are 

different (logical one and zero). The delay needs to be 

determined for the case where both memristors have an initial 

resistance of ROFF and the initial current is therefore minimal. 

In this case, the delay is the time required to change the 

resistance of one of the memristors to RON. This time depends 

on the supply voltage and the specific behavior of the 

memristors. The delay as a function of supply voltage is shown 

in Figure 4a. The delay can be approximately determined from 

'
,OFF

high

kQ R
T

V
           (3) 

where Q' is the charge required to switch the resistance and 

Vhigh is the logical one voltage. k is a constant that depends 

upon the memristor model. For the binary resistance model 

[12], k equals 2, and for the linear ion drift model [6], k equals 

1.5. Note that a lower ROFF or a higher voltage decreases the 

delay. 

 The switching process may also produce dynamic hazards. 

When the input changes from one input case to another input 
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Figure 3. Schematic of an (a) N-input MRL OR, (b) N-input MRL 

AND, (c) two-input MRL NAND, (d) two-input MRL NOR, and (e) a 

two-stages MRL gates, where the first stage consists of OR gates and 

the second stage is an AND gate. 

 
Figure 4. Delay of an MRL gate as a function of supply voltage. (a)  

Delay for different memristor characteristics as listed in Table 1 and 

(b) the delay for linear ion drift memristor [6]. The difference in the 

delay of an MRL gate with and without a load capacitance of 10 fF is 

relatively small (maximum difference of 4%). The difference between 

the theoretical and simulated delay increases with the supply voltage 

(varies from 1% to 40%).  The parameters for the linear ion drift 

model are µV = 10-5 m2s-1V-1, ROFF = 100 kΩ, RON = 1 kΩ, D = 10 nm 

(Q' = 10-14 C). 

case, i.e., changing the inputs from (0,1) to (1,0) and vice 

versa, the output produces a dynamic hazard until the 

switching process is completed. The dynamic behavior of the 

OR and AND logic gates for different input cases is illustrated 

in Figures 5a and 5b. During the switching process, the output 

value is erroneous, although this behavior occurs for a shorter 

period than the delay of the logic gate. 

D. Power consumption of a single logic gate 

 When both inputs are identical, no current flows in the 

circuit and the power is zero. If the inputs are different, current 

flows and power is consumed. The power to switch the 

memristive devices depends upon the resistance of both 

memristive devices and changes during the computational 

process. Gener ally, the power consumption of an MRL gate 

for these input cases is 

 
2

1 2

( ) ,
( ) ( )

highV
P t

R t R t



 (4) 

where Vhigh is the voltage of logical one (supply voltage) and is 

assumed to be constant, and R1(t) and R2(t) are the resistance 

of the memristive devices, which changes during the 

computational process. The value of R1(t) and R2(t) depends 

upon the initial states and the value of Vhigh. For the case of 

different inputs, a constant current flows from one input to the 

other input after the resistance of the memristive devices 

reaches the desired magnitude and the output becomes stable 

as illustrated in Figure 5c.  The static power consumed in these 

cases is approximately 

 
2

.
high

static

on off

V
P

R R



 (5) 

 The static power is a disadvantage as compared to CMOS 

logic. To lower the static power, the input signals need to be 

removed once the output state becomes stable. There is a need 

to activate the circuit only for the time required to execute the 

computation (i.e., the delay of the logic gates) and store the 

result. It is desired therefore to pipeline the execution. 

E. Concatenating MRL gates  

The output voltage is dependent on the voltage divider 

across the two memristive devices. This voltage divider 

degrades the output signal. For memristors with a current 

threshold [6], the tolerable degradation is limited by this 

threshold. Greater degradation can cause incorrect operation. 

Although the degradation for a single MRL gate is relatively 

small when ROFF >> RON, for cascaded logic gates, this 

degradation accumulates and may become significant. 

The degradation as a function of the number of logical 

stages and the ROFF/RON ratio is shown in Figure 6. The 

behavior of an MRL XOR logic gate is depicted in Figure 7 to 

illustrate the signal degradation. Note that these signal 

degradation issues are circuit dependent, i.e., the degree of 

signal degradation is dependent on the structure of the logic 

circuit as well as the specific parameters of the memristive 

devices. 

The degradation phenomenon can be avoided by 

occasionally amplifying the signal by CMOS inverters or 

buffers. Integrating a CMOS inverter into an MRL OR or 

AND logic gate however adds capacitance to the circuit. The 

delay of the logic gates is therefore also dependent on the 
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Figure 5. Dynamic behavior of MRL gates. Waveforms of (a) an 

OR logic gate, and (b) an AND logic gate. The output voltage is 

shown for different input states. Dynamic hazards occur when the 

input changes to ('0', '1') or ('1', '0'), which is marked by an oval. (c) 

The power consumption for both logic gates is identical. For the 

cases where the input states are different ('0', '1') or ('1', '0'), static 

power is consumed after the output is stable. 

 

Figure 6. Output degradation. (a) Output degradation as a function 

of the number of logical stages. ROFF/RON = 100. The maximum 

degradation for five and ten logical stages is, respectively, 12.4% and 

30.25%. (b) Output degradation as a function of the ROFF/RON ratio 

for ten logical stages. The maximum degradation for a ratio of 100, 

500, and 4000 is, respectively, 30.25%, 9.5%, and 1.4%. The 

simulations are based on linear memristors (model 1 in Table 1). 

 

Figure 7. Two-input MRL XOR. (a) A schematic of MRL XOR, 

consisting of one memristor-based OR, two memristor-based AND, 

and two CMOS inverters, and (b) dynamic behavior of an MRL 

XOR logic gate. The high voltage is 4 volts. The output voltage 

degrades by approximately 15% for the input cases of ('1', '0') and 

('0', '1').  

CMOS gate capacitance which increases the delay. The actual 

delay is higher than the delay determined by (3) and shown in 

Figure 4b, although this difference is relatively small (0.1% to 

4%). The degradation of each logic gate can be determined 

from (1) and (2).  

MRL logic gates can be inserted into a standard cell library 

as in standard CMOS logic. These standard cell libraries can 

consist of NOR and NAND logic gates, where memristive-

based OR (AND) and a CMOS inverter produces the 

functionality of a NOR (NAND) logic gate. Using NOR and 

NAND as standard cells overcomes the degradation issue since 

no current flows from the output node during steady state as 

the output node of the AND (OR) logic gate is connected to a 

CMOS gate. In this approach, each standard cell requires two 

connections between the CMOS and memristive layers. This 

approach is robust and relatively simple to design, albeit less 

efficient in terms of power consumption and area as compared 

to a circuit, where the CMOS inverter is only applied when 

signal restoration is needed or when the logic function requires 

signal inversion (an optimized approach). 

IV. EIGHT-BIT FULL ADDER CASE STUDY 

To investigate the MRL family, an eight-bit full adder is 

considered as a case study. Five different parameter sets of 

memristive devices are chosen to evaluate a variety of 

memristive characteristics. The primary parameters are the 

linearity coefficient and the current threshold (αon, αoff, ion, and 

ioff in the TEAM model [6]) varying from a linear memristor 

with no threshold, i.e., the change in the resistance is linearly 

dependent on the current, to a nonlinear memristor with a 

current threshold. All of the other parameters are chosen to 

exhibit hysteretic behavior and cannot be therefore 

numerically compared to CMOS-only logic. The parameters 

for the memristive devices are listed in Table 1. In this case 

study, the standard cell approach and the optimized approach 

are designed with 0.12 µm CMOS and simulated in SPICE. 

Schematics of the one-bit full adders used in this case study for 
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Figure 8. Schematic of an MRL one bit full adder used in the case 

study (S = XOR[A, B, CIN], COUT = A∙B + CIN∙XOR[A, B]); (a) for the 

standard cell approach and (b) the optimized approach. The standard 

cell approach requires 18 memristors, 18 CMOS transistors, and 18 

vias. The optimized approach, however, requires 18 memristors and 

only eight CMOS transistors and six vias. 

TABLE 1. DIFFERENT PARAMETERS OF THE MEMRISTIVE DEVICES USED 

IN THE CASE STUDY 

 

 

      Device 

 

 

Parameter 

Linear 

with no 

current 

thresh-

old 

Linear 

with 

current 

thresh-

old 

Low  

non-

linearity 

Non-

linear 

Highly  

non-

linear 

Parameter 

set number 

1 2 3 4 5 

αoff  = αon 1 1 3 5 10 

ioff  =  -ion 100 fA 20 μA 5 μA 5 μA 10 μA 

koff  = -kon 5∙ 10-8 10 0.1 0.01 0.001 

Ron 1 kΩ 

Roff 100 kΩ 

 

TABLE 2. SUMMARY OF CASE STUDY 

 

Parameter 

set 

Supply 

voltage 

[Volt] 

Number of 

memristors 

Number of 

CMOS 

transistors 

Number 

of vias 

CMOS – based 1 - 288 - 

Standard cell  1 144 144 144 

1 1 144 160 80 

2 6.5 144 228 96 

3 3 144 128 80 

4 4 144 160 80 

5 6.5 144 256 96 

 

TABLE 3. POWER CONSUMPTION AND ENERGY FOR CASE STUDY 

 

Parameter set Average power 

[normalized] 

Total energy 

[normalized] 

Standard cell approach 

(for parameter set 1) 

1 1 

1 0.72 5.02 

2 4.683 5342.1 

3 5582 96781 

4 60.8 311.2 

5 423812 533382 

 

both approaches are shown in Figure 8. The optimized 

approach saves CMOS transistors (eight instead of 18 per one-

bit full adder) and vias (six instead of 18 per one-bit full 

adder). 

The eight-bit full adder in this case study is achieved using 

eight cascaded one-bit full adders. A tradeoff between signal 

integrity and minimizing the number of vias is the primary 

design issue. To produce a distinct value for the output of the 

eight-bit full adder (Si for i = 1, …, 8 and COUT), a set of 

CMOS buffers is added to the circuit to amplify the output 

signal. For the intermediate signals (COUT → CIN), no 

constraint is placed on the signal other than to maintain the 

correct logical polarity. 

For parameter sets 1, 3 and 4 (memristive devices with a 

relatively low current threshold), the one-bit full adder shown 

in Figure 8 exhibits correct logical functionality, which 

requires amplifying the signal between different bit levels. 

Parameter sets 2 and 5 demonstrate a high current threshold 

and are therefore more sensitive to signal degradation due to 

partial switching. For these parameter sets, the circuit fails for 

all CMOS compatible voltages. Hence, for parameter sets 2 

and 5, buffers have been added to each one-bit full adder to 

ensure correct logical behavior. The required voltage levels 

and number of components for each parameter set are listed in 

Table 2. The normalized power consumption
1
 for each 

parameter set is listed in Table 3. 

Note from the data listed in Tables 2 and 3 that unlike most 

digital applications [12], a linear memristive device with no 

threshold (as in parameter set 1) is preferable. Linear 

memristive devices minimize the number of connections 

between the CMOS and memristive layers and reduce power. 

Furthermore, the delay time of the MRL gates with linear 

memristive devices is relatively small, as shown in Figure 4a. 

Using nonlinear memristive devices requires a higher voltage, 

slower clock, and greater area due to the additional CMOS 

buffers and vias. The high voltage significantly increases the 

power consumption. 

The optimized approach minimizes the delay and the 

number of vias, and consumes less dynamic power as 

 
1 The power is normalized since the parameter set of the memristive 

devices is not correlated to a specific CMOS process. 

compared to a standard cell library. This approach consumes, 

however, more total energy since the static power is non-zero.  

V. CONCLUSIONS 

The advantages of combining memristors and CMOS 

transistors are shown in this paper. Memristor Ratioed Logic 
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(MRL), a hybrid CMOS-memristive logic family, is described. 

The compatibility of memristors and CMOS is exploited to 

increase logic density. A design example is also described 

saving approximately 50% in area as compared to CMOS 

logic. 

A linear memristive device with no current threshold is 

shown to be preferable for the MRL logic family, unlike other 

digital applications, where a threshold and nonlinearity are 

desirable. MRL gates based on linear memristive devices are 

faster, smaller, and consume less power as compared to 

nonlinear memristive devices. 

The Memristor Ratioed Logic family opens opportunities 

for additional hybrid memristive/CMOS integrated circuit 

structures to increase logic density. Although standalone 

CMOS logic is preferable in terms of performance as 

compared to MRL, a hybrid approach can further extend 

CMOS technology and enhance computational abilities for 

next generation digital integrated circuits. 
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Abstract – In-memory computation is one of the most promising features of 

memristive memory arrays. In this paper, we propose an array architecture that 

supports in-memory computation based on a logic array first proposed in 1972 

by Sheldon Akers. The Akers logic array satisfies this objective since this array 

can realize any Boolean function, including bit sorting. We present a hardware 

version of a modified Akers logic array, where the values stored within the array 

serve as primary inputs. The proposed logic array uses memristors, which are 

nonvolatile memory devices with noteworthy properties. An Akers logic array 

with memristors combines memory and logic operations, where the same array 

stores data and performs computation. This combination opens opportunities for 

novel non-von Neumann computer architectures, while reducing power and 

enhancing memory bandwidth. 

Keywords: memristor, memristive systems, logic array, memory array, von 

Neumann architecture, Akers logic array. 

 

I. INTRODUCTION 

Conventional computers are based on a von Neumann architecture, where separate 

units process and store data. A different approach is to process data within the same 

unit that stores the data (i.e., process data within memory). An illustration of both 

architectures is shown in Figure 1. In this paper, a hardware version of processing 
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within memory is proposed. The proposed circuit is based on a study of rectangular 

logic arrays, first proposed in 1972 by Sheldon Akers [1]. 

In an Akers logic array (or, in short, an Akers array), the execution of any Boolean 

function is performed by flowing data across an array of primitive logic cells. The 

data are transferred from each primitive logic cell to neighboring cells, as shown in 

Figure 2a. The operation of an Akers array is similar to systolic array [2] and cellular 

automata [19]. The primitive logic cell has three inputs and two outputs, as shown in 

Figure 2b. The inputs of the primitive logic cell include two control inputs x and y and 

a variable input z, which is replaced in our circuit by an internal state (i.e., the stored 

data). The primitive logic cell performs a predefined logical operation f(x, y, z), which 

is described below. The output of each primitive logic cell is used as control inputs x 

and y of, respectively, the bottom and right neighboring primitive logic cells. 

To execute any Boolean function within an Akers array, specific input values are 

inserted as control inputs into the left-most column and the upper-most row. The 

control input y of the left-most column is set to 1 for all rows, and the control input x 

of the upper-most row is set to 0 for all columns, as shown in Figure 2a. These control 

inputs along with the array structure and the function f(x, y, z) determine the Boolean 

function computed by the array. The inputs to this Boolean function are the bits stored 

within the array cells. The output of the Boolean function computed by the Akers 

array is the output of the primitive logic cell at the bottom right of the array. It is also 

possible to define multiple Boolean functions (or, alternatively, a multi-bit output) on 

the same Akers array, in which case additional primitive cell outputs are used as 

external functional outputs. To date, an Akers array has been treated as a 

mathematical concept since the benefit of an Akers logic array with conventional 

semiconductor technology (i.e., CMOS technology) is limited, as described in Section 

II. 

The emergence of memristive technologies [3] enables the integration of 

computation and memory, including logic within memory [5-6, 20-26]. The high 

density of memristors and compatibility with CMOS makes an Akers array with 

memristors practical. In this paper, a memristive Akers array is proposed, where the 

variables z are stored within the memristive cells, and the control inputs x and y are 



voltages. The proposed memristive Akers array serves as a practical example of in-

memory computation. 

The design of the proposed memristive Akers array is demonstrated here by a small 

example of a four by four array, producing a variety of array operations, including a 

bit sorting algorithm as a case study. The rest of the paper is organized as follows. In 

Section II, background describing both the Akers array and memristors is provided. 

The proposed memristive Akers array is described and evaluated in, respectively, 

Sections III and IV, followed by a discussion of design considerations for larger 

arrays in Section V. A small example of different array operations is described in 

Section VI, followed by some concluding remarks in Section VII. 

II. BACKGROUND   

In this section, the theory of the original Akers logic arrays is described and the 

basic principles of memristive devices are reviewed, including the model used in this 

paper for evaluating the proposed memristive Akers array. 

A. Akers Logic Array 

An Akers logic array is a two-dimensional array of identical primitive logic cells 

connected in a rectangular grid, as shown in Figure 2a. The primitive logic cell in the 

array is a three input logic gate that executes the logical operation, 

                                                                            

Note that in the original Akers array [1], four alternative logical operations that 

generate the correct behavior of the array are proposed. In this paper, only (1) is used 

due to the easy implementation with memristors. 

The output of each primitive logic cell is transferred to the two neighboring 

primitive logic cells in the array – one below and one to the right of the array. The 

transferred data are the x and y control inputs of, respectively, the vertical and 

horizontal neighbors, as shown in Figure 2a. The control input y of the left-most 

column is set to 1 for all rows, and the control input x of the upper-most row is set to 

0 for all columns. 

The execution of a Boolean function is performed by organizing the contents of the 

array cells according to the particular specification, and reading the functional output 

from the output of the lower-right cell (or from multiple cell outputs in the case of a 



Boolean function with a multiple bit output or, alternatively, multiple Boolean 

functions simultaneously computed within the same array). Hence, the same array can 

be used for different Boolean functions, each specifying a different organization of 

inputs. Examples of several Boolean functions are illustrated in Figure 3. 

 Sorting of four bits               is shown in Figure 3a. The binary sorting 

function on   inputs is defined as the   Boolean functions          , where 

                 if the number of "1" inputs among           is greater than   

(i.e.,    is the maximum value and      is the minimum of the output). For the sorting 

function, each input variable of the sorting Boolean function is replicated a number of 

times up to the number of inputs [1]. For example,    is replicated four times, while 

   is replicated two times. The number of primitive logic cells is therefore        
   

    
  

 
 

 

 
  where n is the number of inputs to the sorting Boolean function. The 

output bits of the sorting Boolean function are placed along the diagonal of the array, 

as shown in Figure 3a. 

Another example for a Boolean function within an Akers array is a four-bit XOR 

[1], as shown in Figure 3b. The variable inputs of the primitive logic cells are 

arranged similarly to the sorting array, where the complementary value of the XOR 

inputs are also stored as input variables of the primitive logic cells. The output of the 

XOR operation is the output of the bottom right primitive logic cell. The number of 

primitive logic cells for an n-bit XOR is   . 

Since the inputs of the Boolean function must be replicated within an array, the 

number of primitive logic cells increases quadratically with the number of inputs of 

the Boolean function. A CMOS Akers logic array therefore requires significant area, 

making an Akers array impractical with standard CMOS. In contrast, the density and 

circuit architecture of memristive devices make the Akers array natural for memories. 

A memristive Akers array within memory can be denser than standard SRAM 

(without computation capabilities), as listed in Table 1. 

