

Memristor-Based

Circuits and

Architectures

Shahar Kvatinsky

Memristor-Based
Circuits and

Architectures

Research Thesis

In Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

Shahar Kvatinsky

Submitted to the Senate of the
Technion – Israel Institute of Technology

 Sivan, 5774 Haifa May 2014

This research thesis was done under the supervision of Prof. Avinoam Kolodny, Prof.

Eby Friedman, and Prof. Uri Weiser in the department of Electrical Engineering.

The generous financial help of Hasso Plattner Research Institute, Irwin and Joan

Jacobs, and Andrew and Erna Finci Viterbi is gratefully acknowledged.

Table of Contents

Abstract .. 1

Abbreviations .. 3

Chapter 1 Introduction .. 4

1.1 Memristors ... 5
1.1.1 The Theory of Memristors ... 5
1.1.2 Practical Memristors .. 8

1.2 Memristor-Based Applications .. 9
1.2.1 Memory Intensive Architectures .. 10
1.2.2 Logic with Memristors ... 11

1.3 Research Goals and Methods ... 12

1.4 Thesis Structure ... 13

Chapter 2 Summary of Contributions .. 14

2.1 Device Level .. 14
2.2.1 Device Characterization ... 14
2.2.2 Device Modeling .. 14

2.2 Logic Circuits ... 15
2.2.1 Material Implication (IMPLY) .. 15
2.2.2 MAGIC ... 16
2.2.3 MRL .. 17
2.2.4 Akers Logic Arrays .. 18

2.3 Multistate Registers and Its Implications .. 19
2.2.1 Multistate Register ... 19
2.2.2 Continuous Flow Multithreading ... 20

Chapter 3 Published Papers .. 22

3.1 Device Characteristic and Modeling .. 23

3.2 Logic Circuits ... 46

3.3 Multistate Registers and Continuous Flow Multithreading 113

Chapter 4 Conclusions and Future Work .. 141

4.1 Research that is not Part of This Thesis ... 142

4.2 Future Research Ideas .. 143

References .. 145

Table of Figures

Chapter 1

Figure 1. Illustration of the six combinations of the relationships between voltage v,

charge q, flux ϕ, and current i.. .. 7

Figure 2. Example of a current-voltage curve of memristors and memristive devices

for different input frequencies. .. 7

Figure 3. Hewlett Packard original device model .. 9

Figure 4. Schematic of an IMPLY logic gate.. .. 12

Chapter 2

Figure 5. Proposed design flow for IMPLY logic. .. 16

Figure 6. MAGIC NOR ... 17

Figure 7. MRL gates .. 18

Figure 8. Memristive Akers logic array ... 19

Chapter 3.1.1

Figure 1. Linear ion drift memristive device model …………………………………25

Figure 2. Linear ion drift model I-V curve …………………………………………..25

Figure 3. Joglekar window function …………………………………………………26

Figure 4. Biolek window function …………………………………………………...26

Figure 5. Prodromakis window function ……………………………………………26

Figure 6. Nonlinear ion drift model I-V curve ………………………………………27

Figure 7. Physical model of Simmons tunnel barrier memristive device …………..27

Figure 8. Derivative of the state variable ……………………………………………27

Figure 9. Derivative of the state variable for small changes…………………………28

Figure 10. Fitting between the derivative of the state variable in TEAM and Simmons
tunnel barrier models ………………………………………………………………..29

Figure 11. Proposed fon and foff ………………………………………………………29

Figure 12. TEAM model I-V curve ..………………………………………………...30

Figure 13. TEAM model I-V curve ………….………………………………………30

Figure 14. TEAM model fitted to Simmons tunnel barrier model …………………30

Figure 15. TEAM SPICE macromodel ………………………………….…………..32

Chapter 3.1.3

Figure 1. Oxygen-depleted titanium dioxide ……...…………………………………41

 List of Figures

Figure 2. I-V curve of linear and nonlinear memristors …...….……………………..42

Figure 3. Phase change memory …..…………………………………………………43

Figure 4. Schematic of IMPLY logic gate ………………………………………......43

Figure 5. Hybrid CMOS-memristor logic (MRL) ……..……………………………43

Figure 6. Memristor-based FPGA ……………………………………………..……44

Figure 7. Configurable amplifier ………………………………………..…………..44

Chapter 3.2.1

Figure 1. Schematic of IMPLY logic gate ………..…………………………………48

Figure 2. Schematic of IMPLY NAND logic gate …………………………………..48

Figure 3. IMPLY logic gate design flow diagram ..…………………………………49

Figure 4. Write time …………….…………………………………………………...50

Figure 5. Allowed values of VSET for limited state drift ……………………………50

Figure 6. Tradeoff between the logic gate speed and robustness ……………………50

Figure 7. Allowed values of RG depends on VSET ……………………………….…..50

Figure 8. State drift of an ideal IMPLY logic gate …….………………………….…51

Figure 9. Memristance of an ideal IMPLY logic gate …………….…………………51

Figure 10. State variable when applying case 1 and 3 for a linear ion drift model ..51

Figure 11. Memristance when applying case 1 and 3 for a linear ion drift model ..…51

Figure 12. State variable when applying case 1 and 3 for a memristor with threshold
………………………………………………………………………………………..51

Figure 13. Memristance when applying case 1 and 3 for a memristor with
threshold……………………………………………………………………………...52

Chapter 3.2.2

Figure 1. Memristive device symbol …….………..…………………………………54

Figure 2. I-V curve of a TEAM model ………………………………….…………...54

Figure 3. Physical model of Simmons tunnel barrier memristive device …..………54

Figure 4. Schematic of the IMPLY gate …..………………………………………....55

Figure 5. Behavior of an ideal IMPLY gate …………………………………………55

Figure 6. IMPLT NAND …………………………………………….………………56

Figure 7. Extension to IMPLY ………………………………………………….…...56

Figure 8. Memristor-based crossbar …………………..………………………….…57

Figure 9. Sneak path in memristive crossbar …………….……….…………………57

Figure 10. m X n memristive crossbar ……………………………………………....58

Figure 11. IMPLY logic gate inside a memristor-based crossbar ………………..…58

 List of Figures

Figure 12. Design flow for memristor-based IMPLY logic gate ……..……………..58

Figure 13. Allowed write time in case 1 ……………………..……………………...59

Figure 14. Allowed values of VSET for limited state drift …………….……………...59

Figure 15. Tradeoff between the logic gate speed and robustness ……………….…59

Figure 16. Allowed values of RG depends on VSET ……………….…………………60

Figure 17. State variable when applying case 1 and 3 ……………………………..60

Figure 18. Write time of an IMPLY gate with CMOS drivers ………..………….…61

Figure 19. Full adder schematic ……………………….………….…………………62

Figure 20. Memristive eight-bit full adder …………………………………………..63

Chapter 3.2.3

Figure 1. Memristor symbol ……………..………..…………………………………67

Figure 2. Example of the initialization stage ………………..………….…………...67

Figure 3. MAGIC NOR ……………………………………………………...………68

Figure 4. MAGIC NOR gate within a crossbar array ……………………………....68

Figure 5. SPICE simulations of a two input MAGIC NOR ……..…………………69

Figure 6. MAGIC NAND gate ………………………………..…….…………….…69

Figure 7. MAGIC OR and AND gates ………………………………………….…...69

Figure 8. . MAGIC NOT gate ………..………………..………………………….…70

Chapter 3.2.4

Figure 1. Memristive device symbol …….………..…………………………………71

Figure 2. Schematic and behavior of MRL gates ……………………….…………...73

Figure 3. Schematic of different MRL gates ………………………………...………74

Figure 4. Dynamic behavior of MRL gates ………………………………………....75

Figure 5. Dynamic behavior of MRL XOR gate ……….……………………………75

Figure 6. Schematic of an MRL one bit full adder ………………….………………75

Chapter 3.2.5

Figure 1. Memristive device symbol and I-V curve …………………………………78

Figure 2. Schematic and behavior of MRL gates ……………………….…………...79

Figure 3. Schematic of different MRL gates ………………………………...………80

Figure 4. Delay of an MRL gates …………………………………………………....80

Figure 5. Dynamic behavior of MRL gates …………….……………………………81

Figure 6. Output degradation ………………………………………..………………81

 List of Figures

Figure 7. Two-input MRL XOR …………………….………………………………81

Figure 8. Schematic of an MRL one bit full adder …………….……….…………...82

Chapter 3.2.6

Figure 1. Different computer architectures .………..……………………………..…96

Figure 2. Akers logic array ………………..…………………………….…………...97

Figure 3. Four-bit input structure of Akers arrays ………………………....………98

Figure 4. Memristor symbol ……………...……………………………………….....99

Figure 5. I-V curve of TEAM model ……………..………………………………..100

Figure 6. Primitive logic cell …..…………………………………….…………..…101

Figure 7. Memristive memories ..……………………………………………….….102

Figure 8. Write operation ……………………………...…………………………...103

Figure 9. I-V curve of a primitive cell ………..………….……….……….……..…104

Figure 10. Initialization and execution of primitive logic cell ……………………..108

Figure 11. Output signal degradation ……………………………………………...109

Figure 12. Two-input XOR …………………………………………...……………110

Figure 13. Simulation results of a two-input XOR ….……..……………………....111

Figure 14. Simulation results of a four-bit set sort………….……….……………..112

Chapter 3.3.1

Figure 1. CFMT pipeline structure .………………..…………………………….....115

Figure 2. The logic structure of a MPR …..…………………………….…………..115

Figure 3. Set of memristor-based MPRs …………..……………………....………116

Figure 4. The executed instructions in the two regions …………………………...116

Figure 5. IPC of the CFMT processor ……………..……………….……………..117

Chapter 3.3.2

Figure 1. RRAM crosspoint structure ……………..………………………………119

Figure 2. I-V characteristic of a memristor ……..…………………….…………...120

Figure 3. Multistate register element – symbol and block diagram ……....………120

Figure 4. MPR and pipeline logic diagram …………………………………….......121

Figure 5. RRAM MPR schematic and behavior ..………………………………….122

Figure 6. Vertical layout of RRAM MPR ….……………………….…………..….123

Figure 7. Planar floorplan of MPR with lower and upper metal RRAM layers .….123

Figure 8. Physical layout of 64 state MPR……………….………………………...124

 List of Figures

Figure 9. Illustration of different multithreading techniques……………………...126

Chapter 3.3.3

Figure 1. Physical structure of memory cells on top of CMOS transistors …….…129

Figure 2. Different emerging memory devices …..…………….....…………..……130

Figure 3. Logic structure of a multistate register ……………………….....………131

Figure 4. Circuit of a 16 state RRAM-based multistate register …………….........132

Figure 5. RRAM-based single bit multistate register ……..……………………….132

Figure 6. Illustration of different multithreading techniques ….…………..…..….133

Figure 7. CFMT structure ……………………………………………………….….133

Figure 8. IPC of SoE MT and CFMT …………………….………………………...135

Figure 9. IPC vs. number of threads for different SPEC CPU 2006 benchmarks ….136

Figure 10. Comparison between analytic model and simulations ……………...…136

Figure 11. Speedup in the saturation region for different SPEC CPU 2006 ….……136

Figure 12. IPC vs. number of threads for various CFMT thread switch penalties …137

Figure 13. IPC in saturation for different benchmark mixes ……………...............137

Figure 14. IPC vs. number of threads for various L1 cache sizes ………...............138

Figure 15. Energy per instruction vs. number of threads …………..……...............138

Table of Tables

Chapter 3.1.1

Table 1. Comparison of different memristive device models …..…………………31

Table 2. Comparison of different window functions ………..….…………………31

Chapter 3.1.2

Table 1. Different memristive device models …………………....…………………39

Table 2. Comparison of different window functions ………..….……………….…39

Chapter 3.1.3

Table 1. Requirements of memristors for memory .…………....……………………42

Chapter 3.2.1

Table 1. Truth table of IMPLY function ………….…………....……………………48

Table 2. Applied voltages VP and VQ …………….…………....……………………50

Table 3. Write time and state drift for different values of VSET and RG …………….52

Chapter 3.2.2

Table 1. Truth table of IMPLY function ………….…………....……………………55

Table 2. Input gate voltages ………….…………....………………...………………58

Table 3. Write time and state drift for different values of RG ………………………60

Table 4. Write time and state drift for different values of VSET and memristor
parameters …………………………………………………………………………...60

Table 5. Resistance of a CMOS driver ……………………………………………...61

Table 6. State drift of the IMPLY gate with CMOS buffers ………………………..61

Table 7. Basic Boolean operations based only on IMPLY and False ……………...62

Table 8. Comparison of N-bit full adders …………………….……………………..62

Chapter 3.2.3

Table 1. Comparison between IMPLY and MAGIC …………..……………………68

Table 2. Memristor parameters ……………………….………..……………………69

Table 3. Summary of MAGIC gates ………………….………..……………………70

Chapter 3.2.4

Table 1. Memristor parameters …………..………………………….………………74

Table 2. Voltage level and number of buffers …………..…………………………..76

Table 3. Summary of case study ………....………………………….………………76

Table 4. Power consumption and energy of case study …………….………………76

Chapter 3.2.5

Table 1. Memristor parameters …………..………………………….………………82

Table 2. Summary of case study ………………………...…………………………..82

Table 3. Power consumption and energy of case study …………….………………82

Chapter 3.2.6

Table 1. Area of memory technologies ……………..……………….…………..…105

Table 2. Output voltages of primitive logic cell ………...…………………………106

Table 3. Memristor parameters ……………………………..……….……………..107

Chapter 3.3.2

Table 1. Comparison of DC on/off current for 4x4 crosspoint array ………………120

Table 2. Memristor and diode parameters ……....………………...………………123

Table 3. Access latency of a 16 bit MPR ………………………..…………………123

Table 4. Write latency and energy of a 16 bit multistate register ………………….123

Table 5. Read access energy of RRAM …………………………………………....123

Table 6. MPR area ………………………………………………………………….124

Table 7. SoE MT and CFMT processor configurations ………………….………...124

Table 8. Performance speedup for different MPR write latencies …………………124

Table 9. Energy and area evaluation for CFMT …………..…………….………...124

Table 10. Energy per instruction ……………………………………..……………125

Chapter 3.3.3

Table 1. Comparison of different memory technologies ……………………….…130

Table 2. Area of a single bit RRAM and SRAM multistate register ………..……131

Table 3. Parameters of the simulated processor ………………...…………………134

Table 4. Execution units of the simulated processor ……………..……………….134

Table 5. Energy evaluation ………………………………………………………....134

Table 6. Parameters for the analytic model of SoE MT and CFMT ……………….135

Table 7. Performance speedup for various CFMT thread switch penalties ……....137

Table 8. Different SPEC CPU 2006 mixes ………………………………...………137

Table 9. Energy per instruction for various SPEC CPU 2006 benchmarks .……...138

1

Abstract

Advancements in computer capabilities in the last fifty years had been closely

linked to miniaturization of CMOS technology, while the underlying structure of

digital computing systems has been based on von Neumann architecture, where the

memory and execution units are logically and physically separated, using various

types of interconnect for communication between them. Recently, device scaling has

slowed down, while electrical interconnect has become both a performance bottleneck

and a major source of power dissipation, which is currently the most critical limiter

for technology growth. Conventional memory technologies, such as Flash, DRAM,

and SRAM, are unable to keep up with market requirements for higher density and

lower power. Flash memory has already achieved its physical limits, and cannot be

scaled further, primarily due to its limited endurance.

These problems can be addressed by emerging new semiconductor devices, such

as memristors, which are useful both as memory cells and as novel switching circuits

which can be used to augment traditional CMOS gates. Memristors are simple two-

terminal resistors, where the resistance can be changed by the electrical current. The

resistance serves as a stored variable. Memristors can also be interconnected to

perform Boolean operations. Since memristors can be fabricated in high density at the

intersection of nanoscale width metal lines, common to all silicon circuits and located

on top of the silicon layer, these new devices hold promise to provide continued

growth in functional density. The primary focus of this thesis is on architecturally

integrating memory with computational capabilities, based on exploiting these new

devices. These memristor-based structures will greatly enhance the speed and power

of digital computing beyond Moore scaling, while maintaining compatibility with

standard CMOS technology. From an architectural viewpoint, memristor-based

circuits will lead to innovative memory-intensive computing structures and systems.

The focus of this research is on developing memristor-based applications at the

circuit and architecture levels. Memristors are investigated from the point of view of

circuit designer and computer architect, including describing the desired device for

different applications and modeling a general memristor model – TEAM – to fit

different memristive technologies. The TEAM model is simple (i.e., requires low

2

computational effort) and sufficiently accurate. The TEAM model is implemented in

VerilogA to be used in SPICE simulations.

Various logic circuits with memristors have been proposed and design

methodologies for them are developed. IMPLY (material implication), MAGIC

(Memristor Ratioed Logic), and Akers logic arrays are logic families that can be

performed within memristive memories, enabling in-memory computing. MRL

(Memristor Ratioed Logic) is a different logic family used for hybrid CMOS-

memristor logic gates to increase the logic density and extend Moore's law.

Additionally, the multistate register, a novel memory structure that stores multiple

values within a single register, is proposed. A multistate register is designed based on

an RRAM crosspoint array on top of a CMOS register with a relatively low area. The

area of a single state in a 64 state RRAM multistate register is only 1.3% of a stored

state in CMOS register. The multistate register is embedded within CPU pipelines to

enable new memory intensive architectures, such as Continuous Flow Multithreading

(CFMT). CFMT is a multithreaded processor that is as simple as Switch on Event

Multithreading (SoE MT) with high performance and low energy. CFMT is designed

and implemented with an FPGA, presenting a performance improvement of 32% on

average with an energy reduction of 8.5%, as compared to SoE MT.

3

Abbreviations

CFMT Continuous Flow Multithreading

CRS Complementary Resistive Switching

DRAM Dynamic Random Access Memory

FPGA Field Programmable Array

IPC Instruction per Cycle

MAGIC Memristor Aided Logic

MIM Metal-Insulator-Metal

MPR Multistate Pipeline Register

MRL Memristor Ratioed Logic

NVM Nonvolatile Memory

PCM Phase Change Memory

RRAM Resistive Random Access Memory

SCM Storage Class Memory

SMT Simultaneous Multithreading

SoE MT Switch-on-Event Mutlithreading

STDP Spike Timing Dependent Plasticity

STT MRAM Spin-Transfer Magnetoresistance Random Access Memory

TEAM Threshold Adaptive Memristor

VLSI Very Large Scale Integration

4

Chapter 1 Introduction

For almost fifty years, integrated electronic circuits built with semiconductor

devices have provided significant growth in the number of processing elements and

memory bits available to system developers. This growth has provided orders of

magnitude improvements in speed, power consumption, and reliability, together with

significant reductions in the cost per device. These trends are direct consequences of

frequent miniaturization of device dimensions in the semiconductor fabrication

process, as originally described by Gordon Moore in 1965, predicting the growth and

proliferation of digital computing and its applications ("Moore's Law"). Throughout

this era, the underlying structure of digital computing systems has been based on the

classical stored program machine architecture described by von Neumann in the

1940's, which is characterized by a separation between functional units for instruction

execution and data/instruction storage ("von Neumann architecture").