B. Memristors 

Memristors and memristive devices [3, 7] are two-port passive elements with 

varying resistance. The change in the resistance of these devices depends on the 

current flowing through the device (or, alternatively, the voltage across the device), as 



shown in Figure 4. While in theory the change in the resistance of a memristor 

depends directly on the current (or voltage), for memristive devices the dependence 

can be more complicated and described by internal state variables [7]. In this paper, 

the term memristor is used to describe both memristors and memristive devices. 

Since 2008, numerous emerging nonvolatile memory technologies have been 

connected to the theory of memristors [8-12]. These technologies are nonvolatile, fast, 

dense, CMOS compatible, low power, and have high write endurance. The 

compatibility of memristors with CMOS enables the use of memristors not only as 

memory, but also as logic circuits [4-6, 13, 20-26]. 

Several models have been proposed to describe the behavior of memristors. In this 

paper, the TEAM model is used [14]. The TEAM model is general and can fit 

memristors from different technologies. In the TEAM model, it is assumed that a 

memristor has current thresholds, ioff and ion, and an internal state variable x. When the 

current flowing through the memristor is above the current thresholds, the memristor 

changes state either from     to      or from      to     depending upon the 

original state and direction of the current. The voltage-current relationship and the 

change in state variable are described by 
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where RON and ROFF are, respectively, the minimum and maximum resistance of the 

memristor, xon and xoff are, respectively the minimum and maximum value of the state 

variable x, fon(x) and foff(x) are window functions (the TEAM window function is used 

in this paper), and koff, kon, αoff, and αon are fitting parameters. An example of an I-V 

curve of the TEAM model is shown in Figure 5. 

III. PROPOSED MEMRISTIVE AKERS LOGIC ARRAY 

As previously mentioned, an Akers array with conventional CMOS technology is 

impractical due to the significant area requirements. The use of memristors, which are 



dense and fabricated physically above the CMOS transistors, significantly reduces the 

area. 

The proposed memristive Akers primitive logic cell is based on the structure of 

complementary memristors (or complementary resistive switches, CRS) [15, 16]. In 

the proposed memristive realization of an Akers array, the input variable z is the 

stored internal state of a memristor. The inputs of the executed Boolean function are 

therefore treated as stored data within a memristive memory array. In this section, the 

structure of the primitive logic cell is described as well as the operation of the array. 

A. Primitive logic cell structure 

The proposed primitive logic cell realizes the logical connectivity described by (1). 

The primitive cell consists of two anti-serial memristors (connected with opposite 

polarity), as shown in Figure 6a. The control inputs of the primitive logic cell x and y 

are voltages (logical one and zero are, respectively, a positive voltage Vr and ground). 

The variable input z is the stored logical state of memristor   , which is represented 

by the resistance of the device (low and high resistances are considered, respectively, 

as logical one and zero). The memristor     has the complementary logical state of  

  . The stored logical state of    and     are written during a write operation prior 

to execution. 

Ideally, the memristors can be modeled as switches, where a high resistance is an 

open circuit and a low resistance is a short circuit, as shown in Figure 6b. In an ideal 

model, one switch is open and the other switch is closed. If z is logical one, the switch 

of z is closed and the logical value of y is transferred to the output. If z is logical zero, 

the switch is open and the complementary switch is closed, transferring x to the 

output. 

The precise output of the primitive logic cell is the result of a voltage divider 

between    and    . The output voltage Vf is  

   
     

      
                                                                

where    and     are, respectively, the resistance of memristors    and    , varying 

from     to          and     are the input voltages x and y. The output voltage Vf for 



different input conditions is listed in Table 2, demonstrating that, as required, the 

primitive logic cell indeed executes the Boolean function (1). 

B. Logic array operation 

The Akers logic array is an array of primitive logic cells that can also be used as a 

memory array, as shown in Figure 7. Unlike regular memory arrays, the memristive 

Akers logic array can compute different Boolean functions in addition to storing data. 

The computation of Boolean functions within the logic array is divided into two 

stages. The initial stage is a "write" operation to the memristors. In this stage, the 

initial logical state of memristors    and     is simultaneously written. This stage can 

be part of a regular write operation of the memory or, alternatively, an explicit 

initialization prior to computing the Boolean function. In this paper, initialization of a 

single primitive logic cell is evaluated. Writing to the array (e.g., addressing the 

specific primitive cells within the array and parallelizing the writes) is only briefly 

discussed since this process is similar in any CRS-based memory (e.g., see [16]). 

Relevant adjustments (e.g., adding CMOS selectors to achieve isolation between the 

primitive cells and maintain regular read and write operations), however, need to be 

performed to achieve a memory integrated with an Akers logic array, as shown in 

Figure 7c. 

The second stage executes the Boolean function. In this stage, a low voltage is used 

to ensure that the resistance of the memristors in the array does not change. 

1) Stage 1 – initialization of the primitive logic cells (write) 

Initialization of the logical states of    and     is simultaneously achieved due to 

the anti-serial connection of both memristors. In the complementary structure, 

applying a sufficiently high voltage to both memristors switches both memristors to 

different resistances, where one memristor achieves a high resistance and the other 

memristor achieves a low resistance. The write procedure in a complementary pair of 

memristors is shown in Figure 8. 

To write a logical one to   , the resistances    and     are required to be, 

respectively, a low and high resistance. The write procedure therefore applies a 

sufficiently positive voltage Vw to y while grounding x. To write a logical zero to   , 

the write procedure applies Vw to x while grounding y, or alternatively, apply –Vw to y 

and grounding x. At the end of the write operation, the resistance of   and     are 



RON and ROFF, where the resistance of one memristor is RON and the resistance of the 

other memristor is ROFF. 

2) Stage 2 – execution of the Boolean function (read)  

The structure of the memristive logic array is shown in Figure 2a. The array is 

similar to the structure of the original Akers logic array. In a memristive Akers logic 

array, each primitive logic cell consists of complementary memristors. The x and y 

control inputs are voltages, and, as in the original Akers array, the input y of the left-

most column is set to logical one (execution voltage   ), and the input x of the upper 

row is set to logical zero (ground) for all columns. Since the output of the memristive 

primitive logic cell is a voltage, the result of the logical operation for each primitive 

logic cell is transferred to the neighboring cells. 

To maintain correct operation of the memristive Akers logic array, the resistance of 

the memristors in the array must not change during execution. The current flowing 

through the memristors Ir is therefore maintained lower than the threshold current of 

the memristors. The current is 

   
       

      
 

  

        
                                                       

IV. EVALUATION OF PRIMITIVE LOGIC CELLS 

In this section, the proposed memristive primitive logic cell is evaluated with 0.18 

µm CMOS and simulated in SPICE. A Verilog-A TEAM model [17] is used to 

simulate the behavior of the memristors. 

The primitive logic cell is based on a complementary resistive switch structure. The 

CRS behaves as a linear resistor with a resistance of RON + ROFF below a certain 

voltage. Above this voltage, hysteresis exists in the current-voltage curve of the CRS 

[15, 16]. The current-voltage curve of the primitive logic cell is shown in Figure 9. 

The primitive logic cell is evaluated with and without CMOS selectors connected to 

the control inputs, x and y. The primitive logic cell drives a load capacitor of 10 fF. 

The parameters used for the memristors are listed in Table 3. A schematic of the 

simulated primitive logic cell is shown in Figure 10a. The results of the initializing 

stage are shown in Figure 10b. The write latency of the primitive cell depends upon 

the switching time of the memristor, assumed as 1.1 ns. The primitive logic cell 



exhibits a write latency of 6.6 ns (six times more than the switching time of a single 

memristor). 

The results of the execution stage are shown in Figures 10c and 10d. The primitive 

logic cell executes the correct logical behavior with degradation in the output signal. 

The degradation depends upon the ratio between ROFF and RON. The output 

degradation is 0.1% without selectors (ROFF/RON = 1000) and 4% with CMOS 

selectors (for a 0.18 µm CMOS process). The output degradation is discussed in the 

following section. 

V. OUTPUT DEGRADATION 

Since memristors are passive elements, signal degradation occurs at the output of 

each primitive logic cell. The degradation depends primarily on the ratio between 

ROFF and RON, where a higher ratio reduces the degradation. The degradation limits 

the size of the Akers array. 

The degradation of the output signal as a function of array size is shown in Figure 

11a for Akers arrays with and without CMOS selectors. The use of CMOS selectors 

makes the output degradation worse since the CMOS element adds a resistance in 

series. For larger arrays, the degradation is more significant and limits the size of the 

sub-arrays of the memory. The degradation for different ratios of ROFF and RON is 

shown in Figure 11b. For an array composed of 128 by 128 primitive logic cells, the 

minimal degradation of the output reaches 10% for ROFF/RON = 1000. For arrays with 

CMOS selector with a resistance of 1 kΩ, the actual output degradation is 15%. Using 

larger CMOS transistors lowers the degradation.  A higher ROFF/RON ratio enables a 

larger array, where a ratio of 10,000 enables arrays of more than a million logic 

primitive cells with an output degradation of 10%.  

VI. TEST CASE – MEMRISTOR-BASED LOGIC WITHIN MEMORY ARRAY 

To evaluate a memristive Akers array, several Boolean functions are investigated 

within the array. In this section, simulation results of a two-input XOR and sorting of 

four bits are presented as simple test examples. 



A. Two-input XOR 

The schematic and array structure of a          are shown in Figure 12. The 

memristive Akers array is a two by two array, consisting of eight memristors. 

Initializing the array (writing the inputs to the memristors) is achieved prior to 

execution. The execution is evaluated with the same parameters listed in Table 3, 

exhibiting the correct output. The average and maximum output degradation are, 

respectively, 20% and 31% for a two-input XOR with 0.18 µm CMOS selectors (3% 

without selectors). The relatively high degradation is due to the minimal size of the 

CMOS selectors and the use of high voltage transistors, which have a relatively high 

resistance. As previously mentioned, increasing the width of the transistors 

significantly lowers the signal degradation. 

The average power of the array during execution is, respectively, 6.2 µW and 33.6 

µW without and with CMOS selectors. The results for different input conditions are 

shown in Figure 13. For small arrays, adding CMOS selectors does not affect the 

speed of the circuit. For an array with CMOS selectors, execution is slower due to the 

capacitance of the selectors. 

B. Sorting of bits 

To evaluate sorting of bits, a four-bit sorting Boolean function is executed within the 

memristive Akers array. The memristive Akers array consists of ten primitive logic 

cells (see Figure 3a) and 20 memristors. The execution is evaluated with the same 

parameters listed in Table 3, showing correct output and an average output 

degradation of 0.3% without CMOS selectors. The average power of the array during 

execution is 1.6 µW. Results for different input conditions are shown in Figure 14.  

VII. CONCLUSIONS 

The proposed memristive Akers array contains a pair of complementary memristors 

in each cell. The array can therefore be used as a memristive memory, where a single 

bit is stored within a memristor pair rather than a single memristor [15, 16]. Each cell 

also performs a primitive Boolean operation, which enables the logic functionality of 

the array, as initially shown by Akers. The combination of an Akers array and 

memory is promising and may lead to additional uses, as described in [18]. For 

example, an Akers logic array naturally performs bit sorting which may lead to 

efficient sorting of words and other data structures. 



The integration of memristive memory with a logic array that executes any Boolean 

function can lead to a variety of novel non-von Neumann architectures. The Akers 

array architecture eliminates the memory bottleneck, reducing power and bandwidth. 

Memristive Akers logic arrays may also be beneficial for image processing 

applications and error correcting operations within memory. 
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Figure 1. Different computer architectures. (a) von Neumann architecture – 

separate memory and an ALU. (b) Processing within memory architecture 

(e.g., memristive Akers array). The memory can also process data. The size of 

the ALU is therefore smaller and the required memory bandwidth lower 

(schematically represented by the thickness of the arrow between the 

memory and the ALU). 
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Figure 2. Akers logic array. (a) An example of a three by three Akers array 

structure. (b) A primitive logic cell with three inputs x, y, z and two identical 

outputs f(x, y, z). 

 

 

  



 

Figure 3. Four-bit input structure for an Akers arrays for Boolean functions 

(a) Sort               ,  and (b)             . 
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Figure 4. Memristor symbol. The polarity of the memristor is represented by 

the thick black line. When current flows into the device, the resistance of the 

device increases. When current flows out of the device, the resistance of the 

device decreases. 
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Figure 5. Current-voltage characteristics of a memristor based on the TEAM 

model [14] for a sinusoidal current input with an amplitude of 17 µA and 

frequency of 100 kHz. The memristor parameters are listed in Table 3. 

  



 

 

Figure 6. Primitive logic cell. (a) The proposed primitive logic cell using 

memristors. (b) A behavioral model of the basic logic cell, where the 

memristors are modeled as ideal switches. 
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Figure 7. Memristive memories (exemplified by a three by three array). (a) 

Single memristor within a crossbar, (b) standard complementary memristive 

cells within a crossbar, and (c) Akers logic array within a memristive 

memory. The basic memory cell for the Akers logic array consists of two 

memristors and four CMOS transistors (as selectors). 

 



 

Figure 8. Write operation of logical one to memristor   . Due to the 

complementary structure of the circuit, writing to     and     is achieved 

simultaneously in both memristors by applying a single voltage VW. After the 

write procedure, the resistance of    and     is, respectively, RON and ROFF. 
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Figure 9. Current-voltage characteristic of the primitive logic cell for a 

sinusoidal current input with an amplitude of 17 µA and frequency of 100 

kHz. The circuit parameters are listed in Table 2. For a current lower than 

the current thresholds ion and ioff (10 µA), the resistance of both memristors is 

constant. For a current higher than the current thresholds, the resistance of 

both memristors changes. 

 



TABLE 1. AREA OF MEMORY TECHNOLOGIES 

F – feature size, T – transistor, C – capacitor, and R – resistive device (memristor) 

Technology 
Memory 

Cell 
Area per Cell 

[F2] 

Computing 
Capabilities 

Sequential 

SRAM 6 T 140 No --- 

DRAM 1T 1C 6-12 No --- 

Flash 1 T 4 No --- 

RRAM (memristive 
memory, single 
device per cell) 

1 R 4 
Yes 

[5-6, 25-26] 
Yes 

Complementary 
Resistive Switches 2 R 4-8 Yes [24] Yes 

Akers Array within 
Memory 2 R 4 T 20-90 Yes No 

 

  



 

TABLE 2. OUTPUT VOLTAGE OF PRIMITIVE LOGIC CELL FROM (4) 

x y z RZ 
Vf – derived from 

(4) 
f(x, y, z) 

0 0 0 ROFF   0 

0 0 1 RON   0 

0 1 0 ROFF 
𝑹𝑶 

𝑹𝑶   𝑹𝑶 
    0 

0 1 1 RON 
𝑹𝑶  

𝑹𝑶   𝑹𝑶 
    1 

1 0 0 ROFF 
𝑹𝑶  

𝑹𝑶   𝑹𝑶 
    1 

1 0 1 RON 
𝑹𝑶 

𝑹𝑶   𝑹𝑶 
    0 

1 1 0 ROFF    1 

1 1 1 RON    1 

 

 

 

  



TABLE 3. MEMRISTOR PARAMETERS 

kon -8 m/sec 

koff 0.5 m/sec 

ion -10 uA 

ioff 10 uA 

xon 0 

xoff 3 nm 

αon 1 

αoff 4 

RON 100 Ω 

ROFF 100 kΩ 

Vw 3 V 

Vr 1 V 

CMOS 
Selectors 

CMOS 0.18 µm process 
W = 0.42 µm 

 

 

 

  



  

Figure 10. Initialization and execution of primitive logic cell. (a) Schematic of 

the simulated circuit, (b) simulation of memristive initialization operation. Vy 

is the write voltage applied to the primitive logic cell (positive and negative 

for, respectively, writing logical one and zero to Z), and simulation of 

memristor execution operation (c) without selectors and (d) with selectors. 

The simulation parameters are listed in Table 2. 

 



 

Figure 11. Output signal degradation for an Akers array with (dashed line) 

and without (solid line) CMOS selectors. (a) Signal degradation as a function 

of rectangular array size for different ROFF/RON ratios (10
4
 in red, 10

3
 in blue, 

and 10
2
 in green), and (b) signal degradation in rectangular array of 128 by 

128 as a function of the resistance ratio ROFF/RON with CMOS selector. RON = 

1 kΩ, the resistance of a CMOS selector is 1 kΩ. 

 

 

  



 

Figure 12. Two-input XOR. (a) Schematic of a two by two memristive Akers 

array, and (b) the array structure of the Boolean function XOR(A, B).  
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Figure 13. Simulation results of a two-input XOR (a) without CMOS 

selectors and (b) with CMOS selectors for different inputs A and B. The 

average output degradation is 3% and 20%, respectively, without and with 

CMOS selectors for a 0.18 µm CMOS process. The execution voltage Vr for 

the XOR without selectors is 0.5 volts. 

  



  
Figure 14. Simulation results of a four-bit set sort using a four by four 

memristive Akers array without CMOS selectors. (a) Different output values 

and (b) different inputs, all with a single logical one and three zeros. The 

output is therefore the same for all input cases. The execution voltage Vr is 

200 mV. 
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3.3 Multistate Registers and Continuous Flow 

Multithreading 

This secion contains the following papers: 

 S. Kvatinsky, Y. H. Nacson, Y. Etsion, E. G. Friedman, A. Kolodny, and U. C. 

Weiser, "Memristor-based Multithreading," IEEE Computer Architecture Letters, 

2013 (in press). 

 R. Patel, S. Kvatinsky, E. G. Friedman, and A. Kolodny, "Multistate Register 

Based on Resistive RAM," IEEE Transactions on Very Large Scale Integration 

(VLSI), (in review). 

 S. Kvatinsky, Y. H. Nacson, R. Patel, Y. Etsion, E. G. Friedman, A. Kolodny, and 

U. C. Weiser, "On the In-Die 3D Integration of Memory in CMOS Metal Layers 

and Its Implications on Processor Microarchitecture," submitted to the Annual 

IEEE/ACM International Symposium on Microarchitecture. 
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Memristor-Based Multithreading 
Shahar Kvatinsky, Yuval H. Nacson, Yoav Etsion, Eby G. Friedman, Avinoam Kolodny, 

and Uri C. Weiser

Abstract— Switch on Event Multithreading (SoE MT, also known as coarse-grained MT and block MT) processors run multiple 
threads on a pipeline machine, while the pipeline switches threads on stall events (e.g., cache miss). The thread switch penalty 
is determined by the number of stages in the pipeline that are flushed of in-flight instructions. In this paper, Continuous Flow 
Multithreading (CFMT), a new architecture of SoE MT, is introduced. In CFMT, a multistate pipeline register (MPR) holds the 
microarchitectural state of multiple different threads within the execution pipeline stages, where only one thread is active at a 
time. The MPRs eliminate the need to flush in-flight instructions and therefore significantly improve performance. In recent 
years, novel memory technologies such as Resistive RAM (RRAM) and Spin Torque Transfer Magnetoresistive RAM (STT-
MRAM), have been developed. All of these technologies are nonvolatile, store data as resistance, and can be described as 
"memristors." Memristors are power efficient, dense, and fast as compared to standard memory technologies such as SRAM, 
DRAM, and Flash. Memristors therefore provide the opportunity to place the MPRs physically within the pipeline stages. A
performance analysis of CFMT is compared to conventional SoE MT processors, demonstrating up to a 2X performance 
improvement, while the operational mechanism, due to the use of memristors, is low power and low complexity as compared to 
conventional SoE MT processors. 

Index Terms — memristor; multithreaded processors; phase change memory; RRAM, STT-MRAM. 

—————————— —————————— 

1 INTRODUCTION
ultithreading in processors have been used to im-
prove performance in a single core for the past two 
decades. One low power and low complexity mul-

tithreading technique is Switch on Event multithreading 
(SoE MT, also known as coarse grain multithreading and 
block multithreading) [1], [2], [3], [20], where a thread 
runs inside the pipeline until an event occurs (e.g., a long 
latency event like a cache miss) and triggers a thread 
switch. The state of the replaced thread is maintained by 
the processor, while the long latency event is handled in 
the background. When a thread is switched, the in-flight 
instructions are flushed. The time required to refill the 
pipeline after a thread switch is referred to as the switch 
penalty. The switch penalty is usually relatively high, 
making SOE MT less popular than simultaneous multi-
threading (SMT) [18] and fine-grain multithreading (in-
terleaved multithreading) [4]. While fine-grain MT is 
worthwhile only for a large number of threads, the per-
formance of SMT is constrained in practice since the 
number of supported threads is limited (e.g., two for Intel 
Sandy Bridge [5]). 

In this paper, Continuous Flow Multithreading 
(CFMT), a novel microarchitecture, is proposed. The pri-
mary concept of CFMT is to support SoE MT for a large 

number of threads through the use of multistate pipeline 
registers (MPRs). These MPRs store the intermediate state 
of all instructions of inactive threads, eliminating the 
need to flush the pipeline on thread switches. This new 
machine is as simple as a regular SoE MT, and has higher 
energy efficiency while improving the performance as 
compared to regular SoE MT. 

Hirst et al. extends the SoE MT to differential multi-
threading (dMT) [19], proposing up to four threads run-
ning simultaneously in a single scalar pipeline for low 
cost microprocessors. CFMT takes a broader view of ad-
vanced SoE MT microarchitectures. CFMT extends SoE 
MT by enabling the use of numerous threads using multi-
state pipeline registers in deep pipeline machines. CFMT 
is applicable to any execution event that can cause a pipe-
line stall. 

The development of new memory technologies, such 
as RRAM (Resistive RAM) [6] and STT-MRAM (Spin-
Transfer Torque Magnetoresistive RAM) [7], enables 
MPRs since these devices are located in metal layers 
above the logic cells and are fast, dense, and power effi-
cient. These memory devices are referred to as 
memristors [8], [9]. 

The remainder of this paper is structured as follows: 
the microarchitecture of a conventional SOE MT is de-
scribed and CFMT is proposed in section 2, the MPR is 
presented in section 3, emerging memory technologies 
and the basic structure of a memristor-based MPR are 
described in section 4, and a performance analysis for 
SOE MT and CFMT is presented in section 5, showing 2X 
theoretical performance improvements as compared to 
conventional SOE MT. The paper is summarized in sec-
tion 6. 
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2 CONTINUOUS FLOW MULTITHREADING (CFMT) 
To reduce the thread switch penalty, a new thread 

switching mechanism for SOE MT is proposed. In CFMT, 
pipeline registers are replaced by MPRs, as shown in Fig-
ure 1. For each pipeline stage, an MPR stores the state of 
the instructions from all threads. Thus, in the case of a 
thread switch, there is no need to flush all subsequent 
instructions. The processor saves the state of each instruc-
tion from the switched thread in the relevant MPR in each 
pipeline stage, while handling the operation of the long 
latency instruction in the background. Instructions from 
the new active thread are inserted into the pipeline from 
the MPR, creating a continuous flow of instructions with-
in the pipeline. When no thread switching is required, the 
pipeline operates as a regular pipeline and each MPR op-
erates as a conventional pipeline register. When the long 
latency instruction is completed, the result is written di-
rectly into the MPR in the background. In CFMT, the 
thread switch penalty is determined by the time required 
to change the active thread in the MPR, i.e., the time re-
quired to read the state of the new, previously inactive 
thread from the MPR. For a fast MPR, the thread switch 
penalty is significantly lower than in conventional SOE 
MT and the performance therefore increases significantly. 

3 MULTI-STATE PIPELINE REGISTER (MPR) 
The logic structure of a multistate pipeline register 

(MPR) is shown in Figure 2. Each MPR stores data for 
multiple threads, one bit per thread. The total size of an 
MPR is therefore n bits, where n is the maximal number 
of threads. For each pipeline stage, the state of the instruc-
tion is stored in a set of MPRs with common control sig-
nals for thread management and switching. The MPR has 
one active thread (the current thread) for which the data 
can be read and written during operation of the proces-
sor, as in a regular pipeline register. During a thread 
switch, the active thread changes while the data of the 
previously active thread is maintained in the MPR. The 
MPR can therefore store data for all threads running in 
the machine. The time required to change the active 
thread in the MPR depends on the specific circuit struc-
ture of the MPR. This time determines the thread switch 

penalty of CFMT. A typical thread switch penalty in 
CMFT is in the range of 1 to 3 clock cycles, a significant 
improvement as compared to SOE MT (typically 8 to 15 
clock cycles). 

4 EMERGING MEMORY TECHNOLOGIES
Over the past decade, new technologies have been 

considered as potential replacements for the traditional 
SRAM/DRAM-based memory system to overcome scal-
ing issues, such as greater leakage current. These emerg-
ing technologies include PCM (Phase Change Memory) 
[10], PMC (Programmable Metallization Cell, also known 
as CBRAM) [11], FeRAM (Ferroelectric RAM) [12], RRAM 
(Resistive RAM) [9], and STT-MRAM (Spin Transfer 
Torque Magnetoresistive RAM) [13]. 

While the physical mechanisms for these emerging 
memory technologies are different, all of these technolo-
gies are nonvolatile with varying resistance and can 
therefore be considered as memristors [8]. These emerg-
ing memory technologies are fabricated by introducing a 
special insulator layer between two layers of metal which 
can be integrated into a CMOS process, stacked vertically 
in multilayer metal structures physically above the active 
silicon transistors. This fabrication technique provides a 
high density of memory bits above a small area of active 
silicon. Memristive memory cell sizes are approximately 1 
to 4 F2 for RRAM and 8 to 45 F2 for STT-MRAM, as com-
pared to SRAM (60 to 175 F2) and DRAM (4 to 15 F2) [14], 
where F is the minimum feature size of the technology.  

RRAM and STT-MRAM are both relatively fast [15]. 
STT-MRAM does not exhibit any endurance issues, while 
it is believed that the endurance issue of RRAM will be 
overcome in the near future [16]. Since memristors are 
dense, fast, and power efficient, these devices are attrac-
tive for use within the processor as an MPR. The basic 
structure for a set of memristor-based MPRs is shown in 
Figure 3. 

For a memristor-based MPR, each thread has its own 
memristor-based layer, while the bottom CMOS layer is 
used for the active thread running within the pipeline. 
The bottom layer consists of standard CMOS pipeline 
registers, compatible with CMOS logic. During a thread 

Fig. 1. Continuous Flow Multithreading (CFMT) pipeline structure.
A set of multistate pipeline registers (MPRs) is located between
pipeline stages. Each MPR maintains a single bit of the state of an
instruction from all threads. The number of MPRs is the number of 
bits required to store the entire state of an instruction in the specific
pipeline stage.

Fig. 2. The logic structure of a multistate pipeline register (MPR). 
An MPR maintains a single bit of the state of an instruction from all
threads (stores n bits of data), where only one thread is active at a 
time. The MPR is synchronized by the processor clock and can 
switch the active thread.
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switch, data is copied from the CMOS layer to a specific 
memristor-based layer that corresponds to the previously 
active thread. The data from the new active thread is read 
into the next pipeline stage that receives the state of the 
new thread. When no thread switch occurs, only the bot-
tom CMOS layer is active and the memristor layers are in 
standby mode. It is possible to completely disable the 
memristor layers and save power due to the nonvolatility 
of memristors.  

To determine the thread switch penalty for a 
memristor-based MPR, only sensing the memristor layer 
of the new active thread is considered since the copy op-
eration of the bottom CMOS layer to a memristor layer 
can be masked using buffers. This latency is determined 
by the read time of a memristor (sensing the data in the 
memristive layer). Due to the high density of memristors, 
the area overhead can be neglected (less than 0.1% of the 
pipeline area for 16 active threads [23]). This overhead is 
primarily due to the write mechanism and can be further 
optimized by separating the read and write mechanisms. 

5 PERFORMANCE ANALYSIS
The performance (in CPI - cycles per instruction) of an 

SoE processor depends upon whether the number of 
threads is sufficient to overlap long latency events. Two 
regions of operation exist in SoE processors, depending 
upon the number of threads running in the machine. The 
unsaturated region is the region where the number of 
threads is smaller than the number required for conceal-
ing a long latency event. The behavior of the pipeline in 
this region is illustrated in Figure 4a. The analytic model 
assumes that the execution behavior in the pipeline is 
periodic. The period is determined by the execution of 
1/rm instructions from the same thread, where rm is the 
average fraction of memory operations in the instruction 
stream. One instruction is a long latency instruction (i.e., 

the instruction that triggers the thread switch; in this pa-
per, an L1 cache miss is assumed as the trigger, with a 
miss penalty of Pm cycles) and the remaining instructions 
are low latency instructions with an average CPI of 
CPIideal. During execution of the long latency instruction, 
other instructions from different threads run within the 
machine. For these instructions, a periodic behavior is 
again assumed which also triggers a thread switch. For 
the unsaturated region, it is assumed that there is an in-
sufficient number of instructions to overlap the Pm cycles 
required to execute the long latency instruction. The CPI 
in the unsaturated region is 

,ideal m m
unsat

CPI P r MR n

n
CPI  (1) 

where n is the number of threads running in the machine 
and MR(n) is the miss rate of the L1 cache. Note that 
CPIunsat is limited by CPIsat, as determined in (2). 

When a sufficient number of threads run on the ma-
chine, the long latency instruction can be completely 
overlapped, and a second region, named the saturation 
region, is reached. In the saturation region, the thread 
switch penalty (Ps clock cycles) influences the behavior, 
which effectively limits the number of threads (above a 
specific number of threads there is no change in perfor-
mance). The behavior of the pipeline in the saturation 
region is illustrated in Figure 4b. Assume all of the 
threads exhibit the same average behavior and Pm >> 
CPIideal/rm (i.e., the miss penalty is significantly longer 
than the execution time of the short latency instructions). 
The CPI in the saturation region is  

( )sat ideal s mCPI CPI P r MR n   (2) 
In a conventional SOE MT, the switch penalty Ps is de-

termined by the number of instructions flushed during 
each switch. In CFMT, however, the switch penalty is the 
MPR read time Tm, i.e., the time required to read the state 
from the MPR and transfer this state to the next pipeline 
stage. In the case of a memristor-based MPR, the switch 
penalty is the time required to read the data from the 
memristor layer. From (2), if the value of Tm is lower than 
Ps, the performance of the processor in the saturation re-
gion is significantly improved, where the speedup is 

( )1 .
( )

m
sat s m

ideal m m

r MR nSpeedup P T
CPI T r MR n

 (3)

Note that in the unsaturated region, the exact CPI of the 
CFMT is slightly better (lower) than a conventional SoE 
MT processor due to the improved switch penalty. The 

Fig. 3. Set of memristor-based multistate pipeline registers (MPRs).
Each thread has its own memristor-based layer, where every bit is 
stored in a single memristor. The active thread is located in the bot-
tom CMOS layer. During regular operation of the pipeline, only the 
CMOS layer is active (blue line) and all memristor-based layers are 
disabled, exploiting the nonvolatility of the memristors to save power. 
During a thread switch (red dashed line), the data from the CMOS 
layer is written into the relevant memristor-based layer, while the 
state of the new active thread is read and transferred to the next 
pipeline stage.

Fig. 4. The executed instructions in the two regions: (a) the unsatu-
rated region, and (b) the saturation region. Each block is an instruc-
tion. The numbers indicate the thread number.
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IPC of the proposed machine as compared to a conven-
tional SoE machine is shown in Figure 5. The proposed 
machine exhibits a 2X performance improvement for a 
constant miss rate when operating in the saturation re-
gion. For varying miss rates (particularly with large Pm), 
the behavior of the CPI is similar to the behavior reported 
in [17]. Preliminary simulations have been performed on 
GEM5 [21], exhibiting a saturation performance im-
provement of approximately 50% for the SPEC MCF 
benchmark [22]. 

6 CONCLUSIONS
In this paper, a new architecture for a multithread 

processor, Continuous Flow Multithreading (CFMT), is 
proposed. This architecture is based on multi-state pipe-
line registers (MPR) to save the thread state in the case of 
an event (e.g., an L1 cache miss). CFMT greatly reduces 
the thread switch penalty and eliminates the wasted en-
ergy of repeating instructions. 

An analytic model of the performance of a conven-
tional SoE MT and the CFMT is described. It is shown 
that a CFMT processor can exhibit up to a 2X perfor-
mance improvement as compared to a conventional SoE 
MT. CFMT has a simple control mechanism and can 
therefore maintain more threads than modern SMT pro-
cessors. The performance of the CFMT architecture is 
comparable to SMT processors with lower complexity 
and power consumption. 

Emerging memristive technologies enable low power 
MPRs that can maintain a large number of threads in the 
same area of the regular pipeline registers. The 
memristor-based MPR demonstrates the attractiveness of 
memristors as a means to overcome power and perfor-
mance deficiencies of existing system structures, and 
opens opportunities for novel processor microarchitec-
tures. 
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mance improvement (e.g., for Pm = 50 cycles, the improvement in 
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 

Abstract—In recent years, memristive technologies, such as 

resistive RAM (RRAM), have emerged. These technologies are 

usually considered as replacements to SRAM, DRAM, and Flash. 

In this paper, a novel digital circuit, the multistate register, is 

proposed. The multistate register is different than conventional 

types of memory, and is used to store multiple data bits, where 

only a single bit is active and the remaining data bits are idle. 

The active bit is stored within a CMOS flip flop, while the idle 

bits are stored in an RRAM crossbar co-located with the flip flop. 

It is demonstrated that additional states require an area 

overhead of 1.4% per state for a 64 state register. The use of 

multistate registers as pipeline registers is demonstrated for a 

novel multithreading architecture – continuous flow 

multithreading (CFMT), where the total area overhead in the 

CPU pipeline is only 2.5% for 16 threads as compared to a single 

thread CMOS pipeline. The use of multistate registers in the 

CFMT microarchitecture enables higher performance processors 

(40% average performance improvement) with relatively low 

energy (6.5% average energy reduction) and area overhead.  

 
Keywords—RRAM; memristor; memristive device; flip flop; 

multithreading 

I. INTRODUCTION 

emristive technologies [1-3] have been proposed to 

augment existing state-of-the-art CMOS circuits. One 

interesting memristive technology is resistive RAM 

(RRAM) [4-8]. RRAM-based memories can be integrated 

with existing digital circuits to increase functionality and 

system throughput. RRAM is a two terminal device that 

exhibits the properties of nonvolatility and high density. 

Unlike charge-based memories, information in an RRAM is 

stored by modulating the material state. An RRAM cell 

dissipates no static power to store a state and provides 

immunity to radiation and noise induced soft errors. 

Fabrication of these devices generally requires deposition of a 
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thin film material. The integration of these devices with 

CMOS is constrained primarily by lithographic patterning 

limits. Thus memristors scale with existing CMOS 

technologies. 

The traditional approach of increasing CPU clock 

frequency has abated due to constraints on power consumption 

and density. To increase performance with each CMOS 

generation, thread level parallelism is exploited with multi-

core processors [9]. This approach utilizes an increasing 

number of CMOS transistors to support additional cores on the 

same die, rather than increase the frequency of a single 

processor. This larger number of cores, however, has 

increased static power. Multithreading is an approach to 

enhance performance of an individual core by increasing logic 

utilization [10], without additional static power consumption. 

Handling each thread, however, requires duplication of 

resources (e.g., register files, flags, pipeline registers). This 

added overhead increases the area, power, and complexity of 

the processor, potentially increasing on-chip signal delays. 

The thread count is therefore typically limited to two to four 

threads per core in modern general purpose processors [11].  

The high density, nonvolatility, and soft error immunity 

exhibited by resistive random access memory (RRAM) 

enables novel tradeoffs in digital circuit design, allowing new 

mechanisms to increase thread count without changing the 

static power. These tradeoffs support innovative memory 

structures for novel microarchitectures.  In this paper, a 

memristive multi-state pipeline register (MPR) is proposed 

that exploits these properties to enable higher throughput 

computing. The MPR is compatible with existing digital 

circuits while leveraging RRAM devices to store multiple 

machine states within a single register. This behavior enables 

an individual logic pipeline to be densely integrated with 

memory while retaining state information for multiple 

independent, on-going operations. The state information for 

each operation can be stored within a local memory and 

recalled at a later time, allowing computation to resume 

without flushing the pipeline. 

This functionality is useful in multithreaded processors to 

store the state of different threads. This situation is 

demonstrated in the case study of a novel microarchitecture – 

continuous flow multithreading (CFMT) [12]. It is shown that 

including an RRAM MPR within the CFMT microarchitecture 

enhances the performance of a processor, on average, by 40%, 

while reducing the energy, on average, by 6.5%. The proposed 
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MPR circuit can also be used as a multistate register for 

applications other than pipeline registers. 

Background of RRAM and crosspoint style memories is 

reviewed in Section II. The operation of the multistate register 

is presented in Section III. The simulation setup and circuit 

evaluation process are described in Section IV. A case study 

examining the multistate register as a pipeline register within a 

CPU is presented in Section V, followed by some concluding 

remarks in Section VI. 

II. BACKGROUND 

Memristors and memristor-based arrays behave differently 

than standard CMOS SRAM memory arrays due to the 

different properties of RRAM devices. The following section 

outlines the basic operation of memristive devices and 

describes memristor-based crosspoint structures. 

A. Background of memristor and RRAM  

Memristors [13] and memristive devices [14] behave as 

resistors, where the resistance is modulated by an applied bias. 