Moore's law, however, cannot be sustained indefinitely. There is broad agreement

that nanoscale CMOS transistor sizes will reach fundamental physical limits within

the next decade [1]. Even before the eventual ending of Moore's law due to

technological limitations, the field of computing is already struggling with other

fundamental problems which require innovative solutions. The first problem is related

to the delay and bandwidth required to access memory, and is popularly known as

"the memory wall" [2]. Another problem is the power crisis related to energy

dissipation in computers [3]. These challenging issues are currently perceived as

major disruptions on the evolutionary path of computing, calling for significant

investments in research to develop new structures for next generation computing

systems.

In future years, when device sizes will no longer be scalable, microelectronic

technology will need innovations "beyond Moore" to support novel applications.

These enhancements may include revolutionary new emerging devices such as carbon

nanotubes or spintronic devices. A less radical hybrid approach, combining standard

CMOS with new technologies, is expected to provide a more practical and immediate

growth path over the next 20 to 30 years. An example of a "more than Moore"

technology is multi-layered integrated circuits (e.g., three-dimensional circuits [4])

5

which are becoming commercially available. Other new technologies which will

extend the capabilities of CMOS are memristive devices. This thesis focuses on

memristive technologies and their impact on computers.

1.1 Memristors

Over the past 25 years, flash memory based on charge trapping in MOS transistors

has been scaled aggressively, even exceeding Moore's law. Scaling below 20 nm

involves formidable challenges, particularly an increase in bit error rate and a

reduction in write endurance (the number of write cycles before the memory becomes

unreliable). These challenges become intolerable, when flash process technology

scales below 15 nm [5]. In recent years, many alternative technologies have been

explored to find a replacement for flash. For most of these candidate technologies, the

stored data is represented as a resistance and the storage device is fabricated within

the metal layers. These technologies share similar properties – nonvolatility, relatively

high write endurance, high density, good scalability below 10 nm, and fast read and

write. Certain emerging memory technologies have sufficient speed and endurance to

be considered as SRAM and DRAM replacements as well, enabling the use of

universal memory [6]. These emerging nonvolatile memory technologies can be

considered as memristors, or more precisely as memristive devices.

1.1.1 The Theory of Memristors

 In 1971, Leon Chua conceived the need for an additional fundamental circuit

component in addition to the resistor, capacitor, and inductor [7]. Chua reasoned the

existence of a missing circuit element from symmetry reasons, looking at the six

possible combinations of the relationships of four fundamental circuit variables - the

voltage V, current I, flux φ, and electric charge q. While the charge is the integral

upon time of the current and the flux is integral upon time of the voltage, the other

possible relationships are connected by two-terminal circuit components. Resistors

connect voltage to current by Ohm's law (V = IR), capacitors connect charge to

voltage (q = CV), and inductors connect current to flux (φ = LI). The sixth possible

relationship is the connection between charge and flux and is not covered by any

6

conventional circuit element. Chua reasoned, for the sake of completeness, the

existence of a fourth fundamental circuit element that connects the charge and flux

and named the device the memristor, as a short for 'memory resistor'. The six

combinations of the relationships are illustrated in Figure 1.

Formally, a charge-controlled memristor is given by

ሻݐሺݒ ൌ ሻ, (1)ݐሻ൯݅ሺݐሺݍ൫ܯ

where

ሻ൯ݐሺݍ൫ܯ ≡ ݀߮ሺݍሻ/݀(2) .ݍ

Similarly, a flux-controlled memristor is given by

݅ሺݐሻ ൌ ܹ൫߮ሺݐሻ൯ݒሺݐሻ, (3)

where

ܹ൫߮ሺݐሻ൯ ≡ ሺ߮ሻ/݀߮. (4)ݍ݀

The memristance of the memristor ܯ൫ݍሺݐሻ൯ has the units of resistance (and the units

of ܹ൫߮ሺݐሻ൯ are of conductance) and depends on the integration of the current passed

through the device upon time. The memristor is therefore actually a passive two-port

element with variable resistance, which changes upon the history of the device (i.e.,

the memristance depends on the total charge passed through the device).

In 1976, the theory of memristors was extended by Chua and Kang to a nonlinear

dynamical system named memristive systems [8]. Similarly to memristors, a

memristive device is a passive two-terminal device with varying resistance. The

difference between a memristor and memristive device is how the resistance changes.

In memristive devices, the resistance depends on an internal state	ݔ ∈ Ը௡, which

depends on the history of the device (in terms of the past current passed through the

device, or, alternatively, the past voltage across the device) and not directly on the

charge or flux.

Formally, a current-controlled time-invariant memristive device is represented by

ሻݐሺݒ ൌ ,ݔሺܯ ݅ሻ݅ሺݐሻ, (5)

ݐ݀/ݔ݀ ൌ ݂ሺݔ, ݅ሻ, (6)

where ܯሺݔ, ݅ሻ is the memristance of the device. Similarly, a voltage-controlled time-

invariant memristive device is given by

݅ሺݐሻ ൌ ܹሺݔ, ݅ሻݒሺݐሻ, (7)

ݐ݀/ݔ݀ ൌ ݂ሺݔ, ሻ. (8)ݒ

Memristors and memristive devices exhibit hysteresis in their current-voltage curve.

7

Although the shape of the hysteresis varies for different devices, it is always passes

through the origin. The hysteresis depends on the input, where for high input

frequencies the device behaves as a linear resistor. An example of possible I-V curve

is shown in Figure 2. Note that memristors are a private case of memristive devices,

where ݂ሺݔ, ݅ሻ ൌ ݅.

Figure 1. Illustration of the six combinations of the relationships between voltage
v, charge q, flux ϕ, and current i. The memristor connects the charge and flux.

Figure 2. Example of a current-voltage curve of memristors and memristive

devices for different input frequencies.

8

1.1.2 Practical Memristors

While Chua and Kang presented physical memristive devices in [8] (e.g., ionic

systems and discharge tubes), the topic of memristors and memristive devices have

not attracted much attention for more than 35 years. In 2008, Hewlett Packard

connected the theory of memristive devices to TiO2 resistive switches [9]. Initially,

Hewlett Packard claimed that their device is similar to ideal memristors, and proposed

a model for the structure and behavior of their devices. The proposed structure is

shown in Figure 3 and the proposed representation of (5) and (6) is

,ݔሺܯ ݅ሻ ൌ ܴைே
௫ሺ௧ሻ

஽
൅ ܴைிிሺ1 െ

௫ሺ௧ሻ

஽
ሻ, (9)

݂ሺݔ, ݅ሻ ൌ ௏ߤ
ோೀಿ
஽
݅ሺݐሻ, (10)

where RON is the resistance when x(t) = D, and ROFF is the resistance when x(t) = 0.

The state variable x(t) is limited to the physical dimensions of the device, i.e., the

value is within the interval [0, D].

Although the model proposed by Hewlett Packard is elegant, it does not match real

devices, including their own TiO2 device. Other models that better fit real devices

have been proposed, as comprehensively explained in Chapter 3.1. The announcement

of Hewlett Packard, however, sparked an interest in memristors and memristive

systems. Additional resistive memory devices, other than TiO2 resistive switches,

such as different resistive switches and spin-transfer torque magnetoresistive random

access memory (STT-MRAM) have been redescribed in terms of memristive systems

[10-14].

All of the different devices that can be considered as memristive devices share

several characteristics: they are fabricated as oxides sandwiched between two metals

(metal-insulator-metal structure, also named MIM), and their size is relatively small

(for most devices it is the minimum feature size of the technology). Additionally, as

described by the definition of memristive devices, these devices have varying

resistance and are nonvolatile (i.e., no voltage is applied to retain the resistance). Due

to these characteristics and their relatively low switching time (from sub-nanoseconds

to tens of nanoseconds), high endurance (the number of write cycles before the

memory becomes unreliable, typically from 109 to 1015), and low switching energy

(typically 0.1 to 1 pJ), memristive technologies are primarily investigated as memory

applications and considered as emerging nonvolatile memory technologies. It is

9

common referring to all (or some) of these technologies as Resistive RAM (RRAM or

ReRAM).

	
Figure 3. Hewlett Packard original device model. The device is composed of two
regions: doped and undoped. The total resistance of the device is the sum of the

resistances of both regions, as described by (9).

1.2 Memristor-Based Applications

While the semiconductor industry focuses on the use of memristive technologies as

a replacement for existing memory technologies (i.e., Flash, DRAM, and SRAM),

these devices can be used for many other applications as well. Memristors are used in

hardware neural networks, both to implement different learning algorithms (e.g.,

STDP [15-17] and back propagation [18]) and neuromorphic systems (hardware that

mimic the brain) [19]. Memristors can also been used in analog circuits, for example

as reconfigurable resistors to change the properties of the circuit [20]. Another

interesting application is the use of memristors as part of logic circuit, as

comprehensively explained in Chapters 1.2.2 and 3.2.

Looking at computer architectures, memristors can be an enabler to a new and

disruptive era in computer architecture – the era of memory intensive computing,

where the computation engine is integrated with numerous memory devices (i.e.,

memristors). The straightforward way is to use memristors as improved replacements

to existing memory technologies and benefit from the improve characteristics of the

replacements - higher density, no leakage, high endurance, etc. Using these

technologies as SRAM replacements will significantly increase on-die memory.

Alternatively, additional memory levels can be added to the memory hierarchy. For

10

example, Sony and Micron plan to commercialize RRAM as a Storage Class Memory

(SCM), a memory hierarchy between DRAM and flash [21]. SCM requires

nonvolatility and high density, as well as high performance. Adding more cache levels

is another example. Memristors are, however, much more than just having

replacements to existing memory technologies.

1.2.1 Memory Intensive Architectures

Memristors add new characteristics to existing memory technologies. For example,

the levels of volatile memory (i.e., register file, cache, and main memory) become

nonvolatile. Memristors add fast, dense, and nonvolatile memory that is located on-

top of the logic gates. Memristors therefore can be used in a different manner than

random access memories. The memristors can be used to integrate memory and logic,

enabling memory intensive architectures, where processors are abundant with non-

volatile, fast memory. This memory is used to enhance performance and decrease

energy.

The small size of the memory devices and the possibility to stack several layers of

memory, one on top of the other, can significantly increase the capacity of the

memory, including cache hierarchies, while leakage power is lower. The additional

memory can also be used not only for conventional caches (i.e., data and instruction

cache, private and shared cache, etc.) but also for new cache architectures, including

specific purposes caches. Examples to this can be using different caches for different

threads, or alternatively, different caches for specific content (e.g., floating point,

SIMD). Another example is to use memristors to implement NAHALAL-like cache

systems [22], where the private caches are located on-top of the CPUs in the

memristor layer.

Furthermore, the additional memory can be used to increase the capacity of other

elements within the processor, such as branch predictors, instruction queues,

prefetching structures, reorder buffers, and other buffers. The increase in the capacity

increases predictions and speculations of the processor and therefore trades off the

power consumption – although storing data within memristor-based structures is low

power, the increased speculation consume more power.

The additional memory elements can also be used to store data, which is typically

not stored due to the limitations of conventional technologies. For example, it is

11

possible to store the results of previously executed instructions to perform instruction

reuse and have hardware memoization [23]. It is also possible to have many

checkpoints within the processor. Another example is CFMT, as presented in Chapter

3.3, where the states of different instructions for multiple threads are stored to

enhance performance of multithreading processors.

1.2.2 Logic with Memristors

One interesting application of memristive circuits is to perform logic operations.

With memristive logic gates, novel memory intensive architectures can be developed,

including non-von Neumann architectures. The use of memristors to perform logical

operations has been proposed in several different ways. In some logic families,

memristors are integrated with CMOS structures to perform the logical operation,

while the logical values are represented by voltage levels. Memristors can be used as

reconfigurable switches for FPGA-like architectures [24-25] or as computational

elements within logic gates [26].

Another approach for logic with memristors is to treat resistance as the logical state,

where the high and low resistance are considered, respectively, as logical zero and

one. For this approach, the memristors are the primary building blocks of the logic

gate. Each memristor acts as an input, output, computational logic element, and latch

in different stages of the computing process [27]. This approach is suitable for

crossbar array architectures and can therefore be integrated within a standard

memristor-based crossbar, commonly used for memory. This approach is appealing

since it provides an opportunity to explore advanced computer architectures different

from the classical von Neumann architecture. In these architectures, the memory can

perform logic operations on the same devices that store data, i.e., performing

computation inside the memory. Material implication (IMPLY logic gate) [28] is the

basic logical element using this approach, combining state memory and a Boolean

operator. Additional logic families, which extends the IMPLY logic gate by using

certain variations of a regular memristor-based crossbar, have also been proposed [29-

30]. A schematic of the IMPLY logic gate is shown in Figure 4.

12

	
Figure 4. Schematic of an IMPLY logic gate. The gate consists of two memristors

p and q, and a resistor RG.

1.3 Research Goals and Methods

In this research, the capabilities and limitations of memristors are studied and

analyzed from single device level for better understanding of the capabilities of

circuits and architectures with memristors. Models of memristors are developed for

different memristor technologies to be used in circuit simulations.

 The integration of memristors with CMOS is explored for memory and logic

circuits. Different logic gates are proposed, both for non-von Neumann architectures,

where memristive memories have also computing capabilities (in-memory

computing), and for hybrid CMOS-memristor logic gates for a beyond Moore

approach. Memory circuits are designed for new uses, different than the conventional

memory hierarchy. These memory circuits are integrated with processors to open a

path for novel memory intensive architectures.

This research is done in different abstraction levels: device level, circuit level, and

architecture level. For device level the properties of memristors are investigated and

characterized, and device models are developed to be used in circuit simulations. In

the circuit level, different digital and analog circuits are designed for logic and

memory applications. Design methodologies are developed for proper circuit design,

including procedures to select the exact device and circuit parameters. Memristive

circuits are used to develop memory intensive architectures.

13

This research is multidisciplinary, varying from device physics, VLSI physical

design, VLSI circuit design, electronic design automation, and computer architecture.

We also combined knowledge from information theory and machine learning.

For memristor model development, we use Matlab to evaluate and investigate the

model and compare it to other memristor models. The model is implemented in

Verilog-A and embedded in SPICE. We develop design methodologies for circuits,

and design them in SPICE, using Cadence Virtuoso. Architectures are evaluated in a

cycle accurate in-house simulator for performance evaluation, and by CACTI and

McPAT for energy evaluation. For the design of memory architectures, we also use

NVSim. For a proof of concept, the CFMT architecture is also implemented in real

hardware (Xilinx Virtex 6), using Verilog and ModelSim for verification.

1.4 Thesis Structure

This thesis is organized as a collection of papers published in scientific journals

and refereed conference proceedings. All of the papers describe research results

obtained during this PhD study. Chapter 2 provides a short overview of the main

contributions of this thesis. The published papers are organized in Chapter 3 in three

subsections according to the main parts of the research: device characteristics and

modeling, logic circuits, and computing system architecture. In Chapter 4, the main

results are summarized, some additional research topics are described, and

suggestions for future research are discussed.

	

14

Chapter 2 Summary of Contributions
In this chapter, our contributions in the field of memristor-based circuits and

architectures are summarized. Our main observations and solutions to the different

research problems considered in this thesis are outlined. For convenience, each

subchapter is devoted to a different aspect of this research.

2.1 Device Level

2.2.1 Device Characterization

Memristors have many different faces, from the theoretical devices envisioned by

Chua in 1971, to the extended theory of memristive device, to the numerous different

resistive technologies that have emerged in recent years. Since memristive

technologies are currently immature, standardization of the characteristics of

memristors remains to be done. The desired characteristics differ for diverse

applications.

In this research, we study and analyze the capabilities and limitations of different

memristive technologies, and define the desired characteristics of memristors for

different applications from the viewpoint of an integrated circuit designer.

Understanding the desired characteristics for different applications can assist device

and material engineers in providing the appropriate behavior when developing

memristive devices, thereby optimizing these devices for different applications.

Further details on the desired memristor are found in Chapter 3.1 and [31].

2.2.2 Device Modeling

Several models for memristive devices have been developed. One type of models is

physical models that try to fit the dynamic behavior of a specific memristor [32-35].

Usually, physical models are complicated and based on mathematical fitting of

experimental results for a specific device under a certain experimental set, while the

actual physical mechanism is still unknown. A different approach for memristor

modeling is to define mathematical models, obeying the theory of memristors,

without a connection to practical devices [36-39]. Usually, mathematical models are

similar to Chua's original definition and cannot predict the behavior of real devices.

In this research, a general mathematical model - TEAM, ThrEshold Adaptive

Memristor model – is developed. The TEAM model is flexible and can be fit to any

15

practical memristive device. As shown in this thesis, the TEAM model is reasonably

accurate and computationally efficient, and is more appropriate for circuit simulation

than previously published models. The TEAM model is implemented in Verilog-A,

and is widely used in SPICE simulations. Further details on the TEAM model are

found in Chapter 3.1 and [40-41].

	

2.2 Logic Circuits

2.2.1 Material Implication (IMPLY)

Although IMPLY gates have been fabricated and proved to work [28], the design

issues of these logic gates have not been discussed. Additionally, the design of

complete combinatorial system based on IMPLY gates is not trivial. In this research,

the behavior of IMPLY logic gates is analyzed and evaluated, and the tradeoff

between speed and correct logic behavior is described. An approximate analytic

model to evaluate the speed of the circuit and the internal state drift of the memristors

is proposed. We develop a methodology for designing IMPLY logic family, based on

a general design flow, suitable for all deterministic memristive logic families, and

includes some additional design constraints to support the IMPLY logic family. The

design flow is shown in Figure 5. Additionally, techniques for performing logic

within memristive crossbars based on IMPLY logic gates are discussed and proposed.

Further details on IMPLY logic design and IMPLY within the memory are found in

Chapter 3.2 and [42-43].

16

	
Figure 5. Proposed design flow for IMPLY logic.