Positive and negative biases increase or decrease, respectively, 

the resistance of the device. In general, a bias applied for a 

longer duration produces a greater change in resistance. A 

larger voltage will generally increase the speed of the 

resistance change. The device may also exhibit a threshold 

voltage or current, such that the resistance will change only if 

the bias exceeds the threshold specific to the device 

technology [15-17]. Once the bias is removed, the final 

resistance of the memristor is retained without dissipating any 

power. 

One interesting memristive technology is RRAM, where 

oxide-based materials (e.g., TaO, TiO, SiO) [18, 19] rely on 

the migration of dopants to switch the resistance of a tunnel 

barrier.  Dopant chains form through the oxide and reduce the 

thickness of the tunneling gap. An increase in the gap 

thickness gives rise to an increase in the resistance of the 

device while a decrease reduces the resistance. Currently, 

RRAM is considered a good candidate to replace Flash 

memory and is being widely investigated both in industry and 

academia. 

The exact behavior of RRAM devices varies for different 

oxide materials. To simulate the behavior of memristive 

circuits, a general device model is used – the TEAM model 

[20]. In the TEAM model, the behavior of the resistive device 

is represented by the following expressions, 

 

where koff and kon are fitting parameters, αon and αoff are 

adaptive nonlinearity parameters, ioff and ion are current 

threshold parameters, fon(x) and foff(x) are window functions, 

RON and ROFF are, respectively, the minimum and maximum 

resistance of the memristor, and xon and xoff are, respectively, 

the minimum and maximum allowed value of the internal state 

variable x. The window function returns a value between zero 

and one and describes the rate at which the change of the state 

variable becomes nonlinear near the minimum and maximum 

resistance of a memristor. A Joglekar window function is used 

with a p-coefficient of two [21]. An I-V curve of a memristive 

device based on the TEAM model is shown in Figure 2a, 

exhibiting a pinched hysteresis loop.   

B. Crosspoints and nonlinearity 

RRAM has the greatest density when utilized in a 

crosspoint configuration. In this structure, a thin film is 

sandwiched between two sets of parallel interconnects. Each 

set of interconnects is orthogonal, allowing any individual 

memristive device to be selected by biasing one vertical and 

one horizontal metal line. In this configuration, the circuit 

density is only limited by the available metal pitch. The 

structure of a crosspoint is shown in Figure 1a.  

Crosspoint arrays have the inherant problem of sneak path 

currents where currents propagate between the two selected 

lines through unselected memristors. The sneak path 

phenomenon is illustrated in Figure 1b. The nonlinear I-V 

characteristic of certain memristive devices lessens the sneak 

path phenomenon [22]. This nonlinearity can be achieved by 

 

 
Figure 1. RRAM crosspoint (a) structure, and (b) an example of a 

parasitic sneak path within a 2 x 2 crosspoint array. 
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Figure 2. I-V characteristic of a memristor for (a) a ThrEshold 

Adaptive Memristor (TEAM) model with a 0.2 volt sinusoidal 

input operating at a frequency of 2 GHz, and (b) resistive devices 

with and without ideal cross-coupled diodes. The parameters of 

the TEAM models are listed in Table II. VON is the on-voltage of 

the diode, and RON and ROFF are, respectively, the minimum and 

maximum resistance of the memristor.  

depositing additional materials above or below the memristive 

thin film. Depending on the material system used for RRAM, 

the nonlinearity can result from an insulator to metal transition 

or a negative differential resistance [22]. From a circuits 

perspective, the combined device can be modeled as a pair of 

cross coupled diodes in series with a memristor, as shown in 

the inset of Figure 2b.  Since the rectifying structure requires 

an additional thin film layer, there is no effect on the area of 

the crosspoint structure. 

 An I-V curve of a memristive device with cross coupled 

diodes is shown in Figure 2b. The high resistance of the 

unselected devices reduces sneak currents and ensures that the 

leakage power of the array is relatively small. Reducing sneak 

currents ensures that the leakage power of the array is 

relatively small. A DC analysis of the crosspoint on and off 

currents is listed in Table I, where a 4 x 4 crosspoint array 

with RRAM devices is DC biased at 0.8 volts. These RRAM 

devices exhibit an on/off current ratio of 30. In an unrectified 

crosspoint, the observed  current ratio drops to less than two. 

The rectified crosspoint displays a current ratio of 28.5, only 

5% less than the ideal ratio of an RRAM device. Furthermore, 

the total power consumption is reduced by almost an order of 

magnitude. 

III. RRAM MULTISTATE REGISTER 

The multistate register is a novel circuit used to store 

multiple bits within a single logic gate. The multistate register 

is "drop-in" compatible with existing CMOS based flip flops. 

The element utilizes a clocked CMOS register augmented by 

additional sense circuitry (SA) and global memristor select 

(MS) lines. The symbol and topology of the multistate register 

are shown in Figure 3. Multistate registers can be used as 

pipeline registers within a processor pipeline, as shown in 

Figure 4 and further explained in Section V. 

The MS lines select individual RRAM devices within the 

crosspoint memory co-located with the CMOS register. A 

schematic of the proposed RRAM multistate register is shown 

in Figure 5a.  The signals Wen and Ren are global control 

signals that, respectively, write and read within the local 

crosspoint memory. Signal A sets the CMOS register into an 

intermediate state that facilitates writes and reads from the 

crosspoint. An individual RRAM device is selected using a set 

of global MS lines. Local writes to the RRAM crosspoint are 

controlled by the master stage within the register. The gates 

within the slave stage of the CMOS register are reconfigured 

to provide a built-in sense amplifier to read the RRAM 

crosspoint array [23]. The overhead of the additional circuitry 

(shown in Figure 3) is relatively small (see Section IV.B).  

TABLE I. COMPARISON OF DC ON/OFF CURRENT FOR 4 X 4 CROSSPOINT 

ARRAY 

 Ion [mA] Ioff [mA] Ratio 
Average Active 

Power [mW] 

Unrectified 2.3 0.132 1.7 1.45 

Rectified 0.486 0.017 28.5 0.201 

 

 
 
Figure 3. Multistate register element.  (a) Symbol of the 

multistate register, and (b) block diagram with control signal 

timing. The symbol is similar to a standard CMOS D flip flop 

with the addition of a crosspoint array symbol. 
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The multistate register primarily operates as a CMOS 

register. In this mode, the structure behaves as a standard D 

flip flop, where a single bit is stored and is active while the 

idle states are stored within the RRAM crosspoint array. When 

global control circuitry triggers a change of the pipeline state 

(e.g., for a pipeline stall or context switch), the circuit stores 

the current bit of the register and reads out the value of the 

next active bit from the internal RRAM-based storage. 

Switching between active bits consists of two phases. In the 

first half of the cycle, an RRAM write operation stores the 

current state of the register. During a write operation, the 

transmission gate A disconnects the first stage from the 

following stage, isolating the structure into two latches. The 

input latch stores the currently evaluated state, while the 

output latch stores the data of the previous state. Once Wen 

goes high, the input latch drives a pair of multiplexors that 

write the currently stored state into the RRAM cell selected by 

the global MS lines. The active devices during the write phase 

are shown in Figure 5b. The write phase may require more 

than half a cycle depending upon the switching time of the 

RRAM technology. During the second half of the clock cycle, 

the new active bit is selected within the resistive crosspoint 

array and sensed by the output stage of the CMOS D flip flop. 

During a read operation, the globally selected row is grounded 

through the common node Nin. The voltage on the common 

line Nout is set by the state of the RRAM cell. To bias the 

RRAM cell, the common line is connected through a PMOS 

transistor to the supply voltage VDD. The voltage is sensed at 

the output of M1. If Ren is set high, M1 to M5 reconfigure the 

last inverter stage as a single ended sense amplifier [12], and 

the crosspoint array is read. The active devices during the read 

phase are shown in Figure 5c. 

The physical design of the multistate register can be 

achieved by two approaches. RRAM devices can be integrated 

between the first two metals, as illustrated in Figure 6a, or the 

RRAM can be integrated on the middle level metal layers, as 

shown in Figure 6b. The middle metal layer approach allows 

the RRAM to be integrated above the CMOS circuitry, saving 

area. A standard cell floorplan is shown in Figure 7b, where a 

dedicated track is provided for the RRAM interface circuitry. 

This dedicated track runs parallel to the CMOS track. The 

addition of this track wastes area in those cases where 

multistate registers are sparsely located among the CMOS 

gates. Additional routing overhead increases the area required 

to pass signals around the crosspoint array. 

 The approach illustrated in Figure 7a, where the RRAM is 

integrated on the lower metal layers, requires slightly more 

area but is compatible with standard cell CMOS layout rules. 

Fabrication on the lower levels maintains standard routing 

conventions, where the lower metal layers are dedicated to 

routing within the gates, and the middle metal layers are used 

to route among the gates. 

IV. SIMULATION SETUP AND CIRCUIT EVALUATION 

The multistate register has been evaluated for use within a 

high performance microprocessor pipeline. The latency, 

energy, and area of the register are described in this section as 

well as the sensitivity to process variations. 

A. Latency and energy 

The latency and energy of an MPR are dependent on the 

parameters of an RRAM device and the CMOS sensing 

circuitry built into the MPR. The RRAM device is modeled 

using the TEAM model [20] based on the parameters listed in 

Table II. The parameters of the resistive device are chosen to 

 
Figure 4. Multistate pipeline register (MPR) based pipeline and logic diagram of active and stored pipeline states. The MPR replaces a 

conventional pipeline register and time multiplexes the stored states. 
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Figure 5. Proposed RRAM multistate pipeline register. (a) The complete circuit consists of a RRAM-based crosspoint array above a CMOS-

based flip flop, where the second stage (the slave) also behaves as a sense amplifier. The (b) write and (c) read operations of the proposed 

circuit. 

incorporate device nonlinearity into the I-V characteristic, as 

shown in Figure 2b and described in Section IIA. The 

multistate register is evaluated across a range of internal cross 

point sizes (e.g., different number of states per register). The 

resistance of the device is extracted from [22]. The transistor 

and cell track sizing information is from the FREEPDK45 

Standard Cell Library [24] and scaled to a 22 nm technology. 

Circuit simulations utilize the 22 nm PTM CMOS transistor 

model [25]. The RRAM and diode device parameters are 

listed in Table II. Standard CMOS timing information for the 

register is listed in Table III. The read operation requires 28.6 

ps, equivalent to a 16 GHz clock frequency (the read operation 

is less than half a clock cycle). The register operates primarily 

as a CMOS register and only accesses the RRAM crosspoint 

array to switch between idle and active pipelines states.  Note 

that the eight row by eight column crosspoint array is small as 

compared to large scale memory crosspoint arrays, and 

therefore places a small electrical load on the sensing 

circuitry. Hence, the read operation is relatively fast and does 

not limit the operation of the multistate register.  

The performance of the multistate register is limited by the 

switching characteristics of the RRAM device. To maintain 

high performance, the desired RRAM devices must be 

relatively fast [29]. These characteristics are chosen to achieve 

a target write latency of a 3 GHz CPU. As mentioned in 

Section II, the RRAM write operation occurs sequentially 

prior to the read operation. Due to the sequential nature of the 

multistate register access to the RRAM array, a half cycle is 

devoted to the read operation. 

The energy of the multistate register depends upon the 

RRAM switching latency, as listed in Table IV. ELow-High and 

EHigh-Low are the energy required to switch, respectively, to Roff 

and Ron for a single device write to the multistate register 

crosspoint array. Since the switching time of the memristor 

dominates the delay of a write to the multistate register, ELow-

High and EHigh-Low increase linearly as the switching time 

increases. Note that the read energy only depends on RON and 

ROFF and is therefore constant for different switching times. 

The read energy, however, depends on the size of the 

crosspoint (i.e., the number of RRAM devices), as listed in 

Table V. 
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B. Layout and physical area 

The energy and latency of an MPR are dependent on both 

the parameters of an RRAM device and on the CMOS sensing 

circuitry built into the MPR. An individual crosspoint RRAM 

cell is 0.001934 µm
2
 (4F

2
, where F is the feature size). The 

layout of the proposed RRAM multistate register is shown in 

Figure 8. The layout of the multistate register is based on 45 

nm design rules and scaled to the target technology of 22 nm. 

The number of RRAM devices within a crosspoint array is 

scaled from four devices to 64 devices. The MPR is evaluated 

for both the middle metal and lower metal approaches, as 

described in Section III. The physical area is listed in Table 

VI.  

The transistors required to access the crosspoint, as shown 

in Figure 8, dominate the area overhead of both the lower 

metal and middle metal multistate register. Due to the 

relatively small on-resistance of the RRAM devices, the 

access transistor needs to be sufficiently large to facilitate a 

write operation. Additionally, CMOS transmission gates are 

used to ensure that there is no threshold drop across the pass 

transistors. As a result, the area of the crosspoint memory is 

only a small fraction of the area overhead of the multistate 

register. Note that alternative RRAM technologies with a 

higher Ron supports smaller transistors and reduced area. 

Under these constraints, the most area efficient structure is a 

64 bit array, as the overhead per state is, respectively, 0.08 

µm
2
 for the lower metal approach and 3.75 µm

2
 for the middle 

metal approach. 

As shown, the middle metal register requires less area 

than a lower metal multistate register. As described in Section 

III and depicted in Figure 8b, the middle metal register 

requires an additional track dedicated to the control transistors 

within the crosspoint array. Positioning the crosspoint array 

over the register also adds complexity as the upper metal 

layers can no longer be used to route signals above the 

multistate register. 

C. Sensitivity and device variations 

The built-in sense amplifier circuit senses the RRAM 

based on a threshold voltage. Any voltage above the threshold 

of the registers produces a logical zero at the output, and any 

voltage below the threshold produces a logical one. Similar to 

digital CMOS circuits, the structure is tolerant to variability in 

the RRAM resistance. To evaluate the sensitivity of the circuit 

TABLE II. MEMRISTOR AND DIODE PARAMETERS 

Ron [kΩ] 0.5 

Roff [kΩ] 30 

kon -0.021-0.07 

koff 0.0021-0.007 

αon.off 3 

ion [µA] -1 

ioff [µA] 1 

VON (diode) [V] 0.5 

Rout (diode) [Ω] 1 

TABLE III. ACCESS LATENCY OF A 16 BIT MPR 

Clock to Q [ps] 11.2 

Setup Time [ps] 13.2 

RRAM Read [ps] 28.6 

TABLE IV. WRITE LATENCY AND ENERGY OF A 16-BIT MULTISTATE 

REGISTER 

Write  Time 

[cycles @ 3 GHz] 
0.5 1.5 2.5 3.5 4.5 

ELow-High [fJ] 2.24 5.26 8.3 10.49 13.23 

EHigh-Low [fJ] 3.78 10.33 16.89 23.5 30.08 

 
TABLE V. READ ACCESS ENERGY OF RRAM 

States per Mutistate Register 4 States 16 States 64 States 

Eread,Off [fJ] 1.6 2.2 3.5 

Eread,On [fJ] 0.33 0.41 0.71 

 

 
Figure 6. Vertical layout of RRAM in MPR circuit for a) lower 

level, and b) mid-layer crosspoint RRAM array. 

 

 
Figure 7. Planar floorplan of MPR with lower metal and upper 

metal RRAM layers. The RRAM array is not marked in this 

figure since it is located above the CMOS layer and has a smaller 

area footprint. 
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to variations, the nominal Ron is varied from 0.35 to 0.65 kΩ. 

This range produces a maximum and minimum change of    

mV in the voltage input of the sense amplifier. For 21 kΩ > 

Roff < 39 kΩ, a voltage ranging from -40 mV to +26 mV is 

produced. Both ranges represent a 30% variation in the device 

resistance of Ron and Roff. In these cases, the correct output 

state is read out, indicating a high degree of tolerance to 

variations in the RRAM resistance. 

The RRAM circuit can tolerate an Ron of up to 12 kΩ 

before the circuit produces an incorrect output. In a 64 bit 

multistate register; this behavior corresponds to an increase in 

the RRAM read delay from 78 ps to 476 ps. With increasing 

Ron, the sense amplifier no longer generates a full range signal 

at the output, dissipating static energy. Much of this increased 

delay is due to the device operating near the switching 

threshold of the sense amplifier.  

As Roff varies from 30 kΩ to 300 MΩ, the performance of 

the circuit improves due to two effects. As the resistance 

increases, the voltage at the sense amplifier input also 

increases, placing the transistor into a higher bias state, which 

lowers the delay of the sense amplifier. Additionally, the large 

resistance of the sensed RRAM device prevents the sense line 

within the crosspoint array from dissipating charge, 

maintaining a high voltage at the input of the sense amplifier. 

Counterintuitively, this effect lowers the delay when Roff is 

greater than 30 MΩ. Due to the interplay of Ron and Roff, a 

 
Figure 8. Physical layout of 64 state MPR within the crosspoint 

array on (a) lower metal layers (M1 and M2), and (b) upper metal 

layers (M2 and M3) above the D flip flop.  

 
TABLE VI. MPR AREA 

  
Area 

[µm2] 

Overhead 

[%] 

Overhead 

per State 

[%] 

 
CMOS Register 

(1 state) 
2.8 - - 

L
o

w
er

 

M
et

al
 MPR 4 states 5.5 96.2% 24% 

MPR 16 states 6.3 126.5% 8% 

MPR 64 states 8.1 192.5% 3% 

M
id

d
le

 

M
et

al
 MPR 4 states 3.9 39.3% 9.8% 

MPR 16 states 4.3 53.6% 3.3% 

MPR 64 states 5.2 85.7% 1.3% 

 

TABLE VII. SOE MT AND CFMT PROCESSOR CONFIGURATIONS 

 
Switch on 

Event 

RRAM-based 

CFMT 

Number of pipeline stages 10 

CMOS process 22 nm 

Clock frequency [GHz] 3 

Switch penalty [cycles] 7 1 to 5 

L1 read/write latency [cycles] 0 

L1 miss penalty [cycles] 200 

Data L1 cache configuration 32 kB, 4 way set associative 

Instruction L1 cache 

configuration 
32 kB, 4 way set associative 

Branch predictor Tournament , lshare 18kB/gshare  8kB 

 

TABLE VIII. PERFORMANCE SPEEDUP FOR DIFFERENT MPR WRITE 

LATENCIES AS COMPARED TO SWITCH-ON-EVENT MULTITHREADING 

PROCESSOR FOR CPU SPEC 2006 

Benchmark 

 

MPR Write Latency [clock cycles] 

1 2 3 4 5 

libquantum 1.35 1.28 1.21 1.15 1.09 

bwaves 1.22 1.15 1.08 1.04 1 

milc 1.47 1.26 1.18 1.11 1.06 

zeusmp 1.85 1.59 1.40 1.29 1.21 

gromacs 1.53 1.32 1.21 1.17 1.14 

leslie3d 1.67 1.48 1.33 1.22 1.15 

namd 1.40 1.24 1.15 1.08 1.04 

soplex.pds-50 1.35 1.28 1.21 1.16 1.1 

lbm 1.5 1.31 1.2 1.12 1.08 

bzip2.combined 1.13 1.1 1.08 1.05 1.03 

gcc.166 1.35 1.28 1.21 1.15 1.09 

gobmk.trevorc 1.3 1.24 1.19 1.14 1.09 

h264ref.foreman_baseline 1.06 1.02 1 1 1 

GemsFDTD 1.45 1.3 1.18 1.08 1.04 

hmmer.nph3 1.18 1.14 1.11 1.07 1.04 

soplex.ref 1.7 1.42 1.29 1.19 1.1 

gcc.c-typeck 1.33 1.26 1.21 1.15 1.1 

gobmk.trevord 1.29 1.23 1.18 1.13 1.08 

Average 1.40 1.27 1.19 1.13 1.08 

 

TABLE IX. ENERGY AND AREA EVALUATION FOR CFMT TEST CASE 

 
Switch on 

Event 
RRAM-based CFMT Difference 

Thread 
switch 

energy [pJ] 

109.9 

9,1 @ 1 cycle penalty -91.7% 

19.1 @ 2 cycle penalty -82.6% 

29.2 @ 3 cycle penalty -73.4% 

38.4 @ 4 cycle penalty -65.1% 

48.2 @ 5 cycle penalty -56.1% 

Processor 

area 
[mm^2] 

123.276 126.426 2.55% 
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TABLE X. ENERGY PER INSTRUCTION FOR VARIOUS CPU SPEC 2006 BENCHMARK APPLICATIONS 

Benchmark 
SoE MT 

[pJ/inst.] 

CFMT 

RRAM MPR – various thread switch latencies 

1 cycle 

[pJ/inst.] 

2 cycles 

[pJ/inst.] 

3 cycles 

[pJ/inst.] 

4 cycles 

[pJ/inst.] 

5 cycles 

[pJ/inst.] 

libquantum 15.17 14.12 14.29 14.46 14.63 14.80 

bwaves 19.63 18.83 19.03 19.25 19.42 19.42 

milc 24.51 22.61 23.23 23.47 23.74 24.11 

zeusmp 21.10 18.04 18.62 19.19 19.18 19.95 

gromacs 30.16 27.94 28.62 29.05 29.23 29.34 

leslie3d 27.27 24.72 25.20 25.68 26.08 26.39 

namd 22.90 21.42 21.91 22.21 22.50 22.65 

soplex.pds-50 17.62 16.52 16.71 16.88 17.03 17.20 

lbm 22.54 20.29 20.90 21.36 21.76 21.94 

bzip2.combined 21.86 21.44 21.51 21.65 21.65 21.72 

gcc.166 19.37 18.32 18.49 18.66 18.83 19.01 

gobmk.trevorc 23.05 22.15 22.28 22.71 22.56 22.71 

h264ref.foreman_baseline 25.95 25.27 25.35 25.50 25.69 25.76 

GemsFDTD 23.89 21.88 22.43 22.99 23.36 23.49 

hmmer.nph3 24.27 23.65 23.75 23.84 23.84 24.04 

soplex.ref 21.92 19.47 20.04 20.44 20.80 21.17 

gcc.c-typeck 19.94 19.16 19.12 19.27 19.43 19.58 

gobmk.trevord 22.73 21.71 21.87 22.40 22.25 22.40 

Average 22.44 20.97 21.30 21.61 21.78 21.98 

 

 
delay tradeoff therefore exists between the average resistance 

of the RRAM technology and the resistive ratio of the device. 

The gain and offset of the sense amplifier have a small 

effect on the circuit performance. A higher sense amplifier 

gain improves the tolerance of the sense circuit to variations of 

the RRAM device. An offset voltage shifts the reference 

threshold voltage, but must be comparable to the supply 

voltage (0.3VDD or more) before the circuit performance is 

affected. 

 

V. MULTISTATE REGISTERS AS MULTISTATE PIPELINE 

REGISTER FOR MULTITHREAD PROCESSORS – A TEST CASE 

Replacing CMOS memory (e.g., register file and caches) 

with non-volatile memristors significantly reduces power 

consumption. Multithreaded machines can exploit the high 

density and CMOS compatibility of memristors to store the 

state of the in-flight instructions within a CPU with fine 

granularity. Hence, using memristive technology can 

dramatically increase the number of threads running within a 

single core. This approach is demonstrated in this test case, 

where RRAM multistate registers store the state of multiple 

threads within a CPU pipeline. 

In continuous flow multithreading [12], the multistate 

registers are used as MPRs to store the state of multiple 

threads. A single thread is active within the pipeline and the 

instructions from the other threads are stored within the 

MPRs. The MPRs therefore eliminate the need to flush 

instructions within the pipeline, significantly improving the 

performance of the processor, as illustrated in Figure 9. 

To exemplify this behavior, the performance and energy of 

a CFMT processor with the proposed RRAM-based MPRs 

have been evaluated [26]. To evaluate the performance, the 

GEM5 simulator [27] is extended to support CFMT. The 

energy has been evaluated by the McPAT simulator [28]. The 

simulated processor is a ten stage single scalar ARM 

processor, where the execution stage operates at the eighth 

stage. The performance and energy of the CFMT processor are 

compared to a switch-on-event (SoE) multithreading processor 

[30], where a thread switch occurs for each long latency 

instruction (e.g., L1 cache miss, floating point instructions), 

causing the pipeline to flush. The characteristics of the 

evaluated processors are listed in Table VII. The energy is 

compared to a 16 thread processor (i.e., with an MPR storing 

16 states) which is a sufficient number of threads to achieve 

the maximum performance for most benchmark applications.  

The performance of the processors is measured by the 

average number of instructions per clock cycle (IPC), as listed 

in Table VIII. The average speedup in performance is 40%. A 

comparison of the thread switch energy is listed in Table IX. 

The average energy per instruction for various CPU SPEC 

2006 benchmarks is listed in Table X, where the average 

reduction in energy is 6.5%. The area overhead for a 16 thread 

CFMT as compared to an SoE is approximately 2.5%, as listed 

in Table IX.  

For the CFMT configuration described herein, the 

simulations show that 16 threads are sufficient to achieve the 

maximum performance for the vast majority of SPEC CPU 

2006 benchmarks. Alternate configurations with many long 

latency events or different machines may benefit from 

additional states. 

Physically, a linear increase in the number of rows and 

columns within the crosspoint array generates a quadratically 

increasing number of states and physical area, increasing the 

efficiency of the crosspoint array. A small increase in the 

number of rows and columns supports many more threads.  
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However, as previously mentioned, 64 states is sufficient for 

most applications. 

For the MPR to enhance performance, the cost of a thread 

switch must be smaller than the latency of a cache miss or 

other long latency events. This situation is typical for all 

practical thread switching events. 

 

VI. CONCLUSIONS 

Emerging memory technologies, such as RRAM, are 

more than just a drop-in replacement to existing memory 

technologies. In this paper, a RRAM based multistate register 

is proposed using an embedded array of memristive memory 

cells within a single flip flop. The multistate register can be 

used to store additional data that is not conventionally 

contained within the computational pipeline. 

The proposed multistate register is relatively fast due to 

the physical closeness of the CMOS and RRAM devices. A 16 

state multistate register requires only 54% additional area as 

compared to a single state standard register. The multistate 

register is also relatively low power due to the non-volatility 

of the resistive devices. 

As an example, the proposed multistate register has been 

applied to a continuous flow multithreading processor, 

exhibiting a significant performance improvement of 40% 

with low energy as compared to a conventional switch-on-

event processor. An RRAM-based MPR therefore enables 

novel microarchitectures, such as the CFMT. The proposed 

multistate register is shown to significantly improve 

performance and reduce energy with a small area overhead. 
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On the In-Die 3D Integration of Memory in CMOS Metal Layers and 
Its Implications on Processor Microarchitecture

    

Abstract  

Over the recent years, new memory technologies such as 
RRAM and STT-MRAM have emerged. These non-volatile 
technologies have primarily been studied as replacement 
for flash, DRAM, and SRAM. 
In this paper, we take a different approach and explore the 
tight integration of CMOS logic with emerging memory 
technologies inside the CMOS die. The physical properties 
of these emerging technologies allows them to be inte-
grated into the metal layers of a CMOS die without requir-
ing precious real-estate on the die's single transistor layer. 
As current CMOS technology offers about a dozen metal 
layers on top of a single transistor layer, such tight integra-
tion provides logic with extremely fast access to abundant 
memory resources. We refer to the tight integration of 
memory and logic as memory-intensive architecture. 
We present the multi-state register as a building block for 
memory-intensive architectures stores multiple shadowed 
values for a single register in the metal layers of the die. 
Finally, we examine the implications of memory-
intensive architecture on processor microarchitecture. We 
construct an in-order pipeline using the proposed multi-
state register as pipeline registers and demonstrate how the 
use of multistate pipeline registers in this microarchitecture 
eliminates the need to flush the pipeline upon a thread 
switch in Switch-on-Event (SoE) multi-threading machines. 
We show that the resulting continuous flow multi-threading 
(CFMT) microarchitecture outperforms a traditional SoE 
design by 32% while consuming 8.5% less energy, thereby 
significantly increasing the performance to energy ratio.  

Keywords  Memristor, memristive device, STT-MRAM, 
PCM, RRAM, multithreading, CFMT, Memory Intensive 
Computing 

1. Introduction 

Emerging of nonvolatile memory technologies, such as 
RRAM [1-2] and STT-MRAM [3], offer high speed, high 
density, and low power memories, whose endurance is 
expected to reach that of SRAM and DRAM [4-5]. These 
technologies represent logical state as resistance on a con-
ductor (variadic resistance for RRAM; switchable on/off 
modes for STT-MRAM) and, despite their use of different 
materials and physical properties, can be collectively refer 
to as memristive devices, or memristors1 [6-9].  

                                                 

 
1
 Although the use of the term memristor for these emerging 

memory elements is still under debate [9], we use it in this paper 

One interesting shared characteristic of these emerging 
memory technologies is that they are fabricated between 
two layers of metal. Existing CMOS-based dies are com-
posed of a single layer of CMOS transistors with multiple 
metal layers stacked on top. The metal layers are etched to 
compose the wires that route the connections between the 
transistors on the CMOS layers, and modern processors 
may include up to a dozen metal layers [10]. Nevertheless, 
the metal layers are not fully utilized in many areas of the 
die. 

In this paper, we propose in-die stacking of memory on 
top of logic by fabricating memristors in the metal layers of 
the die. The integrated memory-intensive architecture pro-
vides tight integration of logic with dense memory 
(memristors can be stacked on several layers to further 
increase density). This integration presents logic with fast 
access to abundant memory resources. 

To make efficient use of memory-intensive architecture, 
we present the multi-state register. The multistate register 
extends a CMOS register with multiple shadow values 
stored in the memristor layers above. While logic can oper-
ate regularly on the active value stored in the CMOS layer, 
the active value can be switched with any of the shadow 
values within a single cycle. This building block thus pro-
vides a promptly switchable, multi-context state element. 
We have designed RRAM-based multistate registers using 
SPICE, including its physical layout, and present its per-
formance, area, and energy characteristics. 

Finally, we explore the implications of memory-
intensive architecture on processor microarchitecture by 
replacing the pipeline registers in an in-order, switch-on-
event (SoE), multi-threaded pipeline with multistate regis-
ters. The resulting continuous flow multi-threading 
(CFMT) pipeline can store multiple in-flight pipeline con-
texts. On a thread switch, the CFMT pipeline simply 
switches contexts in all multistate pipeline registers, there-
by eliminating the need to flush the pipeline on every 
thread switch. We have implemented the CFMT pipeline 
using a modified gem5 simulator and show that it achieves 
high performance, while keeping the complexity and ener-
gy low as conventional SoE. Specifically, CFMT improves 
performance to energy ratio by an average of 44% (up to a 
116% for floating point benchmarks) over an SoE pipeline. 

 

 

                                                                                 

 
to refer to any device that is nonvolatile, dense, and resistance-
based. 
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Figure 1: Physical structure of memory cells (memristors) 

on top of CMOS transistors. The memristors are located 

between metal layers 3 and 4, and 4 and 5. 

In summary, this paper makes the following contribu-

tions: 

 Introduces the tight integration of logic with memristive 

memories by embedding memristors in the metal layer. 

 Presents the multistate register as a building block for 

memory-intensive architecture. 

 Explores the implications of memory-intensive architec-

ture on processor microarchitecture through the evalua-

tion of the continuous flow multithreading pipeline. 
The rest of the paper is organized as follows: emerging 

memory technologies and the concept of memory intensive 
architecture are described in section 2. The multistate regis-
ter is presented in section 3, following a case study of its 
integration in multithreaded processors in section 4. The 
performance and energy of CFMT are evaluated, respec-
tively, in sections 5 and 6, following concluding remarks in 
section 7. 

2. Stacking Memory Inside the Die 

Emerging memory technologies are fabricated in the 
metal layers and can be integrated into a CMOS process, 
above the active silicon transistors, as shown in figure 1. In 
this section, we present how the integration into CMOS 
enables memory intensive architectures. This section then 
surveys the most promising emerging memory technologies 
and confronts their current status with the underlying 
assumptions regarding nonvolatility, relatively fast write 
and read (similar speed as an SRAM), practically unlimited 
write endurance, low energy, high density (stacked above 
the silicon transistors), good scalability, and compatibility 
with standard CMOS processes. 

2.1 In-Die Integration 

All emerging memory technologies are located on top of 
the silicon layer and can therefore be integrated with 
CMOS transistors right above them. This concept is illus-
trated in figure 1, where the emerging memory technolo-
gies (marked as 'memristors' in the figure) stacked in two 
layers as oxides sandwiched between two layers of metal. 
In this illustration, the memory devices are located between 
metal 3 and 4, and between metal 4 and 5. The memory 
devices can be located between any other metal layers as 
shown in section 3. The size of each of each memory de-
vice depends on the width of the metal wires, and is usually 
the minimal feature size of the technology. Emerging 
memory devices are therefore the smallest possible devices 
in each technology (usually the area of a single device is 
considered to be 4F

2
, where F is the feature size) allowing 

dense memories. 
There are several memory cell structures. RRAM can be 

implemented as a crossbar structure, achieving a high den-
sity since the memory cell consists of only a single resistor. 
Using several stacked layers can further increase the densi-
ty. Crossbars, however, suffer from the sneak path phe-
nomenon [11], which increases power consumption and 
complicates the read process. To reduce the sneak path, 
nonlinearity is added by depositing additional materials 
above or below the memristive thin film, with no change in 
the density [12]. Alternatively, a transistor can be added to 
the memory cell as a selector, reducing the density of the 
memory array since transistors are usually larger in their 
area as compared to the emerging memory devices.  

2.2 Memory Intensive Architectures 

A straightforward way is to use emerging memory tech-
nologies as improved replacements for existing memory 
technologies, and benefit from the improved characteristics, 
e.g., higher density, no leakage, and high endurance. Using 
these technologies as SRAM replacements greatly increases 
on-die memory. 

Standardization of emerging memory technologies has, 
however, implications for processor microarchitecture 
beyond conventional memory hierarchy. Emerging memory 
technologies can be used to enhance performance and de-
crease energy in memory intensive architectures [13], 
where processors are abundant with nonvolatile, fast 
memory, located on-top of the logic.  

The additional memory increases the capacity of other 
elements within the processor, such as branch predictors, 
instruction queues, prefetching structures, reorder buffers, 
and other buffers. Additional memory elements can also be 
used to store data, which currently is not stored due to the 
limitations of conventional technologies. For example, the 
results of previously executed instructions can be stored for 
instruction reuse, to provide hardware memoization [14]. 
The states of different instructions for multiple threads can 
also be stored to enhance the performance of multithreaded 
processor as the case study presented in this paper. 

2.3 Background on Emerging Memory Technologies 

2.3.1 RRAM 

Resistive Random Access Memory (ReRAM or 
RRAM) is based on dielectric materials - normally insula-
tors - which can increase the conductance through a fila-
ment or conduction path, when a sufficiently high voltage 
is applied to the device for a sufficiently long time. This 
phenomenon is called resistive switching [1]. There are 
numerous types of materials that exhibit resistive switch-
ing, including binary transition metal oxides (e.g., TiO2, 
NiO), chalcogenides (e.g., Ge2Sb2Te5, AgInSbTe), and 
solid-state electrolytes (e.g., GeS, GeSe). A physical sche-
matic of a TiO2 device is shown in Figure 2a. 

Recently, Panasonic debuted a commercial RRAM 
product [15] for microcontrollers. The first commercial 
flash replacements are planned for 2015 [2]. Prototypes of 
RRAM demonstrate superiority over flash memories [16-
17] and certain resistive switches exhibit comparable prop-
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Figure 2: Different emerging memory devices. (a) A TiO2 

resistive RAM (RRAM) device and (b) Spin-Transfer 

Torque Magnetoresistive RAM (STT MRAM) cell. 

 

 Emerging Commercialized 

RRAM PCM STT-MRAM CBRAM FeRAM SRAM DRAM Flash HDD 

Reciprocal Density [F2] < 4 4-16 20-60 6 6  140 6-12 4 2/3 

Energy per bit [pJ] 0.1-3 2-25 0.1-2.5 2 2 0.0005 2 120 1-10·109 

Read time [ns] 0.1-10 10-50 10-35 50 50 0.1-0.3 10 2.5·104 5-8·106 

Write time [ns] 0.1-10 50-500 10-90 50 75 0.1-0.3 10 105 5-8·106 

Retention Years Years Years Years Years As long as voltage applied 64 msec Years Years 

Standby power Zero Zero Zero Zero Zero Cell leakage Refresh 

power 

Zero ~ 1W 

Non-volatility Yes Yes Yes Yes Yes No No Yes Yes 

Write endurance [cycles] 1012 109 1015 105 1015 >1016 >1016 103-104 104 

Present density 32 Gb 8 Gb 64 Mb 16 Gb 128 Mb 2-8 MB 8 GB 256 GB >1TB 

Multi-level Yes Yes No Yes No No No Yes No 

Table 1: Comparison of different memory technologies. The data is from [15-26], [46-50]. 

erties to SRAM and DRAM [4, 18]. The properties of 
RRAM devices vary for different materials. Some materials 
are relatively fast. Tantalum oxide memristors, for exam-
ple, can switch in approximately 100 picoseconds [19]. 
Although the endurance of RRAM is limited, it is consider-
ably higher than flash (10

12
 as compared to 10

3
 to 10

6
 in 

flash), and will improve substantially in the near future, as 
required by caches and main memory [4]. The energy re-
quired to change the resistance of the device remains rela-
tively high as compared to other memory technologies [18] 
but data retention does not consume static energy. As ex-
plained in section 2.1, the density of RRAM can be maxi-
mal for crossbars memories. Note that a single RRAM cell 
can store more than one bit, which further increases densi-
ty. 