2.2.2 MAGIC

IMPLY gates require different voltage levels within the circuit and additional

circuit components (for example, a controller and an additional resistor within each

row of the crossbar), dissipates high power, has high computational complexity, and

requires complicated control circuitry. Additionally, the result is stored by one of the

inputs and not a dedicated output memristor.

We propose a different memristive-only logic family, Memristor Aided LoGIC

(MAGIC) that overcomes the disadvantages of IMPLY. MAGIC does not require a

complicated structure and enables stable evaluation of the gate function. Stable

evaluation is achieved by applying a single voltage pulse at the gateway of the circuit.

MAGIC NOR gates can also be fabricated within a crossbar, enabling computing

within memory. The schematic of MAGIC NOR is shown in Figure 6. Further details

on IMPLY logic design and IMPLY within the memory are found in Chapter 3.2 and

[44].

17

	
Figure 6. MAGIC NOR. (a) Basic schematic, the gate consists of two input

memristors in1 and in2, and an output memristor out, and (b) a MAGIC NOR
gate within a memristive crossbar.

2.2.3 MRL

We propose MRL (Memristor Ratioed Logic), a hybrid CMOS-memristor logic

family, which increases the logic density. In MRL, OR and AND logic gates are

based on memristors, and CMOS inverters are added to provide a complete logic

structure and signal restoration. The MRL family is compatible with standard CMOS

logic since the logical state is represented by voltage as in CMOS. We develop an

analytic model to evaluate the speed of the circuit and discuss design issues and

considerations, including area and power. The schematic of an MRL NAND and NOR

are shown in Figure 7. Further details on MRL gates are found in Chapter 3.2 and [45-

46].

18

	
Figure 7. MRL gates. (a) A two-input MRL NAND and a (b) two-input MRL

NOR.

2.2.4 Akers Logic Arrays

In 1972, Sheldon Akers proposed a theoretical logic array that supports the

execution of any Boolean function by flowing data across an array of primitive logic

cells. Since the benefit of an Akers logic array with conventional semiconductor

technology (i.e., CMOS technology) is limited, Akers array has been treated as a

mathematical concept without implementing it in real hardware. In this research, the

theory by Akers is used to design a memristive Akers logic array that support in-

memory computation. We show that the proposed logic array can be used in a

modified CRS memory array, combining logic operations and memory. We

demonstrate Boolean operations such as XOR and sorting of bits. The schematic of a

memristive Akers logic array is shown in Figure 8. Further details on memristive

Akers logic arrays are found in Chapter 3.2 and [47].

	

19

	
Figure 8. Memristive Akers logic array. (a) Primitive logic cell, consists of two

memristors ࢆࡹ and ࢆࡹഥ. The inputs of the primitive logic cell are two voltages x
and y, and the initial resistance of ࢆࡹ. (b) A two by two memristive Akers array

and (c) a two input XOR, where ࢚࢛࢕ࢌ ൌ ,࡭ሺࡾࡻࢄ .ሻ࡮
	

2.3 Multistate Registers and Its Implications

2.2.1 Multistate Register

Storing data is the primarily application of memristors, usually for replacing

conventional memory technologies in standard memory structures within the memory

hierarchy. A different approach is considered in this research, where a novel memory

structure, the multistate register, is proposed and designed. The multistate register is

used to store multiple data bits, where only a single bit is active and the remaining

data bits are idle. The active bit is stored within a CMOS flip flop, while the idle bits

are stored in a memristive crossbar co-located with the flip flop. Multistate registers

open opportunity for new applications and architectures, exploiting the density and

low power of memristors. The schematic of an RRAM-based multistate register is

shown in Figure 9. Further details on multistate registers are found in Chapter 3.3 and

[48].

20

	

Figure 9. Schematic of an RRAM 16 states multistate register. The multistate
register consists of an RRAM crosspoint on top of a CMOS D flip flop.

2.2.2 Continuous Flow Multithreading

The use of multistate registers to store the microarchitectural state of multiple

threads within the processor pipeline is proposed. We call this use a multistate

pipeline register (MPR). Using MPRs can eliminate the need to flush the pipeline

upon a thread switch in Switch-on-Event (SoE) multi-threading machines. We call the

new microarchitectural scheme, Continuous Flow Multi-Threading (CFMT), and

compare the performance and power consumption against traditional SoE machines.

Memristor-based CFMT significantly improves performance as compared to SoE,

while reducing energy. A CFMT processor is illustrated in Figure 10. Further details

on CFMT are found in Chapter 3.3 and [49-50].

21

	

Figure 10. Continuous Flow Multithreading structure. A multistate pipeline
register (MPR) is located between each two pipeline stages instead of a

conventional pipeline register. The MPR stores the state of instructions from all
supported threads within the machine when only a single thread is active at a

time.

	 	

22

Chapter 3 Published Papers

This chapter contains the full collection of the scientific papers that were published

during the thesis in scientific journals and refereed conference proceedings. Each

subchapter is devoted to a different aspect of our research.

23

3.1 Device Characteristic and Modeling

This section contains the following papers:

 S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "TEAM -

ThrEshold Adaptive Memristor Model," IEEE Transactions on Circuits and

Systems I: Regular Papers, Vol. 60, No. 1, pp. 211-221, January 2013.

 S. Kvatinsky, K. Talisveyberg, D. Fliter, E. G. Friedman, A. Kolodny, and U.

C. Weiser, "Models of Memristors for SPICE Simulations," Proceedings of

the IEEE Convention of Electrical and Electronics Engineers in Israel, pp. 1-

5, November 2012.

 S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "The Desired

Memristor for Circuit Designers," IEEE Circuits and Systems Magazine, Vol.

13, No. 2, pp. 17-22, second quarter 2013.

	 	

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 60, NO. 1, JANUARY 2013 211

TEAM: ThrEshold Adaptive Memristor Model
Shahar Kvatinsky, Eby G. Friedman, Fellow, IEEE, Avinoam Kolodny, Senior Member, IEEE, and

Uri C. Weiser, Fellow, IEEE

Abstract—Memristive devices are novel devices, which can be
used in applications ranging from memory and logic to neuro-
morphic systems. A memristive device offers several advantages:
nonvolatility, good scalability, effectively no leakage current, and
compatibility with CMOS technology, both electrically and in
terms of manufacturing. Several models for memristive devices
have been developed and are discussed in this paper. Digital ap-
plications such as memory and logic require a model that is highly
nonlinear, simple for calculations, and sufficiently accurate. In
this paper, a new memristive device model is presented—TEAM,
ThrEshold Adaptive Memristor model. This model is flexible and
can be fit to any practical memristive device. Previously published
models are compared in this paper to the proposed TEAM model.
It is shown that the proposed model is reasonably accurate and
computationally efficient, and is more appropriate for circuit
simulation than previously published models.

Index Terms—Memristive systems, memristor, SPICE, window
function.

I. INTRODUCTION

M EMRISTORS are passive two-port elements with
variable resistance (also known as a memristance) [1].

Changes in the memristance depend upon the history of the
device (e.g., the memristance may depend on the total charge
passed through the device, or alternatively, on the integral over
time of the applied voltage between the ports of the device).

Formally, a current-controlled time-invariant memristive
system [2] is represented by

(1)

(2)

where is an internal state variable, is the memristive de-
vice current, is the memristive device voltage, is
the memristance, and is time. The terms memristor and mem-
ristive systems are often used interchangeably to describe mem-
ristive systems [2]. While there are discussions in the literature
about specific definitions [29], [30], in this paper we use the
term “memristive device” to describe all devices within these
categories.

Since Hewlett-Packard announced the fabrication of a
working memristive device in 2008 [3], there has been an

Manuscript received January 17, 2012; revised April 08, 2012; accepted April
22, 2012. Date of publication November 15, 2012; date of current version Jan-
uary 04, 2013. This work was supported in part by Hasso Plattner Institute,
by the Advanced Circuit Research Center at the Technion, and by Intel Grant
864-737-13. This paper was recommended by Associate Editor F. Lustenberger.

S. Kvatinsky, A. Kolodny, and U. C. Weiser are with the Department of Elec-
trical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Is-
rael (e-mail: skva@tx.technion.ac.il).

E. G. Friedman is with the Department of Electrical Engineering and Com-
puter Engineering, University of Rochester, Rochester, NY 14627, USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2012.2215714

increasing interest in memristors and memristive systems. New
devices exhibiting memristive behavior have been announced
[4], [5], and existing devices such as spin-transfer torque mag-
netoresistive random access memory (STT-MRAM) have been
redescribed in terms of memristive systems [6].

Memristive devices can be used for a variety of applications
such as memory [7], neuromorphic systems [8], analog circuits
(e.g., see [9]), and logic design [10], [27]. Different characteris-
tics are important for the effective use of memristive devices in
each of these applications, and an appropriate designer friendly
physical model of a memristive device is therefore required.

In this paper, the characteristics of memristive devices are
described in Section II. Previously published memristive de-
vice models are reviewed in Section III. TEAM—a new model
that is preferable in terms of the aforementioned characteris-
tics—is proposed in Section IV. In Section V, a comparison be-
tween these models is presented. The paper is summarized in
Section VI.

II. REQUIREMENTS FOR MEMRISTIVE DEVICE

CHARACTERISTICS

Different applications require different characteristics from
the building blocks. Logic and memory applications, for ex-
ample, require elements for computation and control, as well
as the ability to store data after computation. These elements re-
quire sufficiently fast read and write times. The read mechanism
needs to be nondestructive, i.e., the reading mechanism should
not change the stored data while reading. To store a known dig-
ital state and maintain low sensitivity to variations in parame-
ters and operating conditions, it is crucial that the stored data be
distinct, i.e., the difference between different data must be suf-
ficiently large. The transient power consumption while reading
and writing, as well as static power consumption, are also crit-
ical issues.

Although the definition of a memristive system is quite broad,
all memristive systems exhibit a variable resistance, which is re-
lated to an internal state variable. Memristive devices employed
in practice exhibit a nonvolatile behavior. To provide a non-
destructive read mechanism, the internal state variable needs
to exhibit a nonlinear dependence on charge, i.e., changes in
the state variable due to high currents should be significant,
while changes due to low currents should be negligible. Other
mechanisms where the state variables return to the original po-
sition after completing the read process may also require the
nondestructive read mechanism. For certain applications such
as analog counters, however, a linear dependence on charge is
preferable, since the current is integrated during the counting
process.

To store distinct Boolean data in a memristive device, a high
ratio between the resistances (typically named and)
is necessary. Several additional characteristics are important for

1549-8328/$31.00 © 2012 IEEE

212 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 60, NO. 1, JANUARY 2013

Fig. 1. Linear ion drift memristive device model. The device is composed of
two regions: doped and undoped. The total resistance of the device is the sum
of the resistance of both regions.

all applications, such as low power consumption, good scala-
bility, and compatibility with conventional CMOS.

These characteristics exist in memristive devices.
STT-MRAM exhibits these characteristics except for the high
off/on resistance ratio [11]. To design and analyze memristive
device-based circuits and applications, a model exhibiting these
traits is required.

III. PREVIOUSLY PROPOSED MEMRISTIVE DEVICE MODELS

A. Requirements From an Effective Memristive Device Model

An effective memristive device model needs to satisfy several
requirements: it must be sufficiently accurate and computation-
ally efficient. It is desirable for the model to be simple, intuitive,
and closed-form. It is also preferable for the model to be gen-
eral so that it can be tuned to suit different types of memristive
devices.

B. Linear Ion Drift Model

A linear ion drift model for a memristive device is suggested
in [3]. In this model, one assumption is that a device of physical
width contains two regions, as shown in Fig. 1. One region
of width (which acts as the state variable of the system) has
a high concentration of dopants (originally oxygen vacancies
of , namely). The second region of width

is an oxide region (originally). The region with the
dopants has a higher conductance than the oxide region, and the
device is modeled as two resistors connected in series. Several
assumptions are made: ohmic conductance, linear ion drift in a
uniform field, and the ions have equal average ion mobility .
Equations (1) and (2) become, respectively,

(3)

(4)

where is the resistance when , and is
the resistance when . The state variable is lim-
ited to the physical dimensions of the device, i.e., the value is
within the interval . To prevent from growing beyond
the physical device size, the derivative of is multiplied by a
window function, as discussed in Section III-C. The I-V curve
of a linear ion drift memristive device for sinusoidal and rect-
angular waveform inputs is shown in Fig. 2.

C. Window Function

In the linear ion drift model, the permissible value of the state
variable is limited to the interval . To satisfy these bounds,
(3) is multiplied by a function that nullifies the derivative, and

Fig. 2. Linear ion drift model I-V curve. , ,
, , and . (a) Si-

nusoidal voltage input for several frequencies , , and , and (b) rect-
angular waveform current input.

forces (3) to be identical to zero when is at a bound. One
possible approach is an ideal rectangular window function (the
function where the value is 1 for any value of the state variable,
except at the boundaries where the value is 0). It is also possible
to add a nonlinear ion drift phenomenon, such as a decrease in
the ion drift speed close to the bounds, with a different window
[12],

(5)

where is a positive integer. For large values of , the window
function becomes similar to a rectangular window function,
and the nonlinear ion drift phenomenon decreases, as shown in
Fig. 3.

The window function in (5) exhibits a significant problem for
modeling practical devices, since the derivative of is forced
to zero and the internal state of the device cannot change if
reaches one of the bounds. To prevent this modeling inaccuracy,
a different window function has been proposed [13],

(6)

(7a)
(7b)

where is the memristive device current. This function is shown
in Fig. 4. In the original definition, these window functions do
not have a scale factor and therefore cannot be adjusted, i.e., the
maximum value of the window function cannot be changed to
a value lower or greater than one. To overcome this limitation,
a minor enhancement—adding a multiplicative scale factor to

KVATINSKY et al.: TEAM: THRESHOLD ADAPTIVE MEMRISTOR MODEL 213

Fig. 3. Window function described by (5) according to [12] for several values
of .

Fig. 4. Window function described by (6) according to [13].

the window function, has recently been proposed [14]. The pro-
posed window function in [14] is

(8)

where is a control parameter which determines the maximum
value of (in this function, the maximum value can be
smaller or larger than one). This function is shown in Fig. 5.

While these window functions alleviate the bounds issue and
suggest a nonlinear phenomenon, these functions do not exhibit
full nonlinear ion drift behavior since the model ignores the non-
linear dependence of the state derivative on the current. A linear
ion drift model with a window function does not therefore fully
model nonlinear ion drift behavior.

D. Nonlinear Ion Drift Model

While the linear ion drift model is intuitive and satisfies the
basic memristive system equations, experiments have shown
that the behavior of fabricated memristive devices deviates sig-
nificantly from this model and is highly nonlinear [15], [16]. The
nonlinear I-V characteristic is desirable for logic circuits, and
hence more appropriate memristive device models have been
proposed. In [17], a model is proposed based on the experi-

Fig. 5. Window function described by (8) according to [14]. (a) Varying , and
(b) varying .

mental results described in [15]. The relationship between the
current and voltage is

(9)

where , , and are experimental fitting parameters, and
is a parameter that determines the influence of the state variable
on the current. In this model, the state variable is a normal-
ized parameter within the interval . This model assumes
an asymmetric switching behavior. When the device is in the
ON state, the state variable is close to one and the current is
dominated by the first expression in (9), , which
describes a tunneling phenomenon. When the device is in the
OFF state, the state variable is close to zero and the current is
dominated by the second expression in (9), ,
which resembles an ideal diode equation.

This model assumes a nonlinear dependence on voltage in the
state variable differential equation,

(10)

where and are constants, is an odd integer, and is
a window function. The I-V relationship of a nonlinear ion drift
memristive device for sinusoidal and rectangular waveform in-
puts is illustrated in Fig. 6. A similar model is proposed by the
same authors in [28]. In this model, the same I-V relationship is
described with a more complex state drift derivative.

E. Simmons Tunnel Barrier Model

Linear and nonlinear ion drift models are based on repre-
senting the two regions of oxide and doped oxide as two resis-

214 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 60, NO. 1, JANUARY 2013

Fig. 6. Nonlinear ion drift model I-V curve. , , ,
, , , and . (a) Sinusoidal

voltage input for several frequencies , , and , and (b) rectangular
waveform of input voltage.

Fig. 7. Physical model of Simmons tunnel barrier memristive device. The state
variable is the width of the oxide region, is the applied voltage on the
device, is the voltage in the undoped region, and is the internal voltage in
the device.

tors in series. A more accurate physical model was proposed in
[18]. This model assumes nonlinear and asymmetric switching
behavior due to an exponential dependence of the movement
of the ionized dopants, namely, changes in the state variable. In
this model, rather than two resistors in series as in the linear drift
model, there is a resistor in series with an electron tunnel barrier,
as shown in Fig. 7. The state variable is the Simmons tunnel
barrier width [19] (note that a different notation for the state
variable is used to prevent confusion with the role of the state
variable in the linear ion drift model). In this case, the derivative

Fig. 8. Derivative of the state variable as described in (11). The fitting pa-
rameters are , , ,

, , , , and .

of can be interpreted as the oxygen vacancy drift velocity, and
is

where , , , , , , , and are fitting pa-
rameters. Equation (11) is illustrated in Fig. 8 for the measured
fitting parameters reported in [18]. The physical phenomena be-
hind the behavior shown in (11) are not yet fully understood,
but considered to be a mixture of nonlinear drift at high elec-
tric fields and local Joule heating enhancing the oxygen vacan-
cies. In practical memristive devices, the ON switching is sig-
nificantly faster than the OFF switching because of the diffu-
sion of the oxygen vacancies from to , and the
drift of the oxygen vacancies due to the internal electric field
is different for positive and negative voltages. For a negative
voltage (lower), the drift of the oxygen vacancies and the dif-
fusion are in the same direction, while for a positive voltage,
the direction of diffusion and drift is opposite [20]. The param-
eters and influence the magnitude of the change of .
The parameter is an order of magnitude larger than the pa-
rameter . The parameters and effectively constrain
the current threshold. Below these currents, the change in the
derivative of is neglected. A current threshold phenomenon
is desirable for digital applications. The parameters and

force, respectively, the upper and lower bounds for . Be-
cause of the exponential dependence on or ,
the derivative of the state variable is significantly smaller for the
state variable within the permitted range. There is therefore no
need for a window function in this model.

In this model, the relationship between the current and
voltage is shown as an implicit equation based on the Simmons
tunneling model [19],

(12)

(13)

KVATINSKY et al.: TEAM: THRESHOLD ADAPTIVE MEMRISTOR MODEL 215

Fig. 9. Derivative of the state variable as described in (11) under the as-
sumption of a small change in . Note that the device exhibits a
threshold current. The same fitting parameters as used in Fig. 8 are used.

where is the internal voltage on the device, which is not nec-
essarily equal to the applied voltage on the device (i.e., the
external voltage and the internal voltage are not necessarily
the same [18]).