2.3.2 STT-MRAM 

Spin-Transfer Torque Magnetoresistive RAM (STT-
MRAM) is a device usually consisting of two ferromagnet-
ic metals with an oxide between the metal layers [3]. One 
metal has a fixed magnetic field and the other metal has a 
varying magnetic field, which changes according to the 
direction of the electric current flowing through it. When 
the two magnetic fields are parallel (in the same direction), 
the resistance of the device is relatively small. When the 
two magnetic fields are anti-parallel (in opposite direc-
tions), the resistance of the device is relatively high. Since 
there are only two stable states (parallel and anti-parallel), 
STT-MRAM behaves as a simple binary memory, and a 

single device cannot store more than a single bit. A physi-
cal schematic of an STT-MRAM cell is shown in figure 2b. 

STT-MRAM is relatively fast (around 1 nsec write 
time) and has unlimited write endurance [5]. STT-MRAM 
suffers, however, from a low ratio between the high and 
low resistance, making it difficult to sense the data with 
process variations. The read and write energy of STT-
MRAM is similar to the energy of RRAM. STT-MRAM 
cells require a transistor as a selector and their size is there-
fore characterized by the size of the CMOS transistor. Re-
cently, Everspin Technologies, a spinoff of Freescale, an-
nounced the first commercial STT-MRAM memory. For 
this product, the read and write times are 35 nsec, with 
unlimited write endurance and capacity of 64 Mb [20]. 

2.3.3 Shared Properties of Practical Emerging 
Memory Technologies 

There are several additional emerging memory technol-
ogies that share similar properties as the aforementioned 
technologies [21], such as Phase Change Memory (PCM) 
[22-24], Ferroelectric RAM (FeRAM or FRAM) [25] and 
Programmable Metallization Cell (PMC or CBRAM, some-
times considered as a specific type of RRAM) [26]. The 
properties of the emerging memory technologies described 
in this paper as well as conventional memory technologies 
are listed in Table 1. 

Emerging memory technologies are still relatively slow 
as compared to SRAM. RRAM and STT-MRAM devices, 
however, have been demonstrated to exhibit relatively low 
write latencies, similar to SRAM. The write endurance of 
STT-MRAM and FeRAM is practically unlimited as de-
sired for SRAM and DRAM replacement. Although the 
write endurance of RRAM is relatively high, it is still not 
sufficient to replace SRAM and DRAM. It is, however, 
expected that the write endurance reach that of SRAM [4]. 

Due to their nonvolatility, there is no leakage in emerg-
ing memory technologies. The dynamic energy per bit for 
emerging memory devices is, however, considerably higher 
than the energy per bit for SRAM. Since leakage power 
dominates in an SRAM cache, the total power dissipation 
for RRAM and STT-MRAM is lower than for SRAM. For 
example, STT-MRAM cache dissipates 60% less power 
than an SRAM cache with similar area [27]. 

RRAM and STT-MRAM are therefore candidates for 
SRAM replacements and are attractive technologies for use 
within a processor and fulfill the aforementioned require-
ments. Other technologies could also be used within a pro-
cessor if speed, energy, endurance, and scaling issues are 
improved. 
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Figure 3: The logic structure of a multistate register. The 

size of each set is m bits, while n states are stored. The 

multistate register is synchronized by a clock and can 

switch the active set.  

Register Area 

[µm2] 

Area 

Overhead 

CMOS Register (1 state) 2.8 - 

RRAM 

4 states 3.9 39.3 % 

16 states 4.3 53.6% 

64 states 5.2 85.7% 

SRAM 

4 states 29.7 959.4% 

16 states 110.25 3837.6% 

64 states 432.61 15450.4% 

Table 2: Area of a single bit Resistive RAM and SRAM 

for multistate registers based on a 22 nm CMOS process. 

The area of an RRAM-based multistate register is extract-

ed by Cadence Virtuoso [28] and the area of an SRAM-

based multistate register is extracted by NVSim [44]. 

 

3. Memristor-Based Multistate Register 

The introduction of massive amount of memory ele-
ments above the CMOS logic creates an opportunity to 
store data created at the CMOS level. The multistate regis-
ter is a novel memory structure, used to store multiple bits 
within a single element. One set of bits is an active set, 
while the other sets are idle and stored for future use. The 
multistate register is a synchronous storage element, and 
the procedure to change the active set is therefore synchro-
nized by a clock. The basic logical structure of a multistate 
register is shown in Figure 3. 

 An RRAM-based multistate register is shown in Figure 
4 [28]. The multistate register primarily operates as a 
CMOS register. In this mode, the structure behaves as a 
standard D flip-flop, where a single bit is stored and is 
active while the idle states are stored within the RRAM 
crossbar array. Since the active state is stored within a 
CMOS register, the multistate register is compatible with 
any digital circuit.  When global control circuitry triggers a 
change of the active set, the circuit stores the current bit of 
the register and reads out the value of the next active set 
from the internal RRAM-based storage. Switching between 
active bits therefore occurs in two phases, ideally taking 
one half-clock cycle per phase. While the delay of the read 
phase is limited by the CMOS register and is much lower 
than half a cycle, the write phase may require more than 
half a cycle, depending upon the switching time of the 
RRAM technology.   

The RRAM-based multistate register utilizes a clocked 
CMOS register augmented by additional sense circuitry and 
global memristor select (MS) lines. The MS lines select 
individual RRAM devices within the crossbar memory co-
located with the CMOS register. Local writes to the RRAM 
crossbar are controlled by the master stage within the 
CMOS register. The gates within the slave stage of the 
CMOS register are reconfigured to provide a built-in sense 
amplifier to read the RRAM crossbar array. The overhead 
of the additional circuitry is therefore relatively small, as 
shown in Figure 5a and 5bc for RRAM-based multistate 
registers with two physical design approaches – integrating 
RRAM devices between the first two metals or, alternative-
ly, on the middle level metal layers. Using the lower metal 
layers approach is compatible with standard cell CMOS 
rules, but requires slightly more area than the middle level 
metal approach. 

Although it is possible to design a CMOS SRAM-based 
multistate register (or any other conventional memory 
technology), emerging memory technologies enable high 
capacity multistate registers due to the high density and low 
leakage, as listed in Table 2 based on a 22 nm CMOS pro-
cess. SRAM-based multistate register has large area, while 
the equivalent RRAM-based multistate register requires a 
relatively small area overhead. For example, a 64 state 
multistate register of SRAM that is based on a 22 nm 
CMOS process is 83 times larger than an RRAM-based 
multistate register. 

A multistate register can be used for different purposes. 
In this paper, the application of multistate registers in the 
pipeline is described and demonstrated. In pipeline regis-
ters, the state of the instruction from the preceding pipeline 
stage is stored and transferred to the next pipeline stage. In 
a multistate pipeline register, additional instructions are 
also stored within the multistate register in background. 
The basic functionality of the pipeline is therefore un-
changed. In the next section, we describe and evaluate 

Continuous Flow Multithreading (CFMT) [29], a novel 
microarchitecture that employs memristive multistate regis-
ters. In CFMT, a multistate register stores multiple machine 
states of different threads, where a single thread is active at 
a time, enabling higher throughput computing. 

3.1 Multistate Register Evaluation 

To evaluate the area, power, and performance of an 
RRAM-based multistate register, we used SPICE simula-
tions along with cell layout. The RRAM device is modeled 
using the TEAM model [41]. The parameters of the resis-
tive device are chosen to incorporate device nonlinearity 
into the current-voltage characteristic to reduce sneak 
paths. The multistate register is evaluated across a range of 
internal crossbar sizes (i.e., different numbers of states per 
register). The transistor and cell track sizing information is 
from the FREEPDK45 Standard Cell Library [42] and 
scaled to a 22 nm technology. Circuit simulations utilize 
the 22 nm PTM CMOS transistor model [43]. 

The read operation of the multistate register requires 
28.6 ps, equivalent to a 16 GHz clock frequency (the read 
operation is less than half a clock cycle). The latency of the 
write operation is assumed to vary from half a clock cycle 
to 4.5 clock cycles to fit different RRAM technologies, 
resulting different thread switch penalties that vary from a 
single clock cycle to five clock cycles. 

To evaluate area, we assume that the area of a single 
memristor is 0.001934 µm2 (4F

2
, where F is the feature size) 

[18]. The area of an SRAM-based multistate register is 
extracted from NVSim [44] based on a 22 nm CMOS pro-
cess. The use of SRAM-based multistate register in CFMT 
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Figure 4: Complete circuit of a 16 state RRAM-based single bit multistate register consists of an RRAM-based crossbar array 

above a CMOS-based flip-flop, where the second stage (the slave) also behaves as a sense amplifier. 

 
Figure 5: RRAM-based single bit multistate register. (a) Vertical layout of RRAM in multistate register, where the RRAM is 

within the lower metal layers (left) and middle metal layers (right), and physical layout of 64 state multistate register, where the 

RRAM is within  (b) the lower metal layers (M1 and M2) and  (c) middle metal levels (M2 and M3). 

 

does not make sense due to its large area as listed in Table 
2 and is not evaluated in this paper. 

4. Test Case: Continuous Flow Multi-
Threading (CFMT) 

The availability of abundant state affects the design of 
processor microarchitectures. In this section we illustrate 
the potential benefit of memory intensive architecture 
through a microarchitecture case study. We demonstrate 
these benefits by replacing pipeline registers of an in-order 
Switch-on-Event multithreaded (SoE MT) processor with 
multistate registers. The resulting Continuous Flow 
Multithreading (CFMT) microarchitecture offers faster 
thread switch and higher performance, while saving power 
and maintaining the control as simple as SoE MT 
processors and. Unlike previous microarchitectures, which 
store the states of multiple threads (especially for GPUs) 

[30], CFMT stores intermediate (internal) states of each 
instruction within the pipeline. 

4.1 Overview of Switch-on-Event Multithreading 

Switch-on-Event Multithreading (SoE MT) is a multi-
threading technique in which a processor hides the latency 
of long multi-cycle events (MCE), e.g., an L1 cache miss, 
by executing instructions from different threads. When a 
sufficiently long MCE occurs, a thread switch is triggered 
and the MCE is executed in background. Otherwise (i.e., 
when short latency instructions are executed), instructions 
from the same thread are fetched. During a thread switch, 
all of the sequential instructions from the thread that was 
switched are flushed and instructions from a different 
thread are fetched. The penalty of a thread switch is the 
time required to refill the pipeline. 

A longer thread switch penalty reduces the performance. 
Hence, the number of pipeline stages is limited and, as a 
result, the frequency of the processor is restricted. Addi-
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Figure 6: Timelines for different multithreading tech-

niques with four threads (marked by the number). All 

processors run the same four threads as shown in (f). The 

latencies of the 'white' and 'shaded' instructions are, re-

spectively, a single clock cycle and ten clock cycles. For an 

(a) SoE MT processor, the event that triggers a thread 

switch is the shaded instruction and the thread switch 

penalty is five clock cycles. (b) Static and (c) dynamic fine-

grained multithreading achieves higher utility, while (d) 

SMT is optimized to achieve the maximum performance. 

(e) CFMT achieves high performance with simple switch-

ing and control mechanisms. 

 
Figure 7: Continuous Flow Multithreading structure. A 

multistate pipeline register (MPR) is located between 

every two pipeline stages instead of a conventional pipeline 

register.  The MPR stores the state of instructions from all 

supported threads within the machine when only a single 

thread is active at a time. 
 

tionally, the effectiveness of a thread switch depends upon 
the ratio of the MCE latency and the switch penalty. For an 
MCE with latencies smaller than the switch penalty, it is 
preferable to stall the pipeline rather than switch to a new 
thread. For example, assume that MCEs are identified at 
the eighth pipeline stage (i.e., seven clock cycles are re-
quired to refill the pipeline), the L1 cache miss penalty is 
20 cycles, and the latency of an integer multiplication is 
three cycles, without pipelining the operation. For a cache 
miss MCE, a thread switch is worthwhile, but it is not 
worthwhile for an integer multiplication MCE. In this ex-
ample, the latency of an L1 cache miss is hidden by the 
multithreading technique and does not influence the per-
formance. Integer multiplication degrades the performance 
of the processor. 

The performance of an SoE MT processor also depends 
upon the number of threads running within the processor. 
For a sufficient number of threads, instructions from other 
threads hide the latency of the MCE. In this case, the per-
formance approximately saturates. For an insufficient num-
ber of threads, increasing the number of threads linearly 
improves performance. 

Although an SoE MT is a simple technique that requires 
minimal control, it suffers from low performance and rela-
tively high energy consumption due to repeated pipeline 
flushing. Other multithreading techniques, such as fine-
grained multithreading [31] and simultaneous multithread-
ing (SMT) [32], overcome the limitations of SoE MT. The 
complexity of these techniques, however, is greater. Fur-
thermore, to achieve effective fine-grained multithreading, 
a large number of threads is required. An SMT processor, 
on the other hand, presents an opportunity to increase per-
formance. Nevertheless, the complexity required to control 
a processor is significant, and the area and power consump-
tion limit the processor to relatively few threads (e.g., In-
tel's Ivy Bridge processor has only two threads per core 
[33]). SoE MT, fine-grained multithreading, and SMT are 
illustrated in Figure 6. 

4.2 Introducing CFMT 

Using multistate registers as pipeline registers in multi-
threaded processors can enhance performance by minimiz-
ing the switch penalty. In conventional pipelines, the pipe-
line registers are located between pipeline stages to store 
the state of the predecessor instructions before moving the 
state to the next pipeline stage. Conventional pipeline regis-
ters are replaced by multistate registers, as shown in Figure 
7. The use of multistate registers instead of regular registers 
saves the state of the stalled threads in addition to the state 
of the active thread. The mechanism of thread switching is 
therefore different from a conventional SoE MT. Rather 
than flushing the pipeline, the states of the consecutive 
instructions are stored within the multistate registers in the 
memristive layer, locally near the relevant pipeline stage. 
On a thread switch rather than refilling the pipeline, in-
structions from the new active thread are read from the 
multistate registers, significantly reducing the thread switch 
penalty to the time required to read data from an multistate 
register. The conceptual behavior of CFMT is similar to the 
behavior of an SoE MT (see Figure 6a) with fewer bubbles, 
as shown in Figure 6e. Additionally, the novel switching 
mechanism helps conserve energy since reading and writ-
ing to the multistate registers consume less energy than 
refilling the entire pipeline and replaying the flushed in-
structions. 

Lowering the thread switch penalty also allows new 
events to trigger a thread switch. With a conventional SoE 
MT, it is worthwhile to switch threads on events, when the 
latency is longer than the time required to refill the pipe-
line. With CFMT, the condition changes and it is effective 
to switch threads on events when the latency is longer than 
the time to switch an active thread within a multistate regis-
ter. This condition allows having MCEs that would stall the 
pipeline in a conventional SoE MT. This improvement 
further increases the performance of the processor such as 
floating point operations and long latency integer opera-
tions. The analysis and evaluation of performance and 
power are presented in Sections 5 and 6. 

In CFMT, the controller acts similar to a simple conven-
tional SoE MT. The simplicity of CFMT is due to the use 
of an in-order pipeline, with only a single active thread at 
any given time. While the control mechanism is simple and 
the energy is low, CFMT offers substantially higher utiliza-
tion and performance. 



7 
 

Pipeline depth 13 stages 

Execution stage 9th stage 

L1 cache 32kB, 4-ways, 2 cycles latency 

L2 Cache 1MB, 8 ways, 20 cycles latency 

Memory latency 200 cycles 

Branch predictor  8kB gshare 

Table 3: Parameters of the simulated processor. 

Execution Unit 
No. of 

Units 

Latency 

[Cycles] 
Pipelined? 

Int ALU 1 1 NA 

Int multiply 1 3 V 

FP ALU 1 4 V 

FP multiply 1 5 V 

FP multiply double precision 1 6 V 

FP div 4 15 X 

FP div double precision 4 25 X 

FP sqrt 4 17 X 

FP sqrt double precision 4 32 X 

Table 4: Execution units of the simulated processor. The 

latencies are taken from [37]. 

Pipeline stage energy Estage 15.7 pJ 

# instructions per flush k 7 

# of bits per instruction state m 300 bits 

RRAM-based 16 threads 

MPR - write energy @ X 

clock cycles thread switch 

penalty 

EMPR,write 3     fJ @ 1 cycle 

7.8   fJ @ 2 cycle 

12.6 fJ @ 3 cycle  

17    fJ @ 4 cycle  

21.7 fJ @ 5 cycle  

RRAM-based 16 threads 

MPR - read energy 

EMPR,read 1.3 fJ 

Table 5: Energy evaluation. Extracted from McPAT and 

SPICE simulations for CMOS 22 nm process with a clock 

frequency of 3 GHz. 

 

 

5. Methodology 

5.1 Architecture 

We have validated the required control mechanism and 
size of instruction state of a CFMT processor using an RTL 
implementation written in Verilog and simulated by 
ModelSim. To evaluate the performance of CFMT and 
compare it to SoE, the Gem5 simulator [35] has extended 
to support CFMT. The simulated processor has 13 pipeline 
stages and two levels of cache. All thread switching occurs 
in a unified execution and memory stage, located in the 
ninth pipeline stage. The parameters of the processor struc-
ture are listed in Table 3. The structure of the pipeline is 
similar to the ARM cortex-A8 processor [36] while the 
timing parameters of the execution units are extracted from 
the ARM cortex-A9 processor [37]. While ARM cortex-A8 
is an in-order processor, the execution units of the out-of-
order ARM cortex-A9 are faster and demonstrate the bene-
fits from CFMT with shorter MCEs as well. The execution 
units are listed in Table 4. The hybrid branch predictor is 
chosen based on the ALPHA 21264 microprocessor [38] to 
achieve a high branch prediction rate. We simulate up to 32 
threads per processor. Each workload is executed until the 
first thread completes 60 million instructions. We use AL-
PHA compiled SPEC CPU 2006 [39] benchmarks, generat-
ed by a Gem5 simulator. We use SPEC CPU 2006 for the 
performance evaluation since multi-programmed SPEC 
benchmarks have no resource sharing and are therefore 
more demanding for the cache and other resources. 

In the CFMT processor, the pipeline registers and the 
register file are modeled as RRAM multistate registers. It is 
possible to also use memristive technologies for the caches, 
branch predictor, TLB, and other structures [40], but we 
consider these extensions beyond the scope of this paper. 
Nevertheless, these structures with memristive technologies 
will further reduce the energy without undue influence on 
performance. 

5.2 Processor Implementation 

Pipelining of the execution stage allows for more than a 
single instruction within the execution stage. Hence, a 
dependency check is performed prior to execution and 
independent sequential instructions enter the execution 
stage without a thread switch. When an instruction depends 
on a previous long latency instruction that is currently be-
ing executed, a thread switch is triggered. Exiting from the 
execution stage, however, is limited to a single instruction 
per clock cycle and is accomplished in-order. In the case of 
a conflict between instructions from different threads, the 
active thread is preferred. This does not starve the previous 
thread, since executed instructions from previous threads 
can exit the execution stage during thread switches. Addi-
tionally, instructions that trigger a thread switch and finish 
the execution continue to propagate within the pipeline 
after executing. 