IV. THRESHOLD ADAPTIVE MEMRISTOR (TEAM) MODEL

In this section, TEAM, a novel memristive device model, is
presented. The integral portion of the TEAM model is based
on an expression for the derivative of the internal state variable
that can be fitted to any memristive device type. Unlike other
memristive device models, the current-voltage relationship is
undefined and can be freely chosen from any current-voltage
relationship. Several examples of possible current-voltage rela-
tionships are described in Section IV-B. This relationship is not
limited to these examples. In Section IV-A, the disadvantages
of the aforementioned models and the need for such a model
are explained. The derivative of the internal state variable of
the memristive device [the relevant expression for (1)] and ex-
amples of the current-voltage relationship [the relevant expres-
sion for (2)] are described, respectively, in Section IV-B and
IV-C. Proper fitting of the Simmons tunnel barrier model to the
TEAM model is presented in Section IV-D, as well as the proper
window function for this fitting.

A. Need for a Simplified Model

The Simmons tunnel barrier model is, to the authors’ best
knowledge, the most accurate physical model of a
memristive device. This model is however quite complicated,
without an explicit relationship between current and voltage,
and not general in nature (i.e., the model fits only a specific
type of memristive device). A complex SPICE model of the
Simmons tunnel barrier model is presented in [21]. This model
is also computational inefficient. A model with simpler ex-
pressions rather than the complex equations in the Simmons
tunnel barrier model is therefore desired. Yet the accuracy of
the simple model must be adequate. This simplified model
represents the same physical behavior, but with simpler math-
ematical functions. In Section V, simplifying assumptions are
introduced. Namely, no change in the state variable is assumed
below a certain threshold, and a polynomial dependence rather
than an exponential dependence is used. These assumptions

are applied to support simple analysis and computational
efficiency.

B. State Variable Derivative in TEAM Model

Note in Fig. 9 and (11) that because of the high nonlinear de-
pendence of the memristive device current, the memristive de-
vice can be modeled as a device with threshold currents. This ap-
proximation is similar to the threshold voltage approximation in
MOS transistors. This approximation is justified, since for small
changes in the electric tunnel width, separation of variables can
be performed. The dependence of the internal state derivative
on current and the state variable itself can be modeled as inde-
pendently multiplying two independent functions; one function
depends on the state variable and the other function depends
on the current.

Under these assumptions, the derivative of the state variable
for the simplified proposed model is

where , , , and are constants, and are
current thresholds, and is the internal state variable, which rep-
resents the effective electric tunnel width. The constant param-
eter is a positive number, while the constant parameter
is a negative number. The functions and rep-
resent the dependence on the state variable . These functions
behave as the window functions described in Section II, which
constrain the state variable to bounds of . Al-
ternatively, these functions can be different functions of . The
functions and are not necessarily equal, since
the dependence on may be asymmetric (as in the Simmons
tunnel barrier model). Note that the role of in this model is
opposite to in the linear ion drift model.

C. Current—Voltage Relationship in TEAM Model

Assume the relationship between the voltage and current of
a memristive device is similar to (4). The memristance changes
linearly in , and (2) becomes

(15)

The reported change in the resistance however is an exponen-
tial dependence on the state variable [18], since the memris-
tance, in practical memristive devices, is dependent on a tun-
neling effect, which is highly nonlinear. If (12) describes the
current-voltage relationship in the model, the model becomes
inefficient in terms of computational time and is also not gen-
eral. Therefore, any change in the tunnel barrier width changes
the memristance, and is assumed to change in an exponential
manner. Under this assumption, (2) becomes

(16)

216 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 60, NO. 1, JANUARY 2013

Fig. 10. Fitting between the derivative of the state variable in the Simmons
tunnel barrier memristive device model and the TEAM model. The same fitting
parameters as used in Fig. 8 are used for the Simmons tunnel barrier model.
(a) The fitting parameters for the proposed model are ,

, , , , and
. (b) Fitting procedure in a logarithmic scale. The operating current range

is assumed to be 0.1 to 1 mA and the neglected value for the derivative of
the state variable is assumed to be . For any desired current range,
the proper fitting parameters can be evaluated to maintain an accurate match
between the models. For the aforementioned parameters, a reasonable current
threshold is 0.5 mA (marked as the effective threshold in the figure).

where is a fitting parameter, and and are the
equivalent effective resistance at the bounds, similar to the no-
tation in the linear ion drift model, and satisfy

(17)

D. Fitting the Simmons Tunnel Barrier Model to the TEAM
Model

The TEAM model is inspired by the Simmons tunnel barrier
model. However, to use this model for practical memristive de-
vices, similar to the Simmons tunnel barrier model, a fit to the
TEAM model needs to be accomplished. Since (14) is derived
from a Taylor series, for any desired range of memristive device
current, , , , , and can be evaluated to achieve
a sufficiently accurate match between the models. As the desired
operating current range for the memristive device is wider, to
maintain sufficiently accuracy, the required and are
higher, thereby increasing the computational time. The proper
fitting procedure to the current threshold is to plot the deriva-
tive of the exact state variable in the actual operating range of
the current, and decide what value of the state variable deriva-
tive is effectively zero (i.e., the derivative of the state variable is

Fig. 11. Proposed and based on (18) and (19). These func-
tions represent the dependence on in (14) and also force bounds for since

is used when is positive and is zero around , and vice versa
for .

significantly smaller and can therefore be neglected). The cur-
rent at this effective point is a reasonable value of the current
threshold. In this paper, the parameters and are chosen
as these current thresholds, since these terms represent the ex-
ponential dependence of the derivative on the state variable of
the current in the Simmons tunnel barrier model. A fit of the
Simmons tunnel barrier model to the TEAM model is shown
in Fig. 10(a). The proper current threshold fitting procedure is
shown in Fig. 10(b). Note that a reasonable current threshold
can be higher than .

As mentioned in Section IV-B, the functions and
are window functions, or alternatively, functions that fit

the Simmons tunnel barrier model based upon the separation of
variables of (11). These functions represent the dependence of
the derivative in the state variable . Based on the fitting param-
eters reported in [18], possible functions and
are, respectively,

(18)

(19)

The determination process for (18) and (19) is presented in
Appendix A. Note that (18) and (19) maintain the limitation
of certain bounds for the state variable since the derivative
of around when using (18) and (19) is effectively zero
for positive current (is practically zero) and negative for
negative current. can only be reduced. The value of can be
increased for values of around . Therefore, a reasonable
value for the state variable bounds and is, respectively,

and . Although the proposed function limits the bounds
of the state variable, there is no problem when the bounds are
exceeded, unlike other window functions. This characteristic is
useful for simulations, where the bounds can be exceeded due to
the discrete nature of simulation engines. The proposed terms,

and , are illustrated in Fig. 11.
The I-V relationship and state variable behavior of the pro-

posed model are shown in Figs. 12 and 13 for an ideal rect-
angular window function and the proposed window function.
Note in Figs. 12 and 13 that there is a performance difference
between the different window functions. Due to the significant
nonlinearity, the proposed window function constrains the state

KVATINSKY et al.: TEAM: THRESHOLD ADAPTIVE MEMRISTOR MODEL 217

Fig. 12. The TEAM model driven with a sinusoidal input of 1 volt using the
same fitting parameters as used in Fig. 10, , , and
an ideal rectangular window function for in (19) and in (18).
(a) I-V curve, and (b) state variable . Note that the device is asymmetric, i.e.,
switching OFF is slower than switching ON.

variable to a small range, and the memristive devices are acti-
vated within a significantly smaller time scale as compared to an
ideal rectangular window function. The required conditions for
a sufficient fit of the TEAM model to the Simmons tunnel barrier
model, as described in Appendix A, cannot be maintained for a
symmetric input voltage due to the asymmetry of the Simmons
tunnel model. The required conditions for a sufficient fit are
therefore not maintained in Fig. 13. These conditions are how-
ever maintained in Fig. 14, where the behavior of the TEAM
model and the Simmons tunnel barrier model is compared and
exhibits excellent agreement. While the proposed model fits the
Simmons Tunnel Barrier model, the TEAM model is general
and flexible. The model can fit different physical memristive de-
vice models, including other types of memristive devices, such
as STT-MRAM and Spintronic memristors [6], [24].

V. COMPARISON BETWEEN THE MODELS

A comparison between the different memristive device
models is listed in Table I and a comparison between different
window functions is listed in Table II. A comparison of the
accuracy and complexity between the Simmons tunnel barrier
memristive device and TEAM models is shown in Fig. 14. The
TEAM model can improve the simulation runtime by 47.5%
and is sufficiently accurate, with a mean error of 0.2%. These
results are dependent on the particular TEAM parameters. A
lower value for and produces lower accuracy and

Fig. 13. The TEAM model driven with a sinusoidal input of 1 volt using the
same fitting parameters as used in Fig. 10, , ,
proposed in (19), and in (18) with the same parameters used in
Fig. 8. (a) I-V curve, and (b) state variable . Note that the device is asymmetric,
i.e., switching OFF is slower than switching ON.

Fig. 14. TEAM model fitted to Simmons tunnel barrier model. (a) I-V curve
for both models, and (b) fitting accuracy in terms of internal state variable
and maximum improvement in runtime for MATLAB simulations. The state
variable average and maximum differences are, respectively, 0.2% and 12.77%.
The TEAM fitting parameters are , ,

, , , ,
, and .

enhanced computational runtime. The TEAM model satisfies
the primary equations of a memristive system as described in

218 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 60, NO. 1, JANUARY 2013

TABLE I
COMPARISON OF DIFFERENT MEMRISTIVE DEVICE MODELS

TABLE II
COMPARISON OF DIFFERENT WINDOW FUNCTIONS

(1) and (2), and the convergence conditions and computational
efficiency required by simulation engines.

The TEAM model accurately characterizes not only the
Simmons tunnel barrier model, but also a variety of different
models. For example, the TEAM model can be fitted to the
linear ion drift behavior, where

(20)

(21)

(22)

(23)

(24)

(25)

To include memristive devices into the circuit design process,
these models need to be integrated into a CAD environment,
such as SPICE. There are several proposed SPICE macromodels
for the linear ion drift model [13], [22] and the nonlinear ion drift
model [17]. A SPICE model for the Simmons tunneling barrier
model has recently been proposed [21], but is complicated and
inefficient in terms of computational time. Another simplified
model has recently been proposed, assuming voltage threshold
and an implicit memristance [25]. In this model, the current and
voltage are related through a hyperbolic sine and the derivative
of the state variable is an exponent. This model is less general
than the TEAM model and more complex in terms of computa-
tional time (the model uses sinh and exponents rather than poly-

nomials as in the TEAM model). The model is also less accurate
than the TEAM model when fitting the model to the Simmons
tunnel barrier model.

The TEAM model can be described in a SPICE macromodel
similar to the proposed macromodel in [23], as shown in Fig. 15.
In this macromodel, the internal state variable is represented by
the voltage across the capacitor and the bounds of the state
variable are enforced by diodes and . A Verilog-A model
is however chosen because it is more efficient in terms of com-
putational time than a SPICE macromodel, while providing sim-
ilar accuracy. A Verilog-A form of the model, as described in
this paper, has been implemented. The code for these models can
be found in [26]. Although the state variable derivative in the
TEAM model is not a smooth function, it is a continuous func-
tion based only on polynomial functions. The Verilog-A model
has been tested in complex simulations (hundreds of memristive
devices) and did not exhibit any convergence issues.

VI. CONCLUSIONS

Different memristive device models are described in this
paper—linear ion drift, nonlinear ion drift, Simmons tunnel
barrier, and TEAM (ThrEshold Adaptive Memristor), as well
as different window functions. The TEAM model is a flexible
and convenient model that can be used to characterize a variety
of different practical memristive devices. This model suggests
a memristive device should exhibit a current threshold and
nonlinear dependence on the charge, as well as a dependence
on the state variable.

KVATINSKY et al.: TEAM: THRESHOLD ADAPTIVE MEMRISTOR MODEL 219

Fig. 15. TEAM SPICE macromodel. The state variable is the voltage across
the capacitor . The initial voltage is the initial state variable.
and constrain the bounds of the state variable to the value of the voltage
sources and . and are the relevant functions
from (14). is determined from the current-voltage relationship, and is

for the current-voltage relationship in (16).
and are, respectively, the negative and positive ports of the memristive

device, and is the memristive device current.

A comparison between the TEAM model and other memris-
tive device models is presented. The TEAM model is simple,
flexible, and general. While the simplicity of this model im-
proves the efficiency of the simulation process, the model is
sufficiently accurate, exhibiting an average error of only 0.2%
as compared to the Simmons tunnel barrier state variable. This
model fits practical memristive devices better than previously
proposed models. This model is suitable for memristive de-
vice-based circuit design and has been implemented in Ver-
ilog-A for SPICE simulations.

APPENDIX

APPROPRIATE FITTING WINDOW FUNCTION TO THE SIMMONS

TUNNEL BARRIER MODEL

The purpose of this appendix is to determine a proper window
function that provides a sufficient fit to the Simmons tunnel
barrier model. To determine a reasonable approximation, pa-
rameter values from [18] are used. From (11a) and (11b), the
derivative of the state variable is

The derivative of the state variable is a multiplicand of two
functions—a hyperbolic sine function which depends only on
the current and an exponential function which depends on both
the current and the state variable. To simplify (A.1) and to apply
separation of variables, approximations

(A.2.a)

(A.2.b)

need to be assumed. In this appendix, the range of the required
state variable for this approximation is determined. From (A.1),
an approximation for is provided.

The Simmons tunnel barrier model is appropriate when the
state variable is limited by and , i.e.,

(A.3)

From the parameters in [18],

(A.4)

Assume the maximum current in the device is 100 ,

(A.5)

Assume that the value of the state variable is one of the ef-
fective boundaries and ,

(A.6)

To maintain the same approximation as in (A.6), it is suffi-
cient to assume that the value of the expression in (A.5) is rel-
atively small. Assume that one order of magnitude is sufficient
for this assumption. The proper range of can be determined as

(A.7)

(A.8)

For positive current, the derivative of is positive and there-
fore the value of is increasing. It is reasonable to assume
(A.8). Similarly, for negative current, it is reasonable to assume
(A.7). Under these assumptions, separation of variables can be
achieved. See (A.9) at the top of the next page.

Based on the parameters in [18] and the exponential depen-
dence, the exponential term is significantly greater than the
second term,

(A.10)

And similarly,

(A.11)

220 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 60, NO. 1, JANUARY 2013

(A.9)

From (A.10) and (A.11), the proposed window function is
therefore

(A.12)

(A.13)

ACKNOWLEDGMENT

The authors thank E. Yalon and O. Rottenstreich for their
useful comments, and D. Belousov, S. Liman, E. Osherov, Z.
Lati, D. Fliter, and K. Talisveyberg for their contributions to the
SPICE and Verilog-A simulations.

REFERENCES

[1] L. O. Chua, “Memristor—The missing circuit element,” IEEE Trans.
Circuit Theory, vol. CT-18, no. 5, pp. 507–519, Sep. 1971.

[2] L. O. Chua and S. M. Kang, “Memristive devices and systems,” Proc.
IEEE, vol. 64, no. 2, pp. 209–223, Feb. 1976.

[3] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, pp. 80–83, May 2008.

[4] D. Sacchetto, M. H. Ben-Jamaa, S. Carrara, G. DeMicheli, and Y.
Leblebici, “Memristive devices fabricated with silicon nanowire
schottky barrier transistors,” in Proc. IEEE Int. Symp. Circuits Syst.,
May/Jun. 2010, pp. 9–12.

[5] K. A. Campbell, A. Oblea, and A. Timilsina, “Compact method
for modeling and simulation of memristor devices: Ion conductor
chalcogenide-based memristor devices,” in Proc. IEEE/ACM Int.
Symp. Nanoscale Archit., Jun. 2010, pp. 1–4.

[6] X. Wang, Y. Chen, H. Xi, and D. Dimitrov, “Spintronic memristor
through spin-torque-induced magnetization motion,” IEEE Electron
Device Lett., vol. 30, no. 3, pp. 294–297, Mar. 2009.

[7] Y. Ho, G. M. Huang, and P. Li, “Nonvolatile memristor memory: De-
vice characteristics and design implications,” in Proc. IEEE Int. Conf.
Comput.-Aided Design, Nov. 2009, pp. 485–490.

[8] A. Afifi, A. Ayatollahi, and F. Raissi, “Implementation of biologically
plausible spiking neural network models on the memristor crossbar-
based CMOS/Nano circuits,” in Proc. Eur. Conf. Circuit Theory De-
sign, Aug. 2009, pp. 563–566.

[9] Y. V. Pershin and M. Di Ventra, “Practical approach to programmable
analog circuits with memristors,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 57, no. 8, pp. 1857–1864, Aug. 2010.

[10] G. Snider, “Computing with hysteretic resistor crossbars,” Appl. Phys.
A, Mater. Sci. Process., vol. 80, no. 6, pp. 1165–1172, Mar. 2005.

[11] Z. Diao, Z. Li, S. Wang, Y. Ding, A. Panchula, E. Chen, L. C. Wang,
and Y. Huai, “Spin-transfer torque switching in magnetic tunnel junc-
tions and spin-transfer torque random access memory,” J. Phys., Con-
dens. Matter, vol. 19, no. 16, pp. 1–13, Apr. 2007.

[12] Y. N. Joglekar and S. J. Wolf, “The elusive memristor: Properties of
basic electrical circuits,” Eur. J. Phys., vol. 30, no. 4, pp. 661–675, Jul.
2009.

[13] Z. Biolek, D. Biolek, and V. Biolkova, “SPICE model of memristor
with nonlinear dopant drift,” Radioengineering, vol. 18, no. 2, pt. 2,
pp. 210–214, Jun. 2009.

[14] T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou, “A ver-
satile memristor model with non-linear dopant kinetics,” IEEE Trans.
Electron Devices, vol. 58, no. 9, pp. 3099–3105, Sep. 2011.

[15] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R.
S. Williams, “Memristive switching mechanism for metal/oxide/metal
nanodevices,” Nature Nanotechnol., vol. 3, pp. 429–433, Jul. 2008.

[16] D. B. Strukov and R. S. Williams, “Exponential ionic drift: Fast
switching and low volatility of thin-film memristors,” Appl. Phys. A,
Mater. Sci. Process., vol. 94, no. 3, pp. 515–519, Mar. 2009.