For CFMT, two switching policies are considered: an L1 
cache miss as the only switching trigger and any instruction 
with latency longer than the thread switch penalty (includ-
ing an L1 cache miss). Furthermore, different thread switch 
penalties have been evaluated for CFMT, varying from a 
single clock cycle to five clock cycles, to demonstrate dif-
ferent RRAM technologies. To maintain fairness, a thread 
switch is triggered every 500 cycles. In practice, this fair-
ness mechanism is not required since thread switches are 
more frequent. 

In CFMT, a branch misprediction is the only trigger for 
a pipeline flush. Although switching threads when identify-
ing a branch instruction can eliminate the pipeline flush, it 
significantly increases the complexity of the CFMT control 
mechanism since more than a single thread is active within 
the pipeline. To maintain the simplicity of the control 
mechanism, we flush the pipeline on a branch 
misprediction and use a branch predictor. 

The number of execution units (as listed in Table 4) is 
chosen to eliminate structural hazards due to the lack of an 
available execution unit for different threads. If the number 
of execution units is low, resource sharing limits the per-
formance and the processor may stall until an execution 
unit becomes available. 

Multistate registers for superscalar processors store 
more instructions for each thread (the number of instruc-
tions is the pipeline width). Although more instructions run 
through the pipeline and are stored within the multistate 
registers, the control mechanism remains the same and the 
complexity is therefore unchanged. The performance in-
creases although the in-order execution mechanism has a 
greater number of dependencies. 

5.3 Energy Methodology 

To evaluate the energy of the processor for both SoE 
MT and CFMT, the McPAT modeling framework [45] is 
used for a CMOS 22 nm process with a clock frequency of 
3 GHz. Since McPAT does not consider thread switching in 
its energy evaluation, the energy consumed by these 
operations is extracted from (2) and (3), as explained in 
section 6.2.1. The number of thread switches is evaluated 
by the performance simulator and the relevant parameters 
are extracted from SPICE simulations and McPAT. The 
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CPIideal Ideal CPI of the machine 

n Number of threads 

MR(n) Miss rate as a function of n 

ri Frequency of mce instruction i 

rm Frequency of memory accesses 

Pi Penalty of mce instruction i 

Pm Memory access penalty 

Ps Switch penalty 

Nsat Number of threads that distinct between the unsaturated and 

saturated regions 

Table 6: Parameters for the analytic model of SoE MT 

and CFMT described by (1). 

 

Figure 8: IPC (instruction per cycles) of Switch-on-Event 

Multithreading and Continuous Flow Multithreading as 

modeled in (1). The parameters are 30% memory instruc-

tions (rm = 0.3) with an L1 cache miss rate of 50% and 

memory access time of 200 cycles (Pm = 200 cycles), r1 = 

20%, r2 = 17%, P1 = 3 cycles, and P2 = 6 cycles. 
 

parameters used to evaluate the thread switch energy are 
listed in Table 5. 

6. Evaluation 

6.1 Performance 

6.1.1 Analytic Evaluation 

The performance of both SoE and CFMT depends upon 
the number of threads within the processor. Adding more 
threads, allows long latency instructions (MCE) to be hid-
den. Each additional thread increases the performance. In 
this case, the machine is unsaturated. Once the processor 
has a sufficient number of threads to completely hide the 
long latency instructions, the performance is almost con-
stant and the pipeline is full at this point to capacity. Add-
ing more threads to the machine does not increase perfor-
mance. In this case, the machine is saturated. It is possible, 
however, that additional threads affect the cache behavior, 
increasing the cache miss rate, thereby lowering perfor-
mance [34]. 

Our analytic analysis assumes a processor with different 

MCEs whose latencies are Pi. In that case, the performance 

(in cycles per instruction) for n running threads with similar 

periodic average behaviors is 

 
 

 
, ,

,
, (1)

,

ideal i i m m

i mce
sat

ideal i i i s sat

i unhidden mce i hidden mce

CPI r P r MR n P

unsaturated n N
CPI n

CPI r P r P saturated n N



 

     
 

 
     




 

 

where the parameters are those listed in Table 6. Note that 
the impact on CPI due to the memory instructions depends 
on both the memory access time and miss rate and therefore 
on the number of threads. 

The performance of SoE and CFMT is shown in Figure 
8, and is approximately the same when both processors 
operate in the unsaturated region. The CPIsat of CFMT is 
lower than SoE for two reasons: more MCEs are consid-
ered as triggers for a thread switch, and the thread switch 
penalty is lower than in SoE.  

6.1.2 Simulations 

The performance of three selected benchmarks that 
demonstrate three different possible behaviors is shown in 
Figure 9. The instruction mix of soplex.ref (Figure 9a) is 
15% floating point instructions, 29% memory instructions, 
and 56% integer instructions. In the saturation region, the 
L1 cache miss rate is approximately 11% to 24% and the 
influence of both floating point and memory events is rela-
tively similar. Hence, the IPC is improved as more switch-
ing triggers are considered. The IPC in the saturation re-
gions for SoE MT is 0.39, while the IPC of CFMT when 
only a cache miss triggers a thread switch, and CFMT with 
both cache miss and floating point triggers are, respective-
ly, 0.45, and 0.59, showing a performance improvement of 
47% and 15% for, respectively, CFMT with and without 
floating point triggers. Note that the maximum performance 
is limited by the thread switch penalty (a single clock cy-
cle), instruction dependencies of a single cycle, and branch 
mispredictions. 

The libquantum benchmark (Figure 9b) does not include 
floating point instructions (20% memory instructions and 
80% integer instructions). The performance of both switch-
ing policies for CFMT is therefore identical. Due to the 
relatively high L1 miss rate of approximately 15% in the 

saturation region, CFMT improves the performance by 
18% as compared to SoE MT. 

For gromacs (Figure 9c) although memory instructions 
are frequent (42% of the total instructions), L1 cache miss-
es are rare (an approximate L1 miss rate of 2% in the satu-
ration region). Hence, the performance is influenced pri-
marily by floating point operations (44%). CFMT with only 
L1 miss as a switching trigger performs similarly to SoE 
MT. CFMT with floating point as a switching trigger 
achieves a 55% performance improvement. 

A comparison between the analytic model as presented 
in (1) to simulations is shown in Figure 10. The analytic 
model shows sufficient accuracy as compared to simulation 
results. The average difference between simulations and the 
analytic model is 2.6% for the entire IPC evaluation and 
0.95% for the saturation region. 

The speedup of the IPC in the saturation region as com-
pared to SoE MT for numerous SPEC CPU 2006 bench-
marks is shown in Figure 11 for an ideal multistate register 
(no thread switch penalty). The average performance 
speedup of CFMT (with MCE) as compared to SoE MT 
with RRAM multistate register (with thread switch penalty 
of a single clock cycle) is 32%. Floating point benchmarks, 
as marked in Figure 11, achieve an average performance 
improvement of 55% and 45% with, respectively, ideal and 
RRAM multistate registers. The maximum performance 
improvement is achieved for zeusmp (99% and 75% im-
provement, respectively, for ideal and RRAM multistate 
registers), where 33% of the instructions are floating point 
instructions, 25% are memory instructions, and the L1 
cache miss rate in saturation is 17%. 

The IPC for various thread switch penalties in CFMT is 
shown in Figure 12 for selected benchmarks. As expected, 
for CFMT the speedup decreases as the thread switch pen-
alty increases [41]. The average speedup for various values 
of the thread switch penalty is listed in Table 7. Mixes of 
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Figure 9: IPC vs. number of threads for different SPEC CPU 2006 benchmarks. (a) soplex.ref, where memory and floating 

point MCE both influence the performance, (b) libquantum, a benchmark of only integer and memory instructions (no other 

MCE), and (c) gromacs, a benchmark with a dominant floating point MCE over memory events. CFMT thread switch penalty 

is a single clock cycle. The other simulation parameters are as listed in Tables 4 and 5. 

 
Figure 10: Comparison between the analytic model in (1) and simulation results for (a) soplex.ref, (b) libquantum, and (c) 

gromacs. The simulation results and analytic model are represented, respectively, by discrete dots and a straight line, exhibiting 

an average 4.2% difference. 

 

Figure 11: Speedup in the saturation region (number of threads is 16) for different SPEC CPU 2006 as compared to SoE MT 

with an ideal MPR (zero thread switch time). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

different benchmarks have been tested, showing similar 
results. The IPCsat is approximately an average of the re-
sults of the pure mix, as shown in Figure 13. 

Increasing the cache size decreases the L1 cache miss 
rate, reducing the frequencies of the thread switches. The 
IPC for various L1 cache sizes, when only L1 cache miss is 
a switching trigger, is shown in Figure 14. Adding an L2 
cache (the reference system in Figure 14) does not change 
the maximum performance, only the power consumption. 

6.2 Energy 

While CFMT significantly improves the performance as 
compared to SoE MT, it also dissipates less power. The 
total energy of the processor can be further decreased with 
emerging memory technologies. Since the control mecha-
nism of both SoE MT and CFMT is similar, the main dif-
ference in energy is due to the thread switch mechanism. 
Additionally, the improved performance effectively lowers 
the leakage energy, further decreasing the energy. 
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Figure 12: IPC vs. number of threads for various CFMT thread switch penalties. (a) soplex.ref, (b) libquantum, and (c) gromacs. 

Benchmark CFMT without MCE CFMT with MCE 

Thread switch penalty [cycles] 1 2 3 4 5 1 2 3 4 5 

libquantum 1.15 1.13 1.11 1.08 1.06 1.15 1.13 1.11 1.08 1.06 

bwaves 1.01 1.01 1.01 1.01 1.00 1.35 1.24 1.07 1.04 1.01 

milc 1.09 1.07 1.06 1.05 1.04 1.23 1.15 1.10 1.08 1.06 

zeusmp 1.12 1.10 1.08 1.06 1.05 1.75 1.55 1.38 1.29 1.21 

gromacs 1.02 1.02 1.01 1.01 1.01 1.43 1.33 1.24 1.16 1.11 

leslie3d 1.17 1.15 1.12 1.10 1.07 1.51 1.38 1.27 1.20 1.14 

namd 1.09 1.08 1.06 1.05 1.04 1.32 1.21 1.12 1.07 1.04 

soplex.pds-50 1.17 1.14 1.12 1.09 1.07 1.22 1.18 1.13 1.11 1.08 

lbm 1.19 1.16 1.13 1.10 1.07 1.54 1.30 1.21 1.15 1.10 

bzip2.combined 1.09 1.07 1.06 1.05 1.04 1.09 1.07 1.06 1.05 1.04 

gcc.166 1.14 1.12 1.10 1.08 1.06 1.14 1.12 1.10 1.08 1.06 

gobmk.trevorc 1.15 1.12 1.10 1.08 1.06 1.15 1.13 1.10 1.08 1.06 

h264ref.foreman_baseline 1.09 1.08 1.06 1.05 1.04 1.10 1.08 1.07 1.05 1.04 

GemsFDTD 1.30 1.25 1.20 1.15 1.11 1.68 1.49 1.30 1.17 1.10 

hmmer.nph3 1.17 1.15 1.12 1.09 1.07 1.17 1.15 1.12 1.09 1.07 

soplex.ref 1.15 1.12 1.10 1.08 1.06 1.40 1.28 1.21 1.15 1.10 

gcc.c-typeck 1.13 1.11 1.09 1.07 1.05 1.15 1.13 1.11 1.09 1.07 

Average 1.13 1.11 1.09 1.07 1.05 1.32 1.23 1.16 1.11 1.08 

Table 7: Performance speedup for various CFMT thread switch penalties. 

 

 
Figure 13: IPC in saturation for different benchmark 

mixes (16 threads, four each) of SPEC CPU 2006, as listed 

in Table 8. The speedup is approximately the average 

speedup of the different benchmarks in the mix. 

 

 
 

Mix No. Tested Benchmarks (16 Threads) 

1 4 milc, 4 soplex.ref, 4 namd, 4 gcc.g23 

2 4 libquantum, 4 gcc.166, 4 bzip2.program, 4 gobmk.nngs 

3 8 lbm, 8 hmmer.nph3 

4 4 lbm, 4 zeusmp, 8 libquantum 

5 4 namd, 4 zeusmp, 4 GemsFDTD, 4 leslie3d 

6 8 lbm, 4 GemsFDTD, 4 leslie3d 

7 8 gromacs, 8 namd 

8 8 libquantum, 4 namd, 4 bzip2.program 

9 4 libquantum, 4 gcc.166, 4 bzip2.program, 4 gobmk.nngs 

10 4 gcc.s04, 4 gobmk13x13, 4 sjeng, 4 zeusmp 

11 4 hmmer.nph3, 4 libquantum, 4 lbm, 4 gromacs 

Table 8: Different SPEC CPU 2006 mixes. 

 

6.2.1 Analytic Evaluation 

The energy of the thread switch in SoE MT is primarily 
due to the instruction flush. The flushed instructions are 
replayed when the thread is active again, going through the 
same pipeline stages an additional time. The average thread 
switch energy for SoE MT is therefore 

 1
,

2
flush stage

k k
E E

 
      (2) 

where   stage is the average energy consumed in a single 

pipeline stage within a single clock cycle, and k is the num-

ber of flushed instructions during each thread switch. The 

energy of a thread switch in CFMT is the energy required 

to both read the state of the new active thread and write the 

state of the previous active thread. Formally, the average 

thread switch energy for CFMT is 

 , , ,CFMT MPR write MPR readE m E E       (3) 

where m is the average number of bits required to represent 
the state of an instruction within a pipeline, EMPR,write and 
EMPRread are, respectively, the energy of a write and read in 
a single-bit multistate pipeline register. For the RRAM-
based multistate register shown in Figure 4, the energy 
depends on the CMOS flip flop energy, and the resistance 
of the resistive switches and the switching energy of the 
memory devices, which determine, respectively, the read 
and write energy. Furthermore, the improved IPC of CFMT 
reduces the run time of the processor workload and the 
static energy due to leakage current. 
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Figure 14: IPC vs. number of threads for various L1 cache sizes (4 kB, 16 kB, and 32 kB) for CFMT without MCE and without 

L2 cache, as compared to a reference machine with L2 cache as listed in Table 4. (a) soplex.ref, (b) libquantum, and (c) gromacs. 

Benchmark SoE MT [pJ/inst.] 

CFMT  

RRAM MPR – various thread switch latencies 

1 cycle 

[pJ/inst.] 

2 cycles 

[pJ/inst.] 

3 cycles 

[pJ/inst.] 

4 cycles 

[pJ/inst.] 

5 cycles 

[pJ/inst.] 

Libquantum 15.922 15.26 15.352 15.441 15.5315 15.621 

bwaves 21.641 20 20.402 21.178 21.3581 21.568 

milc 26.367 24.72 25.1 25.395 25.6783 25.744 

zeusmp 22.651 19.04 19.642 20.312 20.7422 21.154 

gromacs 32.871 30.07 30.558 31.052 31.5899 31.904 

leslie3d 29.54 26.67 27.203 27.778 28.1692 28.547 

namd 24.945 23.15 23.634 24.1 24.4246 24.608 

soplex.pds-50 19.639 18.47 18.66 18.872 19.0249 19.166 

lbm 24.308 21.34 22.306 22.832 23.1923 23.467 

bzip2.combined 24.583 24.08 24.143 24.209 24.2771 24.344 

gcc.166 20.064 19.38 19.477 19.568 19.6613 19.753 

gobmk.trevorc 26.445 25.44 25.579 25.712 25.8522 25.984 

h264ref.foreman_baseline 27.991 27.16 27.272 27.439 27.5789 27.645 

GemsFDTD 28.574 23.35 24.332 25.715 27.3383 27.904 

hmmer.nph3 28.353 26.02 26.153 26.284 26.4131 26.545 

soplex.ref 23.78 21.51 21.782 22.137 22.4232 22.74 

gcc.c-typeck 21.783 20.94 21.038 21.139 21.2413 21.347 

Average 24.674 22.74 23.096 23.48 23.7939 24.002 

Table 9: Energy per instruction for various SPEC CPU 2006 benchmarks in the saturation region. 

 

Figure 15: Energy per instruction vs. number of threads for SoE MT and CFMT for selected benchmarks. (a) soplex.ref, (b) 

libquantum, and (c) gromacs. 

 6.2.2 Experimental Results 

The energy per instruction for a varying number of 
threads is shown in Figure 15, exhibiting a lower energy 
per instruction when more threads are running within the 
machine. The measured energy per instruction for various 
SPEC CPU 2006 benchmarks is listed in Table 9. The en-
ergy per instruction is reduced on average by 8.5% for 
CFMT with an RRAM-based multistate register as com-
pared to SoE MT and up to 19% for zeusmp. The energy 
reduction is primarily due to the lower static energy. 

7. Conclusions 

The in-die integration of emerging memory technolo-
gies with CMOS paves the way for memory intensive ar-
chitectures. Memory intensive architectures use novel 
memory elements to store data not stored in conventional 

architectures to enhance performance, while reducing ener-
gy. Rather than using additional memory solely to increase 
the capacity of the traditional memory hierarchy, the addi-
tional memory is used for novel architectural opportunities. 

As an example of memory intensive computing, the 
combination of a novel memory structure, multistate pipe-
line register (MPR), with a novel microarchitecture, Con-
tinuous Flow Multithreading (CFMT), exhibits a 32% per-
formance improvement with a reduction in energy. The 
performance per energy support the use of CFMT in low 
power machines. 

CFMT is a single example of a memory intensive archi-
tecture. Numerous other applications of multistate register 
and other memory elements based on emerging memory 
technologies are possible. These novel architectures will 
improve both performance and energy and extend CMOS 
by adding to it complementary technology.  
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Chapter 4 Conclusions and Future Work 

Memristors add new capabilities to CMOS technology and are projected to be 

commercially available in the near future. In this thesis, we investigate these new 

properties and the implications of the new capabilities of VLSI systems in the 

memristor era. This combination of nonvolatile, dense, fast, and low power devices 

that are used both in storage systems and embedded on-top of CMOS, are a disruptive 

technology, changing the way computers are organized today. 

In this thesis, different families to perform computation with memristors, both for 

integration of memristors with CMOS and for logic within memory are presented. 

The integration between CMOS and memristors is beneficial to increase the logic gate 

count of the same area (increase logic density), even without shrinking CMOS 

transistors. This approach is beneficial to extend Moore's law when CMOS scaling 

becomes problematic or to go beyond Moore's law and increase the number of logic 

gates by more than the traditionally factor of two. 