[17] E. Lehtonen and M. Laiho, “CNN using memristors for neighborhood
connections,” in Proc. Int. Workshop Cell. Nanoscale Netw. Their
Appl., Feb. 2010, pp. 1–4.

[18] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider,
D. R. Stewart, and R. S. Williams, “Switching dynamics in titanium
dioxide memristive devices,” J. Appl. Phys., vol. 106, no. 7, pp. 1–6,
Oct. 2009.

[19] J. G. Simmons, “Generalized formula for the electric tunnel effect be-
tween similar electrodes separated by a thin insulating film,” J. Appl.
Phys., vol. 34, no. 6, pp. 1793–1803, Jan. 1963.

[20] D. B. Strukov, J. L. Borghetti, and R. S. Williams, “Coupled ionic and
electronic transport model of thin-film semiconductor memristive be-
havior,” Small, vol. 5, no. 9, pp. 1058–1063, May 2009.

[21] H. Abdalla and M. D. Pickett, “SPICE modeling of memristors,” in
IEEE Int. Symp. Circuits Syst., May 2011, pp. 1832–1835.

[22] S. Benderli and T. A. Wey, “On SPICE macromodelling of mem-
ristors,” Electron. Lett., vol. 45, no. 7, pp. 377–379, Mar. 2009.

[23] S. Shin, K. Kim, and S.-M. Kang, “Compact models for memristors
based on charge-flux constitutive relationships,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 29, no. 4, pp. 590–598, Apr.
2010.

[24] T. Kawahara et al., “2 Mb SPRAM (spin-transfer torque RAM) with
Bit-by-Bit Bi-directional current write and parallelizing-direction cur-
rent read,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 109–120,
Jan. 2008.

[25] C. Yakopcic, T. M. Taha, G. Subramanyam, R. E. Pino, and S. Rogers,
“A memristor device model,” IEEE Electron Device Lett., vol. 32, no.
10, pp. 1436–1438, Oct. 2011.

[26] S. Kvatinsky, K. Talisveyberg, D. Fliter, E. G. Friedman, A. Kolodny,
and U. C. Weiser, “Verilog-A for memristors models,” in CCIT Tech.
Rep. 801, Dec. 2011.

[27] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, “Mem-
ristor-based IMPLY logic design procedure,” in Proc. IEEE Int. Conf.
Comput. Design, Oct. 2011, pp. 142–147.

[28] E. Lehtonen, J. Poikonen, M. Laiho, and W. Lu, “Time-dependency of
the threshold voltage in memristive devices,” in Proc. IEEE Int. Symp.
Circuits Syst., May 2011, pp. 2245–2248.

[29] D. Biolek, Z. Biolek, and V. Biolkova, “Pinched hysteresis loops of
ideal memristors, memcapacitors, and meminductors must be ’self-
crossing’,” Electron. Lett., vol. 47, no. 25, pp. 1385–1387, Dec. 2011.

[30] L. O. Chua, “Resistance switching memories are memristors,” Appl.
Phys. A, Mater. Sci. Process., vol. 102, no. 4, pp. 765–783, Mar. 2011.

KVATINSKY et al.: TEAM: THRESHOLD ADAPTIVE MEMRISTOR MODEL 221

Shahar Kvatinsky received his B.Sc. degree in com-
puter engineering and applied physics, and an MBA
degree from the Hebrew University of Jerusalem in
2009 and 2010, respectively. He is working toward
the Ph.D. degree in the Electrical Engineering De-
partment at the Technion—Israel Institute of Tech-
nology, Haifa.

Before his Ph.D. studies he worked for Intel as a
circuit designer.

Eby G. Friedman (F’00) received the B.S. degree
from Lafayette College, Easton, PA, in 1979, and the
M.S. and Ph.D. degrees from the University of Cal-
ifornia, Irvine, in 1981 and 1989, respectively, all in
electrical engineering.

From 1979 to 1991, he was with Hughes Aircraft
Company, rising to the position of Manager of the
Signal Processing Design and Test Department, re-
sponsible for the design and test of high performance
digital and analog ICs. He has been with the Depart-
ment of Electrical and Computer Engineering at the

University of Rochester, Rochester, NY, since 1991, where he is a Distinguished
Professor, and the Director of the High Performance VLSI/IC Design and Anal-
ysis Laboratory. He is also a Visiting Professor at the Technion—Israel Institute
of Technology. His current research and teaching interests are in high perfor-
mance synchronous digital and mixed-signal microelectronic design and anal-
ysis with application to high speed portable processors and low power wireless
communications. He is the author of over 400 papers and book chapters, a dozen
patents, and the author or editor of 15 books in the fields of high speed and low
power CMOS design techniques, 3-D design methodologies, high speed inter-
connect, and the theory and application of synchronous clock and power distri-
bution networks.

Dr. Friedman is the Regional Editor of the Journal of Circuits, Systems and
Computers, a Member of the Editorial Boards of the Analog Integrated Circuits
and Signal Processing, Microelectronics Journal, Journal of Low Power
Electronics, Journal of Low Power Electronics and Applications, and the IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, Chair of the
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

steering committee, and a Member of the technical program committee of a
number of conferences. He previously was the Editor-in-Chief of the IEEE
TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, a
Member of the Editorial Board of the PROCEEDINGS OF THE IEEE, the IEEE

TRANSACTIONS ON CIRCUITS AND SYSTEMS—PART II: ANALOG AND DIGITAL

SIGNAL PROCESSING, and Journal of Signal Processing Systems, a Member
of the Circuits and Systems (CAS) Society Board of Governors, Program and
Technical chair of several IEEE conferences, and a recipient of the University
of Rochester Graduate Teaching Award and a College of Engineering Teaching
Excellence Award. He is a Senior Fulbright Fellow.

Avinoam Kolodny (SM’11) received his Ph.D. de-
gree in microelectronics from Technion—Israel In-
stitute of Technology, Haifa, in 1980.

He joined Intel Corporation, where he was en-
gaged in research and development in the areas of
device physics, VLSI circuits, electronic design
automation, and organizational development. He
has been a member of the Faculty of Electrical
Engineering at the Technion since 2000. His current
research is focused primarily on interconnects in
VLSI systems, at both physical and architectural

levels.

Uri C. Weiser (F’02) received his B.S. and M.S. de-
grees in EE from Technion—Israel Institute of Tech-
nology, Haifa, and a Ph.D degree in CS from the Uni-
versity of Utah, Salt Lake City.

He is a visiting Professor at the Electrical En-
gineering Department, Technion IIT, and acts as
an advisor at numerous startups. He worked at
Intel from 1988 to 2006. At Intel, he initiated the
definition of the first Pentium® processor, drove the
definition of Intel’s MMX™ technology, invented
(with A. Peleg) the Trace Cache, co-managed and

established the Intel Microprocessor Design Center at Austin, TX, and later
initiated an Advanced Media applications research activity. Prior to his career
at Intel, he worked for the Israeli Department of Defense as a research and
system engineer and later with the National Semiconductor Design Center in
Israel, where he led the design of the NS32532 microprocessor.

Dr. Weiser was appointed Intel Fellow in 1996, and in 2005 he became
an ACM Fellow. He was an Associate Editor of IEEEMicro Magazine
(1992–2004) and was Associate Editor of Computer Architecture Letters.

2012 IEEE 27-th Convention of Electrical and Electronics Engineers in Israel

Models of Memristors for SPICE Simulations

Shahar Kvatinsky, Keren Talisveyberg, Dmitry Fliter,

Avinoam Kolodny, and Uri C. Weiser

Department of Electrical Engineering

Technion – Israel Institute of Technology

Haifa 32000, ISRAEL

skva@tx.technion.ac.il

Eby G. Friedman

Department of Electrical and Computer Engineering

University of Rochester

Rochester, New York 14627, USA

Abstract— Memristors are novel devices which can be used in

applications such as memory, logic, analog circuits, and

neuromorphic systems. Several memristor technologies have

been developed such as ReRAM (Resistive RAM), MRAM

(Magnetoresistance RAM), and PCM (Phase Change Memory).

To design circuits with memristors, the behavior of the

memristor needs to be described by a mathematical model. While

the model for memristors should be sufficiently accurate as

compared to the behavior of physical devices, the model must

also be computationally efficient. Several models for memristors

have been proposed – the linear ion drift model, the nonlinear ion

drift model, the Simmons tunnel barrier model, and the

ThrEshold Adaptive Memristor (TEAM) model. In this paper,

the different memristor models are described and a Verilog-A

implementation for these models, including the relevant window

functions, are presented. These models are suitable for EDA tools

such as SPICE.

Index Terms— memristor, memristive systems, SPICE,

Verilog-A, TEAM.

I. INTRODUCTION

Memristors are passive two-port elements with variable

resistance (also known as a memristance) [1]. Changes in the

memristance depend upon the history of the device (e.g., the

memristance may depend on the total charge passed through

the device, or alternatively, on the integral over time of the

applied voltage between the ports of the device). Memristive

systems [2] are an extension to memristors, where a current-

controlled time-invariant memristive device is represented by

 (,),
dw

f w i
dt

 (1)

 () (,) (),v t R w i i t  (2)

where w is an internal state variable, i(t) is the current of the

memristive device, v(t) is the voltage across the memristive

device, R(w, i) is the memristance, and t is time. The terms

memristor and memristive systems are often used

interchangeably to describe memristive devices.

Memristors can be used in applications such as memory,

logic, analog circuits, and neuromorphic systems. A memristor

offers several advantages as compared to standard memory

technologies: nonvolatility, good scalability, effectively no

leakage current, and compatibility with CMOS technology,

both electrically and in terms of manufacturing. Several

memristor technologies have been developed such as ReRAM

(Resistive RAM), MRAM (Magnetoresistance RAM), and

PCM (Phase Change Memory).

To design circuits with memristors, the behavior of the

memristor needs to be described by a mathematical model.

While the model for memristors should be sufficiently

accurate as compared to the behavior of physical devices, it

must also be computationally efficient. It is also desirable for

the model to be simple, intuitive, and closed-form, as well as

general so that it can be tuned to suit different technologies of

memristors. Several memristor models have been proposed:

the linear ion drift model, the nonlinear ion drift model, the

Simmons tunnel barrier model, and the ThrEshold Adaptive

Memristor (TEAM) model. In this paper, the different

memristor models are described and a Verilog-A code for

these models and the relevant window functions are presented.

These models are suitable for EDA tools such as SPICE.

II. MEMRISTOR MODELS

All of the memristor models which have been implemented

in the Verilog-A model are described in [3]. In this paper, only

a brief description of these models is provided. The basic

equations and the main characteristics of the memristor models

are listed in Table 1. A user manual to this Verilog-A model is

provided in [4].

A. Linear Ion Drift Model

In the linear ion drift model [5], two resistors are connected

in series, one resistor represents the high concentration of

dopants region (high conductance) and the second resistor

represents the oxide region (low conductance). A linear ion

drift in a uniform field is also assumed, where the ions have

equal average ion mobility µV. This model exhibits the

definition of the original memristor in [1], but is inaccurate as

compared to physical memristive devices.

B. Nonlinear Ion Drift Model

In the nonlinear ion drift model [6], a voltage-controlled

memristor exhibiting a nonlinear dependence between the

voltage and the internal state derivative is assumed. In this

model, the state variable w is a normalized parameter within

the interval [0, 1]. This model also assumes an asymmetric

switching behavior.

1978-1-4673-4681-8/12/$31.00 ©2012 IEEE

2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel

C. Simmons Tunnel Barrier Model

The Simmons tunnel barrier model [7] assumes nonlinear

and asymmetric switching behavior due to an exponential

dependence of the movement of the ionized dopants, namely,

changes in the internal state variable. In this model, rather than

two resistors in series as in the linear drift model, there is a

resistor in series with an electron tunnel barrier. The state

variable x is the Simmons tunnel barrier width.

D. ThrEshold Adaptive Memristor (TEAM) Model

The TEAM model [3] is a general memristor model. In this

model, a current threshold and tunable nonlinear (polynomial)

dependence between the current and the derivative of the

internal state variable are assumed. The current-voltage

relationship can be in a linear or an exponential manner. It is

possible to fit the TEAM model to the Simmons tunnel barrier

model or to any different memristor model and gain a more

efficient computational time with sufficient accuracy.

III. WINDOW FUNCTIONS

To maintain the physical bounds of the device and add

nonlinear behavior close to these physical bounds, several

window functions are implemented in the Verilog-A model.

These window functions are: Jogelkar [8], Biolek [9],

Prodromakis [10], and TEAM (named Kvatinsky in the

Verilog-A model). The window functions and main properties

are listed in Table 2.

IV. VERILOG-A CODE

`include "disciplines.vams"

`include "constants.h"

// define meter units for w parameter nature distance

access = Metr;

units = "m";

abstol = 0.01n;

endnature

discipline Distance

potential distance;

enddiscipline

module Memristor(p, n,w_position);

input p;//positive pin

output n;//negative pin

 output w_position;// w-width pin

 electrical p, n,gnd;

 Distance w_position;

ground gnd;

 parameter real model = 0; // define the model 0 - Linear

 // Ion Drift ; 1 - Simmons Tunnel Barrier; 2 - Team model;

 // 3- Nonlinear Ion Drift model

 parameter real window_type=0; // define the window type :

 // 0 - No window; 1 - Jogelkar window ; 2 - Biolek window ;

 // 3 - Prodromakis window ; 4- Kvatinsky window (Team

 // model only)

 parameter real dt=0; // user must specify dt same as max step

 // size in transient analysis & must be at least 3 orders

 // smaller than T period of the source

 parameter real init_state=0.5; // the initial state condition

 // [0:1]

///////////////////////Linear Ion Drift model ////////////////////////////////

//parameters definitions and default values for linear model

 parameter real Roff = 200000;

 parameter real Ron = 100;

 parameter real D = 3n;

 parameter real uv = 1e-15;

 parameter real w_multiplied = 1e8; // transformation factor

 // for w/X width in meter units

 parameter real p_coeff = 2; // Windowing function

 // coefficient

 parameter real J = 1; // for prodromakis Window function

 parameter real p_window_noise=1e-18; // provoke the w

 // width not to get stuck at 0 or D with p window

 parameter real treshhold_voltage=0;

 // local variables

 real w;

 real dwdt;

 real w_last;

 real R;

 real sign_multply;

 real stp_multply;

 real first_iteration;

/////////////////////// Simmons Tunnel Barrier model ////////////////////

 //parameters definitions and default values

 parameter real f_off = 3.5e-6;

 parameter real f_on = 40e-6;

 parameter real i_off = 115e-6;

 parameter real i_on = 8.9e-6;

 parameter real x_c = 107e-12;

 parameter real b = 500e-6;

 parameter real a_on = 2e-9;

 parameter real a_off = 1.2e-9;

 // local variables

 real x;

 real dxdt;

 real x_last;

////////////////////////////TEAM model/////////////////////

 parameter real K_on=-8e-13;

 parameter real K_off=8e-13;

 parameter real Alpha_on=3;

 parameter real Alpha_off=3;

parameter real IV_relation=0; // IV_relation=0 means linear

// V=IR. IV_relation=1 means nonlinear V=I*exp{..}

 parameter real x_on=0;

 parameter real x_off=3e-09; // equals D

 // local variables

 real lambda;

2

/////////////////////////////Nonlinear Ion Drift model/////////////////////

 parameter real alpha = 2;

 parameter real beta = 9;

 parameter real c = 0.01;

 parameter real g = 4;

 parameter real N = 14;

 parameter real q = 13;

 parameter real a = 4;

 analog function integer sign; //Sign function for Constant

 // edge cases

 real arg; input arg;

 sign = (arg >= 0 ? 1 : -1);

 endfunction

 analog function integer stp; //Stp function

 real arg; input arg;

 stp = (arg >= 0 ? 1 : 0);

 endfunction

 /////////////////////////MAIN ////////////////////////////////

 analog begin

 if(first_iteration==0) begin

w_last=init_state*D; // if this is the first iteration,

 // start with w_init

 x_last=init_state*D; // if this is the first

 // iteration, start with x_init

 end

///////////////////////Linear Ion Drift model ////////////////////////////////

if (model==0) begin // Linear Ion Drift model

 dwdt =(uv*Ron/D)*I(p,n);

 //change the w width only if the threshhold_voltage permits!

 if(abs(I(p,n))<treshhold_voltage/R) begin

 w=w_last;

 dwdt=0;

 end

 if ((window_type==0)|| (window_type==4)) begin // No

 // window

 w=dwdt*dt+w_last;

 end // No window

 if (window_type==1) begin // Jogelkar window

 if (sign(I(p,n))==1) begin

 sign_multply=0;

 if(w==0) begin

 sign_multply=1;

 end

 end

 if (sign(I(p,n))==-1) begin

 sign_multply=0;

 if(w==D) begin

 sign_multply=-1;

 end

 end

 w=dwdt*dt*(1-pow(2*w/D-

 1,2*p_coeff))+w_last+sign_multply*p_window_noise;

 end // Jogelkar window

 if (window_type==2) begin // Biolek window

 if (stp(-I(p,n))==1) begin

 stp_multply=1;

 end

 if (stp(-I(p,n))==0) begin

 stp_multply=0;

 end

 w=dwdt*dt*(1-pow(w/D-

 stp_multply,2*p_coeff))+w_last;

 end // Biolek window

 if (window_type==3) begin // Prodromakis window

 if (sign(I(p,n))==1) begin

 sign_multply=0;

 if(w==0) begin

 sign_multply=1;

 end

 end

 if (sign(I(p,n))==-1) begin

 sign_multply=0;

 if(w==D) begin

 sign_multply=-1;

 end

 end

 w=dwdt*dt*J*(1-pow(pow(w/D-

 0.5,2)+0.75,p_coeff))+ w_last + sign_multply *

 p_window_noise;

 end // Prodromakis window

 if (w>=D) begin

 w=D;

 dwdt=0;

 end

 if (w<=0) begin

 w=0;

 dwdt=0;

 end

 //update the output ports(pins)

 R=Ron*w/D+Roff*(1-w/D);

 w_last=w;

 Metr(w_position) <+ w*w_multiplied;

 V(p,n) <+ (Ron*w/D+Roff*(1-w/D))*I(p,n);

 first_iteration=1;

end // end Linear Ion Drift model

//////////////////////Simmons Tunnel Barrier model//////////////////////

if (model==1) begin // Simmons Tunnel Barrier model

 if (sign(I(p,n))==1) begin

 dxdt =f_off*sinh(I(p,n)/i_off)*exp(-exp((x_last-

 a_off)/x_c-abs(I(p,n)/b))-x_last/x_c);

 end

 if (sign(I(p,n))==-1) begin

 dxdt = f_on*sinh(I(p,n)/i_on)*exp(-exp((a_on-

 x_last)/x_c-abs(I(p,n)/b))-x_last/x_c);

 end

 x=x_last+dt*dxdt;

 if (x>=D) begin

 x=D;

3

 dxdt=0;

 end

 if (x<=0) begin

 x=0;

 dxdt=0;

 end

 //update the output ports(pins)

 R=Ron*(1-x/D)+Roff*x/D;

 x_last=x;

 Metr(w_position) <+ x/D;

 V(p,n) <+ (Ron*(1-x/D)+Roff*x/D)*I(p,n);

 first_iteration=1;

end // end Simmons Tunnel Barrier model

/////////////////////////////////TEAM model//////////////////////////////////

if (model==2) begin // Team model

 if (I(p,n) >= i_off) begin

 dxdt =K_off*pow((I(p,n)/i_off-1),Alpha_off);

 end

 if (I(p,n) <= i_on) begin

 dxdt =K_on*pow((I(p,n)/i_on-1),Alpha_on);

 end

 if ((i_on<I(p,n)) && (I(p,n)<i_off)) begin

 dxdt=0;

 end

 if (window_type==0) begin // No window

 x=x_last+dt*dxdt;

 end // No window

 if (window_type==1) begin // Jogelkar window

 x=x_last+dt*dxdt*(1-pow((2*x_last/D-

 1),(2*p_coeff)));

 end // Jogelkar window

 if (window_type==2) begin // Biolek window

 if (stp(-I(p,n))==1) begin

 stp_multply=1;

 end

 if (stp(-I(p,n))==0) begin

 stp_multply=0;

 end

 x=x_last+dt*dxdt*(1-pow((x_last/D-

 stp_multply),(2*p_coeff)));

 end // Biolek window

 if (window_type==3) begin // Prodromakis window

 x=x_last+dt*dxdt*J*(1-

 pow((pow((x_last/D-0.5),2)+0.75),p_coeff));

 end // Prodromakis window

 if (window_type==4) begin //Kvatinsky window

 if (I(p,n) >= 0) begin

 x=x_last+dt*dxdt*exp(-exp((x_last-

 a_off)/x_c));

 end

 if (I(p,n) < 0) begin

 x = x_last+dt*dxdt*exp(-exp((a_on-

 x_last)/x_c));

 end

 end // Kvatinsky window

 if (x>=D) begin

 dxdt=0;

 x=D;

 end

 if (x<=0) begin

 dxdt=0;

 x=0;

 end

 lambda = ln(Roff/Ron);

 //update the output ports(pins)

 x_last=x;

 Metr(w_position) <+ x/D;

 if (IV_relation==1) begin

 V(p,n) <+ Ron*I(p,n)*exp(lambda*(x-

 x_on)/(x_off-x_on));

 end

 else if (IV_relation==0) begin

 V(p,n) <+ (Roff*x/D+Ron*(1-x/D))*I(p,n);

 end

 first_iteration=1;

end // end TEAM model

/////////////////////////////Nonlinear Ion Drift model/////////////////////

if (model==3) begin // Nonlinear Ion Drift model

 if (first_iteration==0) begin

 w_last=init_state;

 end

 dwdt = a*pow(V(p,n),q);

 if ((window_type==0) || (window_type==4)) begin

 // No window

 w=w_last+dt*dwdt;

 end // No window

 if (window_type==1) begin // Jogelkar window

 w=w_last+dt*dwdt*(1-pow((2*w_last-1) , (2 *

 p_coeff)));

 end // Jogelkar window

 if (window_type==2) begin // Biolek window

 if (stp(-V(p,n))==1) begin

 stp_multply=1;

 end

 if (stp(-V(p,n))==0) begin

 stp_multply=0;

 end

 w=w_last+dt*dwdt*(1-pow((w_last-

 stp_multply),(2*p_coeff)));

 end // Biolek window

 if (window_type==3) begin // Prodromakis window

 w=w_last+dt*dwdt*J*(1-pow((pow((w_last-

 0.5),2)+0.75),p_coeff));

 end // Prodromakis window

 if (w>=1) begin

 w=1;

 dwdt=0;

 end

 if (w<=0) begin

 w=0;

 dwdt=0;

 end

4

 //change the w width only if the threshhold_voltage permits!

 if(abs(V(p,n))<treshhold_voltage) begin

 w=w_last;

 end

 //update the output ports(pins)

 w_last=w;

 Metr(w_position) <+ w;

 I(p,n) <+ pow(w,N) *beta *sinh(alpha*V(p,n)) +c*

 (exp(g*V(p,n))-1);

 first_iteration=1;

 end // end Nonlinear Ion Drift model

 end // end analog

endmodule

V. CONCLUSIONS

A Verilog-A code that contains several models, useful for

design in memristor-based circuits, is presented in this paper,

as well as relevant window functions. This Verilog-A model

can be used by circuit designers, since it is easy to use, contains

several mathematical models, the parameters of already

existing models can be easily changed, as well as additional

mathematical models can be added.

ACKNOWLEDGMENT

 This work was partially supported by Hasso Plattner

Institute, by the Advanced Circuit Research Center at the

Technion, and by Intel grant no. 864-737-13.

REFERENCES

[1] L. O. Chua, “Memristor – the Missing Circuit Element,” IEEE

Transactions on Circuit Theory, Vol. 18, No. 5, pp. 507-519,

September 1971.

[2] L.O. Chua and S.M. Kang, “Memristive Devices and Systems,”

Proceedings of the IEEE, Vol. 64, No. 2, pp. 209-223, February

1976.

[3] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser,

"TEAM: ThrEshold Adaptive Memristor Model," IEEE

Transactions on Circuits and Systems I: Regular Papers, 2012

(in press).

[4] http://memristor.shorturl.com

[5] D. B. Strukov, G. S.Snider, D. R. Stewart, and R. S. Williams,

"The Missing Memristor Found,” Nature, Vol. 453, pp. 80-83,

May 2008.

[6] E. Lehtonen and M. Laiho, "CNN Using Memristors for

Neighborhood Connections," Proceedings of the International

Workshop on Cellular Nanoscale Networks and their

Applications, pp. 1-4, February 2010.

[7] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S.

Snider, D. R. Stewart, and R. S. Williams, "Switching

Dynamics in Titanium Dioxide Memristive Devices," Journal

of Applied Physics, Vol. 106, No. 7, pp. 1-6, October 2009.

[8] Y. N. Joglekar and S. J. Wolf, “The Elusive Memristor:

Properties of Basic Electrical Circuits,” European Journal of

Physics, Vol. 30, No. 4, pp. 661-675, July 2009.

[9] Z. Biolek, D. Biolek, and V. Biolkova, "SPICE Model of

Memristor with Nonlinear Dopant Drift," Radioengineering,

Vol. 18, No. 2, Part 2, pp. 210-214, June 2009.

[10] T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou,

“A Versatile Memristor Model with Non-linear Dopant

Kinetics,” IEEE Transactions on Electron Devices, Vol. 58,

No. 9, pp. 3099-3105, September 2011.

TABLE 1. THE DIFFERENT MEMRISTOR MODELS (FURTHER DESCRIPTION IN [2])

Model Linear ion drift [5] Nonlinear ion drift [6] Simmons tunneling

barrier [7]

TEAM [3]

State variable 0 w D 

Doped region physical

width

0 1w 

Doped region

normalized width

off ona x a 

Undoped region width

on offx x x 

Undoped region width

Control mechanism Current controlled Voltage controlled Current controlled Current controlled

Threshold None None None ion, ioff

TABLE 2. COMPARISON OF DIFFERENT WINDOW FUNCTIONS

Function Jogelkar [8] Biolek [9] Prodromakis [10] TEAM [3]

f(x)/f(w) f(w) = 1-(2w/D-1)2p f(w) = 1-(w/D-stp(-i))2p f(w)=j(1-[(w-0.5)2+0.75]p) fon,off=exp[-exp(|x-xon,off|/wc)]

Fits memristor

model

Linear/nonlinear ion

drift/TEAM

Linear/nonlinear ion

drift/TEAM

Linear/nonlinear ion

drift/TEAM

TEAM for Simmons tunneling

barrier fitting

5

second QUARTER 2013 	 1531-636X/13/$31.00©2013IEEE	 IEEE circuits and systems magazine	 17

The Desired Memristor
for Circuit Designers
Shahar Kvatinsky, Eby G. Friedman, Avinoam Kolodny, and Uri C. Weiser

Abstract
Memristors are two-terminal devices with
varying resistance, where the behavior is
dependent on the history of the device. In
recent years, different physical phenomena
of resistive switching have been linked with
the theoretical concept of a memristor,
and several emerging memory devices
(e.g., Phase Change Memory, Resistive
RAM, STT-MRAM) are now considered
as memristors. Memristors hold prom-
ise for use in diverse applications such
as memory, digital logic, analog cir-

cuits, and neuromorphic systems.
Important characteristics of

memristors include high speed,
low power, good scalability,
data retention, endurance, and
compatibility with conventional
CMOS in terms of manufac-
turing and operating voltages.
One interesting property of
some memristors is a nonlinear response to current or voltage.
Nonlinear memristors exhibit a current or voltage threshold, such
that the resistance is affected only by currents or voltages which
exceed the threshold, while the resistance of a linear memristor
changes with small perturbations in device current.

Different applications exploit different characteristics of a
memristor. In this article, the desired characteristics for dif-
ferent applications are presented from the viewpoint of an
integrated circuit designer. Understanding the desired char-
acteristics for different applications can assist device and
material engineers in providing the appropriate behavior when
developing memristive devices, thereby optimizing these
devices for different applications.

I. Introduction

Memristors have many different facets. A memris-
tor can be considered as the theoretical miss-
ing fundamental element originally proposed

by Leon Chua in 1971 [1]. This theoretical device is a
resistor with varying resistance, where the resistance

changes according to the charge passed through the
memristor over its entire history. Chua extended the
theory of memristors to ‘memristive devices’ in 1976
with his student, Steve (Sung Mo) Kang [2]. A memristive
device is basically any resistor with a resistance that
only changes due to the voltage across the device or,
alternatively, the current flowing through the device.
Since the resistance does not change when there is no
voltage applied across the device, memristive devices
are nonvolatile. It is acceptable to use the term ‘memris-
tor’ to describe a ‘memristive device.’

Since Hewlett Packard Laboratories announced the
fabrication of a working memristor by electrical conduc-
tion in titanium oxide (TiO2) in 2008 [3], it has become
popular to link different physical phenomena of resis-
tive switching with the term memristor. These devices
include a large variety of oxides, also named Resistive
RAM (RRAM). Additional emerging memory devices
(e.g., Phase Change Memory and STT-MRAM) may also
be considered as memristors since these devices are
basically nonvolatile two-terminal devices with varying

© john foxx & wikimedia commons/kioshi3

Digital Object Identifier 10.1109/MCAS.2013.2256257

Date of publication: 22 May 2013

Feature

18	 IEEE circuits and systems magazine 		 second QUARTER 2013

resistance. In this article, memristors are considered in
their broadest meaning—any two-terminal device with
memory capability, which is represented by a varying
resistance. An array of TiO2 memristors and a schematic
of the physical structure of a single device are shown in
Figure 1.

II. The Desired Memristor
Using memristors as storage elements in a memory is
an obvious choice. Actually, most emerging memory
technologies, which are considered as potential
replacements for Flash, DRAM, and SRAM, are based
on memristors. These technologies are somewhat
immature and are not yet fully commercialized. Toshiba
and Sandisk are currently sampling 4 GB RRAM
memory circuits [4], Micron and Samsung are selling
16 MB PCM [5], and Everspin recently debuted an 8 MB
STT-MRAM [6]. Memristors are, however, much more
than memory devices. The ability to control and modify
their current-voltage characteristics can be utilized
for performing a variety of computational operations.
Memristors hold promise for use in diverse applica-
tions such as digital and analog circuits, and neuromor-
phic systems.

Since memristor technology is currently immature,
standardization of the characteristics of memristors
remains to be done. The desired characteristics may
differ for different applications. In this article, the
desired characteristics of memristors are described
for different applications from the viewpoint of
an integrated circuit designer. Understanding the
desired characteristics for different applications can
assist device and material engineers in providing

the appropriate behavior when
developing memristive devices,
thereby optimizing these devices
for different applications.

III. Memory
The speed, power consumption,
data retention, and endurance
of memristors are better than
Flash memory for all emerging
memristive technologies, and are
comparable to DRAM and SRAM
for certain memristive technolo-
gies. Speed is determined by the
write time which currently var-
ies from tens of nanoseconds
(PCM) to hundreds of picosec-

onds (RRAM). Endurance is determined by the num-
ber of writes to a device without affecting the stored
data, and currently varies from hundreds of millions
of writes (PCM) to an unlimited number of writes
(STT-MRAM). All emerging memory technologies sat-
isfy the industrial standard of ten year data retention.
STT-MRAM, however, still suffers degradation in data
retention for technologies below 45 nm. A summary of
the required characteristics for memory applications
is listed in Table 1.

One interesting property of some memristors is a
nonlinear response to current or voltage. Nonlinear
memristors exhibit a current or voltage threshold, such
that the resistance is not affected by relatively small
currents or voltages, while the resistance of a linear
memristor will change due to any change in device
current. In the original publication by Hewlett Packard
in 2008 [3], a linear memristor was presented. Practi-
cal memristors, however, seem to behave nonlinearly,
although the nonlinearity varies for different materials
and technologies. Current–voltage curves of linear and
nonlinear memristor are shown in Figure 2.

Due to excellent scalability and fast speed, memris-
tors are a potential replacement for Flash memory in
SSD, which requires dense memory, as well as DRAM
and SRAM for main memory and cache memory, which
require relatively fast memory with unlimited writes.
Memristors therefore provide an opportunity for ‘uni-
versal memory’—a single technology for all memory
hierarchies. Memristors are by their definition nonvola-
tile devices. Using memristors within caches and main
memory will make these memories nonvolatile, dramat-
ically changing the manner in which these memories

Shahar Kvatinsky, Avinoam Kolodny, and Uri C. Weiser are with Technion—Israel Institute of Technology, Haifa 3200, Israel. Eby G. Friedman is with
the University of Rochester, Rochester, New York, 14627 USA.

(a) (b)

V

Pt

Pt

TiO2 TiO2 – x

v
Rs

vg x

Figure 1.  (a) An array of 17 purpose-built oxygen-depleted titanium dioxide (TiO2)
memristors built at HP Labs, imaged by an atomic force microscope. The wires are
about 50 nm wide (credit: J.J. Yang, HP Labs), and (b) a physical structure model of
a TiO2 memristor.

second QUARTER 2013		 IEEE circuits and systems magazine	 19

are applied in modern computing
systems.

Memory is an analog circuit
behaving digitally, in which the
resistance of the memristor typically
represents a binary value. A low
resistance is typically considered as
a ‘logical one’ and a high resistance
is treated as a ‘logical zero.’ A high
ratio between the high and low resis-
tance (usually named, respectively,
ROFF and RON) is therefore desirable.
It is also desirable to provide a non-
destructive read mechanism, but
the read operation in memristors
may induce drift in the stored state. The drift requires
occasionally refreshing the memory. The device design
process should therefore consider the trade off between
speed and robustness due to this state drift phenom-
enon. A preferred memristor would therefore be highly
nonlinear, with a well-defined and abrupt threshold
between the two distinct states.

In memory applications, it is also possible to write
more than one bit into a single memristor if the resis-
tance of the device can be quantized into multiple levels.
The difference among the different data must be care-
fully determined. To successfully store more than one
bit within a memristor, it is crucial to maintain a high
ratio between ROFF and RON to provide a wide range of
resistance. It is also preferable that a linear memristive
device successfully write the desired value with similar
write pulses, or, alternatively, that a write mechanism
allows a different and distinct write operation for differ-
ent data. In PCM, for example, the write operation uses

a different magnitude and duration of applied current to
write different data, as depicted in Figure 3.

IV. Computational Logic with Memristors
Another application of memristors is computational
logic, where memristors are used as logic gates. Several
different logic families have been developed that use
memristors as fundamental elements within logic gates.
In certain logic families, the logical state is represented
as a resistance, as in memory, and the result of the logi-
cal operation is also stored as a resistance in a memris-
tor. These logic families can therefore be used for logic
within memory, and require similar memristor character-
istics as in memory, namely, nonlinear memristors with
well-defined thresholds are preferable. An example of
these logic families is material implication (IMPLY) [7],
as shown in Figure 4. In other logic families, the logical
state is represented as a voltage level, as in CMOS logic.
These logic families are useful for hybrid CMOS-memristor

(a)

–1
–1

–0.5

0

I [
A

m
p]

0.5

1
x 10–4

–0.8 –0.6 –0.4 –0.2 0

Voltage (V)

0.2 0.4 0.6 0.8 1

w0
3w0
6w0

(b)

–1
–1.1

–0.75

–0.05

–0.4

0.3

0.65

I [
A

m
p]

1
1.1

x 10–4

–0.8 –0.6 –0.4 –0.2 0

Volt (V)

0.2 0.4 0.6 0.8 1

ROFF

RON

Figure 2.  Current–voltage curve in response to sinusoidal input for (a) a linear memristor (voltage input) and (b) nonlinear mem-
ristor (current input). 0~ is a frequency of the input waveform. The maximum and minimum resistance of the memristor, respec-
tively, Roff and Ron, are marked in the nonlinear memristor curve.

Table 1.
Requirements of memristors for memory [11].

Speed
(Write Time)
[Seconds]

Endurance
[# Writes]

Energy Per Bit
[Joule] Nonvolatility

Storage
(flash replacement)

0.1 to 10 µ 105 10 n Yes

Main Memory
(DRAM
replacement)

10 n > 1015 5 p No

Cache
(SRAM
replacement)

0.3 to 1 n > 1015 5 p No

20	 IEEE circuits and systems magazine 		 second QUARTER 2013

logic, where the critical characteristics of the memristors
are their high density and compatibility with standard
CMOS, both in fabrication and voltage levels. These logic
families increase the logic density, where, for the same
area, the number of logic gates is significantly higher.
For these logic families, a linear memristor is prefer-
able to reduce power consumption and delay. An exam-
ple of these logic families is Memristor Ratioed Logic

(MRL) [8], as shown in Figure 5. It
is also possible to use memristors
as configurable switches in PLA
and FPGA [9], as shown in Figure 6.
For these applications, the memris-
tors replace the standard program-
mable switches, commonly placed
within the FPGA as CMOS switch
boxes. High and low resistances are
treated, respectively, as an ‘open’
and ‘closed’ switch. In these appli-
cations, the configuration phase is
separate from the operation. The
resistance of the memristors there-
fore does not change during opera-
tion and a nonlinear memristor with
a threshold is necessary. A signifi-
cant ratio between the high and low
resistance is also highly desirable.