A different approach, investigated in this research, is using memristive-only logic 

for logic within the memory. This approach enables non-von Neumann architectures 

of in-memory computing (also named process in-memory). Unlike previously 

proposed in-memory computing architectures, using memristive memory does not 

require additional circuitry or changing the memory cell or the structure of the 

memory array. Logic within the memory based on memristors is therefore a pure in-

memory processing and not an integration of computing engines and memory cells. It 

is still required to define the complete architecture for memristive computing in-

memory, including its instruction set, control, and investigate the appropriate 

applications for it to be beneficial in terms of performance and energy. This research 

is out of the scope of this thesis and discussed as a future work in Chapter 4.2. 

Memristors can be used as enablers to other non-von Neumann architectures. For 

example, memristors can be used in neuromorphic systems (hardware systems that try 

to mimic the brain) and hardware neural networks. Memristors are primarily used to 

implement synapses in these systems; it is also possible to use memristors as part of 

the neuron circuit as well. Although the use of memristors as synapses is out of the 
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scope of this dissertation, we investigate these architectures as well, as described in 

Chapter 4.1. 

The use of memristors as enablers to novel architectures that integrate together 

CMOS transistors and memristor technologies is named "Memory Intensive 

Computing" and includes numerous possible architectures and microarchitectures. In 

this dissertation, we present a novel memory structure, the multistate register, and use 

it to enhance the performance of multithreaded processors (CFMT). CFMT is only a 

single example of a memory intensive architecture. There are many other possible 

applications for multistate registers, as further described in Chapter 4.2. 

We believe that the proposed applications for memory intensive computing in this 

research are only the tip of the iceberg, and in the near future many other exciting 

novel applications will be proposed, changing the structure and architecture of 

computers and VLSI systems.  

 

4.1 Research that is not Part of This Thesis 
As part of this research about memristors and their applications, other aspects that 

are not part of this dissertation are also investigated. One aspect we explore is 

memristive crossbar memories from information theory perspective. We analyze the 

read and write operations in such memory arrays, defining the limitations of read and 

write operations due to sneak paths, and investigating how the data stored within the 

memristors influence the read and write operations. In [51] and [52], we investigate 

the read operation of memristive crossbar memories.  

Another aspect of memristive applications is neuromorphic systems. In [18], we 

propose a novel synapse circuit, consists of a single memristor and two CMOS 

transistors. The proposed synapse is suitable for gradient descent learning and can 

therefore be used for the execution of numerous machine learning algorithms, e.g., 

back propagation. 
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4.2 Future Research Ideas 

Memory Intensive Architectures 

There are many possible memory intensive architectures that need to be 

investigated, designed, and evaluated. For example, multistate registers can be used 

for additional microarchitectures (in addition to CFMT that is shown in this thesis). 

Using multistate registers as pipeline registers (MPR) is beneficial not only for SoE 

MT, but also for simultaneous multithreading (SMT). MPR-based SMT will have 

lower control complexity and the energy will therefore be lower, while the 

performance remains the same. Multistate registers can be used for other applications 

as well, such as register files, branch predictors, and transactional memories. 

There are also other possible memory intensive architectures, including both von 

Neumann machines and other machines. It is possible to use memristive memories for 

data flow processors, associative processors, and for reconfigurable machines. 

In-Memory Computing with Memristors 

In this thesis, three different logic families for logic within a memristive memory are 

described. Different Boolean functions are executed with these logic families. The 

control of these logic families, however, is not discussed. It is required to develop a 

complete architecture for in-memory computing, using the basic memristive logic 

gates. Algorithms to execute any Boolean operation need to be develop, new 

instruction set is required, a compiler needs to be designed, and the system structure 

including the interface between the CPU to the memristive memory needs to be 

defined. 

Another relevant research direction is investigating the application space. The idea is 

to investigate the dependency of performance of different applications in memory 

accesses and the structure of the memory system. The target of this research direction 

is to identify and classify applications where in-memory computing is beneficial both 

in terms of energy and performance.  

Design of Multistate Registers in Different Technologies 

In this thesis, a multistate register with RRAM crossbar on top of a CMOS D flip 

flop is presented. The implementation of multistate registers is, however, not limited 
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to this structure. Multistate registers can be used in different technologies, memristive 

(e.g., STT MRAM, unipolar RRAM, PCM, etc.) and non-memristive (e.g., SRAM). 

Each design has its own pros and cons (e.g., area, power, and speed). 

Memristor Modeling 

While the TEAM model is widely used and has its advantages, it is limited to 

current-controlled bipolar memristors. Other models are also required to model the 

behavior of other memristive devices (e.g., voltage-controlled, unipolar, and binary). 

Additionally, numerous models have been proposed since the TEAM model was 

published and it is worthwhile to compare them to the TEAM (a partial comparison of 

the TEAM model to other models has been done by Ascoli et al. in [53]).  

Memristor Memories 

The design of memristive memories is usually investigated for flash or DRAM 

replacements. There are, however, many other possibilities to design different 

memory structure (the multistate register is an example to this approach). 

Additionally, it is possible to design different structures for memory systems. For 

example, designing a three dimensional structure of the cache organization. 

Another relevant topic is developing design tools for memory designers. These tools 

are used to evaluate the properties of the memristive memory, including its unique 

behavior (i.e., sneak paths). There are different types of required tools, from high 

level tools that roughly evaluate the power and area of the entire memory, to low level 

simulators that considers the actual behavior of each memory cell. 
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  תקציר

ון פון נוימן מודל למבנה המחשב בו יחידת החישוב והבקרה 'ג' הציע המתמטיקאי פרופ 1945בשנת 

נפרדות זו מזו והעברת המידע נעשית באמצעות תקשורת ) הזיכרון(ויחידת אחסון המידע ) דהיינו המעבד(

למרות . וימןהמכונה מכונת פון נ, מחשבים נבנים על פי מודל זה, מאז ועד ימים אלו. בין הרכיבים השונים

הגורם המרכזי לשיפור . המשיכו ביצועי המחשב להשתפר, שמבנהו הבסיסי של המחשב לא השתנה

קשור בצורה חזקה למזעור הטרנזיסטורים בטכנולוגיית בחמישים השנים האחרונות יכולות המחשבים 

CMOS ,ר גורדון "דידי -על 1965בשנת שגובש , לפי חוק מור. שמהם מורכבים רכיבי החישוב והאחסון

. על גבי שבב בודדכפיל מדי כשנתיים את מספרם ימזעור הטרנזיסטורים , אינטלייסדה של חברת מ ,מור

  .בו ולהגדיל את נפח אחסון המידעשל המחשב להאיץ את ביצועיו המספר הגדל של טרנזיסטורים מאפשר 

ידע בין הרכיבים השונים בשנים האחרונות יכולת מזעור הטרנזיסטורים הואטה ואילו יכולת העברת המ

היות וצריכת , בנוסף. הפכה לצוואר בקבוק הן מבחינת ביצועי המערכת והן מבחינת צריכת ההספק

לא ניתן להמשיך ולנצל את יכולותיהם של כלל , ההספק הפכה לתכונה החשובה ביותר ביכולות המחשב

הגדיל את נפח האחסון של בשנים הקרובות לא ניתן יהיה להמשיך ול. הרכיבים במערכת בו זמנית

מחיר תוך שמירה על צריכת הספק ו) SRAM-ו DRAM, זיכרון הבזק(טכנולוגיות הזיכרון הקיימות 

שהם על פי מרבית התחזיות , ננומטר 15של למימדים פיזיים  הזיכרון הבזק כבר הגיעטכנולוגיית . נמוכים

 בודד כמות הכתיבות לתא זיכרון בעיקר בשל מגבלה על, קצה גבול יכולת המזעור לטכנולוגיה זו

)endurance( ,אשר מחריפה ככל שהרכיב קטן יותר.  

טכנולוגיות מוליכים למחצה המיועדות להחליף את לאחרונה מפותחות , כדי להתמודד עם בעיות המזעור

  Resistive RAM ,STT-MRAMבין הטכנולוגיות הללו ניתן לציין את . טכנולוגיות הזיכרון הקיימות

על שם רכיב תיאורטי שנחזה בשנת , בשם הכולל ממריסטור יכולות להיקראטכנולוגיות אלו . PCM-ו

. הדומים בפעולתם לנגד, ממריסטורים הם רכיבים בעלי שני הדקים .ואה'לאון צ' ידי פרופ-על 1971

אך כאשר לא זורם זרם ההתנגדות , התנגדותם של הממריסטורים משתנה כתלות בזרם הזורם דרכם

בדומה , )דהיינו לא דורשים מתח כדי לשמור על מצבם(ת קבועה ולכן הם רכיבים לא נדיפים נשאר

ממריסטורים מיוצרים . ההתנגדות של הממריסטור מייצגת את המידע האגור ברכיב. לזכרונות הבזק

סטנדרטית ולכן הם בעלי  CMOSהנמצאות בכל טכנולוגיית , בצפיפות גבוהה במיוחד בין שכבות מתכת

 ,יםיכולממריסטורים . נציאל גבוה למסחור ולשילוב במחשבים מודרניים כטכנולוגיות זיכרון חלופיותפוט

בשימושים שונים ובהם , שונים CMOSלשמש גם כמתג ולהשתלב במעגלי  ,בנוסף לאחסון המידע

  . מעגלים אנלוגיים ורשתות נוירונים, מעגלים דיגיטליים

. סטיביות הוא ייחודי ושונה מרכיבים חשמליים אחריםתמהיל התכונות של הטכנולוגיות הממרי

לא נדיפים וצורכים , הם מהירים. המיוצרים מעל לטרנזיסטורים, קטנים וצפופים ממריסטורים הם רכיבים



 

II 

תמהיל ייחודי זה מאפשר לממריסטורים להוסיף תכונות חדשות למעגלים חשמליים ופותח . הספק נמוך

  .ותרכיטקטורות מחשבים מגוונולאחדשים פתח למעגלים חשמליים 

 .בהתבסס על ממריסטורים, חישוב במחשביםליחידות הזיכרון  ביןמחקר זה הוא על השילוב הדגש ב

לבין טכנולוגיות ממריסטורים משפר משמעותית את המהירות וצריכת  CMOSהשילוב בין טכנולוגיית 

ית טכנולוגיל בין ממריסטוריםב שילו .ההספק של מחשבים בעידן שבו המזעור לפי חוק מור ייגמר

CMOS  זיכרון כמות גדולה של מאפשר בניית ארכיטקטורות מחשבים חדשות המבוססות על שילוב 

  .Memory Intensive Architecturesלארכיטקטורות אלו אנו קוראים  .בתוך יחידות החישוב

החשמלי והן ברמת הן ברמת המעגל , במחקר זה פותחו מימושים שונים המבוססים על ממריסטורים

המעגל החשמלי ורמת רמת , רמת הרכיב הבודד – רבדים שוניםהמחקר כולל מספר . הארכיטקטורה

הרצויות מנקודת מבטו של  הממריסטוריםאופיינו תכונות , במסגרת המחקר. כיטקטורת המחשביםרא

תכונותיו הממריסטור הרצוי שונה בהתנהגותו וב .מתכנן המעגלים החשמליים וארכיטקט המחשבים

ולפתח  הקיימותהממריסטיביות הטכנולוגיות השונים ולכן קיים צורך לאפיין היטב את מגוון  שימושיםל

פותח מודל מתמטי בשם  ,במסגרת המחקר. מודלים אשר יאפשרו את הגמישות הרצוייה עבור הרכיב

TEAM דהיינו (סית מודל זה פשוט יח. המתאר את התנהגות הממריסטור למגוון רחב של טכנולוגיות

המודל מאפשר שימוש בזרם . ומדוייק) נדרש כוח חישוב נמוך יחסית כדי למדל אותו בסימולציות מחשב

ובנוסף ממדל התנהגויות לינאריות , שעבור זרמים הקטנים ממנו ההתנגדות של הרכיב לא משתנה, סף

תכן מעגלים שפות להמותאמת  VerilogAמומש בשפת  TEAM-מודל ה. ולא לינאריות של הרכיב

  .SPICEחשמליים כגון 

כולל מתודולוגיות לתכנון יעיל , מגוון שערים לוגיים מבוססי ממריסטורים פותחו במסגרת המחקר

 כולל בחינת החלופות, פעולת המעגל הלוגי מתודולוגיות אלו כוללת שיטות לניתוח .שלהם ומדוייק

, IMPLY(שלוש משפחות לוגיות  .שלהםהשונות ודרכים לבחירת הרכיבים במעגל והפרמטרים השונים 

MAGIC ,Akers ( קטורות מאפשרות ארכיטניתנות למימוש כחלק מזיכרון הבנוי מממריסטורים ולכן

 IMPLY. בהן חלק מהחישוב נעשה בתוך הזיכרון ולא ביחידת חישוב נפרדתהשונות ממכונת פון נוימן ו

). crossbar(המשמשת לזיכרון  ניתנות למימוש בתוך רשת ממריסטורים סטנדרטית MAGIC-ו

וכתיבת הערך הלוגי  material implicationהיא פונקציית  IMPLY-הפונקציה הבסיסית לחישובים ב

היא רשת  NOR .Akersהפונקצייה הבסיסית לחישובים היא פונקציית  MAGIC-ואילו ב)  אפס( 0

שיטת . 1972אייקרס בשנת שלדון ' י פרופ"המבוססת על תאוריית חישוב לוגית שהוצעה ע, שונה

במחקר זה פותחה חומרה  .כולל מיון סיביות, החישוב של אייקרס מאפשרת לחשב כל פונקצייה בוליאנית

 CMOSרשת אייקרס מבוססת ממריסטורים יכולה בשילוב עם טרנזיסטורי . Akersרשת המממשת 

  .לשמש גם כזיכרון

שילוב עם שערים לוגיים בטכנולוגיית מאפשרת , MRL, משפחה לוגית נוספת שמוצעת במחקר זה

CMOS .ללא יכולת אגירת , ים כמתגים המסייעים לחישוב בלבדשעבור שיטה זו הממריסטורים משמ



 

III 

ובתוספת עם מהפכים מבוססי  OR-ו ANDהם שערי  MRL-השערים הבסיסיים הממומשים ב. מידע

CMOS  ים מיוצרים בין שכבות המתכת היות וממריסטור. כל פונקצייה בוליאניתבאמצעותם ניתן לחשב

ים ובכך להמשיך יניתן להגדיל את הצפיפות הכללית של השערים הלוג, CMOS-שמעל לטרנזיסטורי ה

  .גם ללא מזעור הטרנזיסטורים, ולשפר את יכולות החישוב של המחשב

עד מעגל זה לא נו. Multistate registerמעגל נוסף שפותח במסגרת המחקר הינו מעגל זיכרון בשם 

אלא לשמש לצרכים חדשים ולשמירת , להחליף טכנולוגיית זיכרון קיימת בהיררכיית הזיכרון של המחשב

כאשר , מאוחסנים מספר רב של מצביםבמעגל זה . מידע שבארכיטקטורות מחשבים קלאסיות לא נשמר

גיל משמש המעגל כרגיסטר ר ,עבור המצב הפעיל. מצב אחד הינו פעיל ושאר המצבים נשמרים ברקע

ניתן להחליף בין המצבים ולהפוך את אחד המצבים ששמורים , בעת הצורך. CMOSבדומה לדלגלג 

כאשר המצבים השמורים ברקע , מומש המעגל באמצעות ממריסטורים, במחקר זה. ברקע למצב הפעיל

הממוקם מתחת  CMOSנשמרים בתוך זיכרון מבוסס ממריסטורים והמצב הפעיל מאוחסן בדלגלג 

תוך אחסון מספר רב של , החלפה פשוטה ומהירה בין המצבים השונים מאפשרתכנון זה . ריםלממריסטו

כל מצב תופס , מצבים שונים 64 בממריסטורים עבור מעגל השומר, לדוגמה. מצבים שונים בשטח קטן

הצפיפות  .)CMOSמדלגלג  75צפיפות גבוהה פי ( CMOSמשטח מצב יחיד בדלגלג  1.3%-שטח של כ

  .מצביםמספר רב יותר של כל מצב משתפרת ככל ששומרים  היחסית של

ארכיטקטורות מעבדים חדשות יוצר אפשרויות לבתוך מעבדים  multistate registerהשילוב של מעגל 

רק תהליכון אחד פעיל בכל רגע  CFMT-ב). Continuous Flow Multithreading )CFMTכגון 

. multistate register-סנים בממריסטורים של מעגלי הנתון ושאר התהליכונים הנתמכים במכונה מאוח

ההחלפה בין תהליכונים דורשת רק החלפת מצב פעיל במעגלי הזיכרון ולכן היא מהירה וחסכונית 

במסגרת הערכת . הם מעבדים בעלי ביצועים גבוהים וצריכה אנרגטית נמוכה CFMTמעבדי  .באנרגיה

התקבל שיפור ביצועים ממוצע  SPEC CPU 2006ת של הביצועים והאנרגיה של המעבד בסדרת בדיקו

יחסית למעבד דומה בו התהליכונים מוחלפים  8.5%- תוך צריכה אנרגטית ממוצעת הנמוכה ב, 32%של 

כולל מימושם , CFMTבמסגרת המחקר תוכננו מעבדי  .Switch on Event Multithreadingבשיטת 

  .FPGAעל בסיס  CMOSבחומרה אמיתית בטכנולוגיית 

דוגמה ראשונה בלבד לארכיטקטורה המשלבת זיכרון מעל ללוגיקה  ההינ CFMTארכיטקטורת 

)memory intensive architecture .(ניתן לתכנן ארכיטקטורות רבות נוספות בצורה דומה .

על או  , על מעגלי הלוגיקה שפותחו, multistate registersהתבסס על ארכיטקטורות אלו יכולות ל

אנו מאמינים שהמחקר המוצג הוא רק קצה הקרחון וכי בעתיד הקרוב . יים אחריםביסטימעגלים ממר

ישנו את מבנה וארכיטקטורת המחשבים אשר , ארכיטקטורות רבות נוספות ומימושים חדשים יפותחו

  . המודרניים

  

 



 

IV 

  :ות המרכזיות במחקר זה הינןרומוהת, לסיכום

 ים ולמערכות יוא מוסיף למעגלים חשמלתכונות החדשות שהניתוח התנהגות הממריסטור וה

 .מחשבים

 פיתוח מודל ה -TEAM ,המתאים לתוכנות תכן מעגלים חשמליים. 

  פיתוח ומימוש מעגלי לוגיקה לחישוב בתוך הזיכרון ופיתוח מתודולוגיות תכנון עבורם

)IMPLY ,MAGIC ,Akers.( 

  פיתוח ומימוש מעגלי לוגיקה המשולבים בטכנולוגייתCMOS תודולוגיות תכנון ופיתוח מ

 ).MRL(עבורם 

 פיתוח ומימוש מעגל זיכרון משולב ממריסטור ו-CMOS , המשמש לאחסון מספר רב של מצבים

 ).multistate register(בשטח קטן 

 של ביצועים לאנרגיה  ם מרובי תהליכונים בעלת יחס גבוהפיתוח מיקרוארכיטקטורה למעבדי

)CFMT.(  
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