V. Analog Circuits and Neuromorphic Systems
In applications using analog circuits and neuromor-
phic systems (electronic circuits that mimic the brain),
the resistance typically requires a continuous value.
Memristors can be used as configurable devices where
the resistance of the device is initialized by a specific
procedure, different from typical circuit operation
[10]. During regular circuit operation, the memristor

(a) (b)

Time

T
em

pe
ra

tu
re

/C
ur

re
nt

Electrode

Electrode

GST

TiN SiO2

To Become Amorphous

To Crystallize

Figure 3.  Phase change memory (PCM) (a) physical structure. A resistor made
of TiN acts as a heater and heats the active area (marked in red). The active area
heats the GST (chalcogenide glass), which changes its phase between crystalline
and amorphous states. Crystalline state has better conductivity than amorphous
state. (b) The write operation is done by flowing current in different shapes where
high current (temperature) for a short period changes the phase to amorphous and
relatively low current for a long period changes the phase to crystalline.

VCOND

P

RG

Q

VSET

Figure 4.  Schematic of a memristor-based material impli-
cation (IMPLY) logic gate. IMPLY gate consists of two
memristors and a resistor. The memristors can be part of a
memristor-based crossbar used for memory. The input and
output variables of the IMPLY logic gate are the stored logical
state of the memristors, represented by their initial and final
resistance, where high and low resistance are considered,
respectively, as logical zero and one.

IN1

IN2

OUT

Figure 5.  An example of hybrid memristor-CMOS logic—
memristor ratioed logic (MRL). An MRL NAND logic gate
consists of two memristors and two CMOS transistors. The
memristors act as a logical AND gate and are connected
to a CMOS-based inverter. The logical input and output
variables are represented by voltages, as in conventional
CMOS logic.

second QUARTER 2013		 IEEE circuits and systems magazine	 21

behaves as a simple resistor. The
properties of the circuit can be
tuned. A configurable amplifier is
shown in Figure 7, where the gain
and bandwidth of an amplifier
vary due to the configurable resis-
tance. In these applications, it is
desirable for the memristor to
behave as a nonlinear nondestruc-
tive device, similar to the read
mechanism in digital applications.
Memristors can also be used as
computational elements in analog
circuits, such as analog counters
and sensors. In these circuits, it
is desirable for the memristor to
maintain a linear behavior, where
the local current changes the
resistance of the memristor.

In neural networks, memris-
tors mimic the role of synapses,
such that each device may inter-
act with other devices throughout
the system. Several models exist
for using memristors in neuromor-
phic systems. Usually, machine learning algorithms are
executed in these systems. A threshold is useful to dis-
able the learning operation. During the learning opera-
tion, the resistance of the memristor is changed based
on the input of the system, usually a voltage pulse. It is
desirable for the same input to change the resistance of
the memristor the same every time. Nonlinear memris-
tors require the change in resistance to be significantly
different for the same input with a different initial resis-
tance, greatly complicating the learning process.

VI. Conclusions
In summary, memristors provide an inspiring variety of
opportunities for electronics. Memristor technology is
still immature and the device characteristics can vary a
great deal. However, significant focus within academia
and industry is currently taking place to develop and
commercialize this exciting new technology. In this arti-
cle, certain desirable characteristics of memristors are
described for an assortment of applications. It is intended
that device and material engineers will consider the
requirements for these devices from the point of view of
an integrated circuit designer, and develop devices suit-
able for specific applications, opening a new era of mem-
ory intensive computing.

Shahar Kvatinsky is a Ph.D. candidate at the electri-
cal engineering department at the Technion—Israel

Institute of Technology. He received
his B.Sc. in computer engineering and
applied physics, and an MBA at 2009
and 2010, respectively, both from the
Hebrew University of Jerusalem. Prior
to his Ph.D. studies he worked for Intel
as a circuit designer.

Eby G. Friedman received the B.S. degree from Lafay-
ette College in 1979, and the M.S. and Ph.D. degrees
from the University of California, Irvine, in 1981 and
1989, respectively, all in electrical engineering. From
1979 to 1991, he was with Hughes Aircraft Company,

R1

M1
Vout = – Vin

Vin

M1 R1

–

+

Figure 7.  Schematic of a configurable amplifier. The gain of
the amplifier is the ratio between the resistors and can be
tuned to a desired value. The memristor is programmed to a
desired resistance prior to the operation of the amplifier.

NOT Gate

8 7 16 15 22 21

35

36

NAND Gate

43

44
49

50

77

91

92

98

97

106

105

78 69 70 63 64

D Flip-Flop

NOR Gate

OR Gate

AND Gate

Figure 6.  An example of a memristor-based FPGA. The memristors act as configurable
switches to connect or disconnect CMOS logic gates. (This figure is taken from [9].)

22	 IEEE circuits and systems magazine 		 second QUARTER 2013

rising to the position of manager of
the Signal Processing Design and Test
Department, responsible for the design
and test of high performance digital
and analog ICs. He has been with the
Department of Electrical and Computer
Engineering at the University of Roch-

ester since 1991, where he is a Distinguished Professor,
and the Director of the High Performance VLSI/IC Design
and Analysis Laboratory. He is also a Visiting Profes-
sor at the Technion—Israel Institute of Technology.
His current research and teaching interests are in high
performance synchronous digital and mixed-signal
microelectronic design and analysis with applica-
tion to high speed portable processors and low power
wireless communications. He is the author of over 400
papers and book chapters, 11 patents, and the author
or editor of 15 books in the fields of high speed and
low power CMOS design techniques, 3-D design meth-
odologies, high speed interconnect, and the theory
and application of synchronous clock and power dis-
tribution networks. Dr. Friedman is the Regional Edi-
tor of the Journal of Circuits, Systems and Computers, a
Member of the editorial boards of the Analog Integrated
Circuits and Signal Processing, Microelectronics Journal,
Journal of Low Power Electronics, Journal of Low Power
Electronics and Applications, and IEEE Journal on Emerg-
ing and Selected Topics in Circuits and Systems, Chair of
the IEEE Transactions on Very Large Scale Integration
(VLSI) Systems steering committee, and a Member of
the technical program committee of a number of con-
ferences. He previously was the Editor-in-Chief of the
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, a Member of the editorial board of the Proceed-
ings of the IEEE, IEEE Transactions on Circuits and Sys-
tems II: Analog and Digital Signal Processing, and Journal
of Signal Processing Systems, a Member of the Circuits
and Systems (CAS) Society Board of Governors, Pro-
gram and Technical chair of several IEEE conferences,
and a recipient of the University of Rochester Graduate
Teaching Award and a College of Engineering Teaching
Excellence Award. Dr. Friedman is a Senior Fulbright Fel-
low and an IEEE Fellow.

Avinoam Kolodny received his doctor-
ate in microelectronics from Technion—
Israel Institute of Technology in 1980. He
joined Intel Corporation, where he was
engaged in research and development
in the areas of device physics, VLSI cir-
cuits, electronic design automation, and

organizational development. He has been a member of
the Faculty of Electrical Engineering at the Technion
since 2000. His current research is focused primarily
on interconnects in VLSI systems, at both physical and
architectural levels.

Uri C. Weiser is a visiting Professor
at the Electrical Engineering depart-
ment, Technion IIT and acts as an
advisor at numerous startups. He
received his bachelor and master
degrees in EE from the Technion and
a Ph.D. in CS from the University of

Utah, Salt Lake City. Uri worked at Intel from 1988–
2006. At Intel, Uri initiated the definition of the first
Pentium processor, drove the definition of Intel’s MMX
technology, invented (with A. Peleg) the Trace Cache,
he co-managed and established the Intel Microproces-
sor Design Center at Austin, Texas and later initiated
an Advanced Media applications research activity. Uri
was appointed Intel Fellow in 1996, in 2002 he became
IEEE Fellow and in 2005 ACM Fellow. Prior to his
career at Intel, Uri worked for the Israeli Department
of Defense as a research and system engineer and
later with National Semiconductor Design Center
in Israel, where he led the design of the NS32532
microprocessor. Uri was an Associate Editor of IEEE
Micro Magazine (1992–2004) and was Associate Editor
of Computer Architecture Letters.

References
[1] L. O. Chua, “Memristor: The missing circuit element,” IEEE Trans.
Circuit Theory, vol. 18, no. 5, pp. 507–519, Sept. 1971.
[2] L. O. Chua and S. M. Kang, “Memristive devices and systems,” Proc.
IEEE, vol. 64, no. 2, pp. 209–223, Feb. 1976.
[3] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, pp. 80–83, May 2008.
[4] [Online]. Available: http://www.theinquirer.net/inquirer/news/
2234321/sandisk-and-toshiba-dabble-in-reram
[5] [Online]. Available: http://www.micron.com/products/phase-
change-memory
[6] [Online]. Available: http://www.everspin.com/PDF/ST-MRAM_Press_
Release.pdf
[7] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser,
“Memristor-based IMPLY logic design procedure,” in Proc. IEEE Int.
Conf. Computer Design, Oct. 2011, pp. 142–147.
[8] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Hybrid CMOS-memristor logic,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, submitted for publication.
[9] Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinalli, J. J.
Yang, W. Wu, X. Li, W. M. Tong, D. B. Strukov, G. S. Snider, G. Mederios-
Riberio, and R. S. Williams, “Memristor-CMOS hybrid integrated cir-
cuits for reconfigurable logic,” Nano Lett., vol. 9, no. 10, pp. 3640–3645,
Oct. 2009.
[10] Y. V. Pershin and M. Di Ventra, “Practical approach to program-
mable analog circuits with memristors,” IEEE Trans. Circuits Syst. I. Reg.
Papers, vol. 57, no. 8, pp. 1857–1864, Sept. 2010.
[11] D. Bondurant, B. Engel, and J. Slaughter, “MRAM: The future of non-
volatile memory?” Portable Design, July 2008.

46

3.2 Logic Circuits

This section contains the following papers:

 S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "Memristor-

based IMPLY Logic Design Flow," Proceedings of the IEEE International

Conference on Computer Design, pp.142-147, October 2011.

 S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U. C.

Weiser, "Memristor-based Material Implication (IMPLY) Logic: Design

Principles and Methodologies," IEEE Transactions on Very Large Scale

Integration (VLSI) (in press).

 S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A.

Kolodny, and U. C. Weiser, "MAGIC – Memristor Aided LoGIC," IEEE

Transactions on Circuits and Systems II: Express Briefs (in review).

 S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U. C.

Weiser, "MRL – Memristor Ratioed Logic," Proceedings of the International

Cellular Nanoscale Networks and their Applications, pp. 1-6, August 2012.

 S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U. C.

Weiser, "MRL – Memristor Ratioed Logic for Hybrid CMOS-Memristor

Circuits," IEEE Transactions on Nanotechnology (in review).

 Y. Levy, J. Bruk, Y. Cassuto, E. G. Friedman, A. Kolodny, E. Yaacobi, and S.

Kvatinsky, "Logic Operation in Memory Using a Memristive Akers Array,"

Microelectronics Journal (in press).

	

Memristor-based IMPLY Logic Design Procedure

Shahar Kvatinsky, Avinoam Kolodny,

and Uri C. Weiser

Department of Electrical Engineering
Technion – Israel Institute of Technology

Haifa 32000 ISRAEL
{skva@tx, kolodny@ee, uri.weiser@ee}.technion.ac.il

Eby G. Friedman

Department of Electrical and Computer Engineering
University of Rochester

Rochester, NY 14627 USA
friedman@ece.rochester.edu

Abstract — Memristors can be used as logic gates. No design
methodology exists, however, for memristor-based combinatorial
logic. In this paper, the design and behavior of a memristive-
based logic gate – an IMPLY gate - are presented and design
issues such as the tradeoff between speed (fast write times) and
correct logic behavior are described, as part of an overall design
methodology. A memristor model is described for determining
the write time and state drift. It is shown that the widely used
memristor model - a linear ion drift memristor - is impractical
for characterizing an IMPLY logic gate, and a different
memristor model is necessary such as a memristor with a current
threshold.

Keywords - memristor; memristive systems; IMPLY; design
methodology; logic

I. INTRODUCTION

Memristors are passive elements with varying resistance
(also known as a memristance), conceived theoretically in [1].
Changes in the memristance depend upon the history of the
device, the total charge which passes through it, or,
alternatively, the total flux in the device (the integral over time
of the applied voltage at the ports of the device).

In 2008, Hewlett-Packard announced the fabrication of a
working memristor [2]. A linear ion drift model was proposed
for describing the behavior of this memristor. The memristance
of a linear ion drift memristor is

2

() 1 ()v ON
OFF

R
M q R q t

D

μ⎛ ⎞= −⎜ ⎟
⎝ ⎠ , (1)

where ROFF and RON are, respectively, the maximum and
minimum resistance of the memristor, µv is the average ion
mobility, D is the memristor physical thickness, and q(t) is the
total charge passing through the memristor. The linear ion drift
model is the most commonly used memristor model, although
practical memristors exhibit highly non-linear behavior.

Memristors can be used for numerous applications, such as
memory [3], neuromorphic systems [4], and analog circuits
(e.g., see [5]). One interesting application of memristors is
logic, using memristors as building blocks of logic gates. To
use memristors in a digital manner, a high memristance is
considered as logic 0 and a low memristance is considered as
logic 1. Several approaches for memristor-based logic have
been proposed, e.g., [6] and [7], which suggest using

memristors as configurable switches as in an FPGA. The logic
gates are designed as CMOS gates or as programmable
majority logic array (PMLA) based on Goto pairs as logic gates
[8].

Another approach is to use memristors as the primary
building blocks of a logic gate. Each memristor acts as an
input, output, computational logic element, and a latch in
different stages of the computing process [9]. In [10], a
memristor-based logic gate - the IMPLY gate, is presented.
Since this logic function together with FALSE (a function that
always yields the value 0 as an output) comprise a
computationally complete logic structure, it may potentially
provide a basic logic element for a memristor-based circuit.
The truth table for p IMPLY q is listed in Table 1. Unlike
CMOS logic [11], no design methodology exists for memristor-
based logic circuits.

In this paper, a design methodology is suggested for
memristor-based IMPLY logic gates. A memristor-based
IMPLY gate and related limitations are also presented here.
The tradeoff between performance and robustness is described
as well as the necessity to refresh the logic gate.

This paper is organized as follows. In Section II, the
operation of a memristor-based IMPLY gate is described. In
section III, the performance and limitations of this logic gate
are presented. In section IV, a design example is described, and
simulation results of the IMPLY gate are shown. The paper is
summarized in section V.

II. MEMRISTOR-BASED IMPLY GATE

The logic function p→q (also known as "p IMPLIES q,"
"material implication," and "if p then q") is described in [10].
The proposed memristor logic is based upon a resistor RG (RON
< RG < ROFF) connected to two memristors, named P and Q,
acting as digital switches. The corresponding initial
memristances p and q are the inputs of the gate; while the
output of the gate is the final memristance of Q (the result is
written into the logic state q). A schematic of an IMPLY gate
is shown in Figure 1.

The basic concept is to apply different negative voltages to
P and Q, where VSET, the applied voltage on Q, has a higher
magnitude than VCOND, the applied magnitude on P
(|VCOND| < |VSET |). If p = 1 (low resistance), the voltage on the
common terminal is approximately VCOND and the voltage on

This work was partially supported by Hasso Plattner Institute and by Intel
grant "Heterogeneous Computing, the Inevitable Solution: Power
Management, Scheduling and ISA" grant no. 864-737-13.

142

the memristor Q is approximately VSET - VCOND, which is
sufficiently small to maintain the logic state of q. In the case
of p = 0 and q = 0 (high resistances), the applied voltage on Q
is approximately VSET and Q is switched ON (q = 1). In the
case of p = 0 and q = 1, the logic state of q is maintained.

A two input NAND, based on a memristor-based IMPLY
gate and a FALSE logic gate, is described in [10]. The circuit
is comprised of three memristors; the operation of this NAND
gate changes the function of each memristor during the
computing process. Two memristors act as inputs in the initial
stage, one memristor acts as the output in the last stage, and all
memristors act together as a computational logic element (as a
memristor-based IMPLY gate) during different stages of the
computing process. This application requires three computing
stages (one FALSE and two IMPLY). A schematic and the
sequence of an IMPLY-based NAND are shown in Figure 2.

The execution of any general Boolean function f: Bn →B
can be implemented with only n + 3 memristors [12], where
three additional memristors carry out the computation. Only
two memristors are required for up to three inputs.
Computation of the function is performed in steps. In each
step, either FALSE is applied to one memristor, or an IMPLY
is applied to two memristors, where the output is written
(which is one of the inputs of the computational IMPLY
stage). This process requires a long sequence of operations
depending upon the number of inputs. This methodology is
improved in [13] where only two additional memristors are
used rather than three. While [12] and [13] present a general
algorithm to compute any Boolean function with a minimal
number of memristors, the computational process requires a
large number of functional stages, and therefore requires
significant computational time.

III. DESIGN CONSIDERATIONS AND PERFORMANCE

ANALYSIS OF THE MEMRISTOR-BASED IMPLY GATE

A. Analysis fundamentals

The behavior of a memristor-based IMPLY gate is
mathematically cumbersome for analysis. There is therefore a
need to develop heuristics for designing memristive circuits.

These heuristics can be extended to enable a complete
design methodology for memristor-based circuits. A flow
diagram of an IMPLY logic gate design methodology is
shown in Figure 3.

In this section, design strategies for choosing the proper
circuit parameters (RG, VSET, and VCOND) are discussed. The
tradeoff between the delay time of the circuit (to maintain the
proper write time) and the number of cycles to refresh the
memristors (because of state variable drift) is described.

TABLE 1. TRUTH TABLE OF IMPLY FUNCTION.

Case p q p→q

1 0 0 1
2 0 1 1
3 1 0 0
4 1 1 1

Figure 1. Schematic of a memristor-based IMPLY gate. Two memristors
P and Q are connected to a resistor RG. The logic state of the memristors

P and Q are, respectively, p and q.

Figure 2. IMPLY NAND logic gate. (a) Logical operation of an IMPLY-

based NAND, the logic gate requires three sequential steps, and (b)
schematic of IMPLY-based NAND gate.

B. The tradeoff between performance and robustness

VSET and VCOND, the applied voltages on P and Q, are fixed.
Therefore, for any initial state, the memristor state q tends to
drift towards the ON state. For digital operation, the state of q
should either stay unchanged or switch fully ON (changing the
logic state from logic 0 to logic 1).

The different input combinations are presented in Table 1.
Note that in cases 2 and 4, the initial state of q is logic 1 and
the logic gate output q is also logic 1. The gate operation,
therefore, electrically reinforces the logic state of q, and the
memristance of Q is reduced.

143

Figure 3. IMPLY logic gate design flow diagram. Each box refers to the

relevant section of this paper.

In case 1, the initial state of q is logic 0; after applying the

external voltages, q is switched ON. This case determines the
time required to apply VSET and VCOND until the logic state of q
reaches the desired state (above a certain level of conduction
to maintain correct logic behavior). This case determines the
speed of the circuit in terms of the write time.

In case 3, the initial state of q is logic 0. This logic state
should remain unchanged after applying VSET and VCOND,
although the voltages tend to change the internal state of q
towards the ON state of logic 1. This phenomenon is "state
drift." The logic 0 state of q, which is the output of the gate, is
electrically "weaker" than the input logic state of q (the
memristance of q after applying the voltages is lower than the
initial memristance). State drift may require refreshing the
state; otherwise, the sensing action may incorrectly switch the
logic state of q. State drift depends upon the write time
determined for case 1; a long write time increases the state
drift phenomenon.

C. Basic principles for parameter determination and
design procedure

Although it is difficult to compute the precise value of the
applied voltage on Q, it is possible to determine the applied
voltage on Q at the beginning of the logic gate activity. The
initial applied voltage on Q is different for each case (a
different initial memristance for q and p). The initial applied

voltages on P and Q are listed in Table 2 under the
assumptions that the memristance of logic 1 and logic 0 is,
respectively, RON and ROFF, where ROFF >> RON.

From the initial applied voltages, some necessary conditions
for correct logic behavior can be determined. These conditions
are not precise, but can provide design constraints. The basic
design principle is that the write time of the logic gate is
determined from case 1, but the parameters of the circuit
should also not exceed a specific state drift in case 3. To
determine the circuit parameters, an effective model for the
memristors needs to be chosen. The model needs to be
sufficiently accurate, while also correctly representing the
switching behavior. Inserting the initial applied voltages into
the simple memristor switching model can provide an
approximate estimate of the circuit parameters.

D. Write time and state drift for a binary memristance

A useful and simple switching model is the binary
memristance model. Assume only two allowed memristances,
RON and ROFF. A total charge Q' must flow through the
memristor to cause the memristance ROFF to switch to
memristance RON. Under these assumptions and by solving
both the switching behavior in case 1 and the write time T as a
function of Q', the circuit parameter T is

[]

2 2
'.OFF OFF G

OFF SET G SET COND

R R R
T Q

R V R V V

⎡ ⎤+= ⋅⎢ ⎥+ −⎢ ⎥⎣ ⎦
 (2)

The write time for different circuit parameters and a varying
VSET is shown in Figure 4. Note that the logic gate is faster
with higher applied voltages, or smaller ROFF.

Under this model, it is possible to limit the state drift (case 3)
for a fixed drift. The state drift is

[]
2

() ',G OFF G
q SET COND

ON G OFF SET G SET COND

R R R
q T V V Q

R R R V R V V

⎡ ⎤⎡ ⎤ +≈ − ⋅ ⋅⎢ ⎥⎢ ⎥+ + −⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3)

where qq(T) is the total charge flowing through memristor Q
after time T in case 3. To limit the state drift to a value of Q'/4,
after four times, the logic gate is applied as in case 3, and the
state drift changes the memristive logic state. This
phenomenon requires a refresh every three times the gate is
used, since the logic state changes during the fourth time. The
allowed value of VSET for several circuit parameters is shown
in Figure 5. Note that the state drift is more significant with a
higher applied voltage, or with smaller ROFF. Combining
Figures 4 and 5, the tradeoff between the speed and robustness
of a memristive logic gate is shown in Figure 6.

E. RG for a fixed threshold model

Another simple memristor model assumes non-linear
behavior with a fixed threshold voltage VON. For an applied
voltage below VON, the memristance is unchanged. To produce
correct logical behavior, the initial applied voltage on Q must
be above the threshold voltage in case 1 and below the
threshold voltage in case 3. Adding this assumption to the
initial applied voltage (see Table 2) leads to the following two
conditions on the circuit parameters,

144

TABLE 2. APPLIED LOGIC GATE VOLTAGES VQ AND VP, RESPECTIVELY, ON

MEMRISTORS P AND Q AT t = 0, UNDER THE ASSUMPTIONS THAT THE

MEMRISTANCE OF LOGIC 1 AND LOGIC 0 IS, RESPECTIVELY, RON AND ROFF,
WHERE ROFF >>RON.

Case VQ(t=0) VP(t=0)

1
2 2

OFF G G
SET COND

OFF G OFF G

R R R
V V

R R R R

+ ⋅ − ⋅
+ +

2 2
G OFF G

SET COND
OFF G OFF G

R R R
V V

R R R R

⎡ ⎤+− ⋅ − ⋅⎢ ⎥+ +⎣ ⎦

2 ON OFF G
SET SET

OFF ON G

R R R
V V

R R R

+⋅ ⋅ ≈
+

G

SET COND
ON G

R
V V

R R

⎡ ⎤
− ⋅ −⎢ ⎥+⎣ ⎦

3 G
SET COND

ON G

R
V V

R R
− ⋅

+

CONDV

4
2 2

ON G G
SET COND

ON G ON G

R R R
V V

R R R R

+⋅ − ⋅
+ +

2 2
G ON G

SET COND
ON G ON G

R R R
V V

R R R R

⎡ ⎤+− ⋅ − ⋅⎢ ⎥+ +⎣ ⎦

Figure 4. Write time T in case 1 for three values of ROFF (5 kΩ, 10 kΩ,

and 100 kΩ) under the assumptions of a binary resistance model and Q' =
5·10-14 C.

Figure 5. Allowed values of VSET for limited state drift in case 3 of Q'/4.

VSET is allowed if qq(T) is smaller than Q'/4 (the horizontal line in the
figure).

[] [] ,
2

SET ON SET ON
ON G OFF

ON SET COND ON SET COND

V V V V
R R R

V V V V V V

− −⋅ < < ⋅
− − − −

 (4)

 .SET OFF

COND ON

V R

V R
< (5)

The allowed value for RG for several circuit parameters and
varying VSET are shown in Figure 7.

Figure 6. Tradeoff between the logic gate speed (write time) and

robustness (the state drift in case 3 for memristor Q), for three values of
ROFF (5 kΩ, 10 kΩ, and 100 kΩ) under the assumptions of a binary

resistance model and Q' = 5·10-14 C.

Figure 7. Allowed value of RG depends on VSET. The upper line is the

upper bound for allowed RG and the lower line is the lower allowed bound
for RG. Under the assumption of a threshold voltage VON = 0.55 V, VCOND =

0.5 V, RON = 100 Ω, and ROFF = 10 kΩ.

IV. DESIGN EXAMPLE

As a specific example of applying the flow chart of Figure
3, assume the requirements for a circuit are a maximum write
time of 0.5 µsec (note that the write time is normalized. A
practical memristor write time is significantly faster [14]) and
the maximum state drift is 0.025ROFF (2.5% of the state drift as
compared to full switching).

Assume a memristor with RON and ROFF, respectively, of 1
kΩ and 100 kΩ. Set one circuit parameter VCOND to 0.5 V. The
behavior of an ideal IMPLY logic gate (zero write time, no
state drift) is shown in Figures 8 and 9. Practical logic gates,
however, have non-zero write time and state drift. From
Figures 4 and 5, note that as VSET rises, the logic gate write
time T decreases and the gate response is faster; however, the
state drift phenomenon is more significant. From (5),

 0.5 50SETV V V< < . (6)

This expression only produces a lower bound on VSET, since
the upper bounds are significantly higher than practical on-
chip supply voltages. For a current-controlled memristor, it is
unrealistic to determine an exact equivalent voltage threshold

145

(which depends on the transient memristance of the device). A
good approximation for an equivalent voltage threshold is

ON ON OFFV i R= ⋅ , (7)

where VON is the voltage threshold, and iON is the current
threshold. For a memristor with a current threshold of 7 µA,
the equivalent voltage threshold is 0.7 volts. From (4), RG is

 1.5 33.3Gk R kΩ < < Ω . (8)

The widely used linear ion drift memristor model [15] is
incompatible with IMPLY logic gates. In this model, the
memristance changes linearly for any applied voltage; the state
drift phenomenon is therefore significant, as shown in Figures
10 and 11. Hence, a different memristor model with a current
threshold is preferable [16]. With this model, the exact circuit
parameters are selected. The chosen circuit parameters are RON
= 1 kΩ, ROFF = 100 kΩ, VCOND = 0.5 V, VSET = 1 V, and RG = 5
kΩ. SPICE simulation results for these parameters are shown
in Figures 12 and 13. The write time and state drift for several
circuit parameters are listed in Table 3. An increase in the
resistance of RG or decrease in the voltage level of VSET delays
the gate, but lowers the state drift (and vice versa).

Figure 8. State drift of an ideal IMPLY logic gate. While the logic state in

case 1 changes to a zero write time, the drift for case 3 is zero.

Figure 9. Memristance of an ideal IMPLY logic gate. While the

memristance in case 1 decreases to RON within a zero write time, the
memristance in case 3 does not change.

Figure 10. State variable w of q when applying IMPLY logic gate for
cases 1 (dashed line) and 3 (solid line) for a memristor with linear ion

drift. T is 468.1 nsec. The state drift for case 3 is 48.9%, which makes this
model impractical for an IMPLY logic gate.

Figure 11. The memristance of q when applying an IMPLY logic gate for

cases 1 (dashed line) and 3 (solid line) for a memristor with linear ion
drift.

Figure 12. State variable w of q when applying an IMPLY logic gate for
cases 1 (dashed line) and 3 (solid line) for a memristor with a threshold

model (current threshold is 7 µA). T is 470.3 nsec. The state drift for case
3 is 2.44%.

146

Figure 13. Memristance of q when applying an IMPLY logic gate for
cases 1 (dashed line) and 3 (solid line) for a memristor with threshold

model (current threshold is 7 µA).

TABLE 3. WRITE TIME AND STATE DRIFT FOR DIFFERENT VALUES OF VSET AND

RG. ALL VALUES SATISFY (6) AND (8). VCOND IS SET TO 0.5 V.

VSET [V] RG [kΩ] T [µsec] State Drift [% ROFF]
1 5 0.47 2.44

0.8 5 0.592 ~ 0
1.5 5 0.31 6
1 3.5 0.453 2.53
1 15 0.579 2.15

V. CONCLUSIONS

The logic design of a memristor-based IMPLY logic gate is
presented. Investigating and characterizing the behavior of a
memristor and IMPLY logic gate reveals several design
limitations and considerations. The IMPLY logic gate trades
off performance (write time) with robustness (internal state
drift). This tradeoff requires the circuit to be occasionally
refreshed.

Several heuristics for designing IMPLY logic gates with
memristors are proposed and organized into a design
procedure. This design procedure considers the influences and
tradeoffs among the different input cases, initial conditions,
and circuit parameters of the memristor.

A design example based on the proposed design procedure
is presented and compared with simulation. It is shown that
the widely used linear ion drift model is incompatible with the
IMPLY logic gate, since under this model, the state drift
phenomenon is excessively high. To accurately characterize
the IMPLY logic gate operation, a highly non-linear
memristor model needs to be used; or alternatively, a device

with a threshold. The proposed design procedure is the first
step in the development of a general design methodology for
logic gates based on memristors.

REFERENCES

[1] L. O. Chua, “Memristor – the Missing Circuit Element,” IEEE
Transactions on Circuit Theory, Vol. 18, No. 5, pp. 507-519, September
1971.

[2] D. B. Strukov, G. S.Snider, D. R. Stewart, and R. S. Williams, "The
Missing Memristor Found,” Nature, Vol. 453, pp. 80-83, May 2008.

[3] Y. Ho, G. M. Huang, P. Li, "Nonvolatile Memristor Memory: Device
Characteristics and Design Implications," Proceedings of the IEEE
International Conference on Computer-Aided Design, pp. 485-490,
November 2009.

[4] A. Afifi, A. Ayatollahi, and F. Raissi, "Implementation of Biologically
Plausible Spiking Neural Network Models on the Memristor Crossbar-
based CMOS/Nano Circuits," Proceedings of the European Conference
on Circuit Theory and Design, pp. 563- 566, August 2009.

[5] Y. V. Pershin and M. Di Ventra, "Practical Approach to Programmable
Analog Circuits with Memristors," IEEE Transactions on Circuits and
Systems I: Regular Papers, Vol. 57, No. 8, pp. 1857-1864, August 2010.

[6] D. B. Strukov and K. K. Likharev, "CMOL FPGA: a Reconfigurable
Architecture for Hybrid Digital Circuits with Two-Terminal
Nanodevices," Nanotechnology, Vol. 16, No. 6, pp. 888-900, June 2005.

[7] G. S. Snider and R. S. Williams, "Nano/CMOS Architectures Using a
Field-Programmable Nanowire Interconnect," Nanotechnology, Vol. 18,
No. 3, 035204, January 2007.

[8] G. S. Rose and M. R. Stan, "A Programmable Majority Logic Array
Using Molecular Scale Electronics," IEEE Transactions on Circuits and
Systems I: Regular Papers, Vol. 54, No. 11, pp. 2380-2390, November
2007.

[9] G. Snider, "Computing with Hysteretic Resistor Crossbars," Applied
Physics A: Materials Science and Processing, Vol. 80, No. 6, pp. 1165-
1172, March 2005.

[10] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R.
S. Williams, "Memristive Switches Enable 'Stateful' Logic Operations
via Material Implication," Nature, Vol. 464, pp. 873-876, April 2010.

[11] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective, Addison Wesley, 2010.

[12] E. Lehtonen and M. Laiho, "Stateful Implication Logic with
Memristors," Proceedings of the IEEE/ACM International Symposium
on Nanoscale Architectures, pp. 33-36, July 2009.

[13] E. Lehtonen, J. H. Poikonen, and M. Laiho, "Two Memristors Suffice to
Compute All Boolean Functions," Electronics Letters, Vol. 46, No. 3,
pp. 239-240, February 2010.

[14] K. Eshraghian, K. R. Cho, O. Kavehei, S. K. Kang, D. Abbot, and S. M.
S. Kang, "Memristor MOS Content Addressable Memory (MCAM):
Hybrid Architecture for Future High Performance Search Engines,"
IEEE Transactions on Very Large Scale Integrated Systems, in press.

[15] Z. Biolek, D. Biolek, and V. Biolkova, "Spice Model of Memristor with
Nonlinear Dopant Drift," Radioengineering, Vol. 18, No. 2, Part 2, pp.
210-214, June 2009.

[16] S. Kvatinsky, E. G. Friedman, A. Kolodny and U. C. Weiser, "TEAM:
ThrEshold Adaptive Memristor Model," unpublished.

147

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Memristor-Based Material Implication (IMPLY)
Logic: Design Principles and Methodologies

Shahar Kvatinsky, Student Member, IEEE, Guy Satat, Nimrod Wald, Eby G. Friedman, Fellow, IEEE,
Avinoam Kolodny, Senior Member, IEEE, and Uri C. Weiser, Fellow, IEEE

Abstract— Memristors are novel devices, useful as memory at
all hierarchies. These devices can also behave as logic circuits.
In this paper, the IMPLY logic gate, a memristor-based logic cir-
cuit, is described. In this memristive logic family, each memristor
is used as an input, output, computational logic element, and latch
in different stages of the computing process. The logical state is
determined by the resistance of the memristor. This logic family
can be integrated within a memristor-based crossbar, commonly
used for memory. In this paper, a methodology for designing this
logic family is proposed. The design methodology is based on
a general design flow, suitable for all deterministic memristive
logic families, and includes some additional design constraints
to support the IMPLY logic family. An IMPLY 8-bit full adder
based on this design methodology is presented as a case study.

Index Terms— Design methodology, IMPLY, logic, memristive
systems, memristor, Von Neumann architecture.

I. INTRODUCTION

MEMRISTORS [1] and memristive devices [2] are novel
structures, useful in many applications. These devices

are basically resistors with varying resistance, which depends
on the history of the device. It can be used for memory,
where the data is stored as a resistance. While memory is
the common application for memristive devices, additional
applications can also use memristive devices as functional
blocks, such as analog circuits, neuromorphic systems, and
logic circuits. Although the definition of memristive devices
is broader than the definition of memristors, it is common
to use the term memristor for all memristive devices [10],
[11]. In this paper, for simplicity, the terms memristor and
memristive device are used interchangeably.

The use of memristors to perform logical operations has
been proposed in several different ways. In some logic fam-
ilies, memristors are integrated with CMOS structures to
perform the logical operation, while the logical values are
represented by voltage levels. In [3], memristors are used as a

Manuscript received February 23, 2013; revised June 1, 2013 and August 26,
2013; accepted September 8, 2013. This work was supported in part by the
Hasso Plattner Institute, in part by the Advanced Circuit Research Center
at Technion, and in part by the Intel Collaborative Research Institute for
Computational Intelligence.

S. Kvatinsky, G. Satat, N. Wald, A. Kolodny, and U. C. Weiser are
with the Department of Electrical Engineering, Technion-Israel Institute
of Technology, Haifa 32000, Israel (e-mail: skva@tx.technion.ac.il;
guysatat@hotmail.com; nimrodwald@gmail.com; kolodny@ee.technion.ac.il).

E. G. Friedman is with the Department of Electrical Engineering and
Computer Engineering, University of Rochester, Rochester, NY 14627 USA
(e-mail: friedman@ece.rochester.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2013.2282132

reconfigurable switch. In [4], a hybrid memristor-CMOS logic
family is proposed, memristor ratioed logic (MRL). In MRL,
the memristors act as computational elements, performing
OR and AND Boolean functions, while the CMOS transistors
perform logical inversion and amplification of the logical
voltage signals. A similar approach is proposed in [5].

Another approach for logic with memristors is to treat
resistance as the logical state, where the high and low resis-
tance are considered, respectively, as logical zero and one.
For this approach, the memristors are the primary building
blocks of the logic gate. Each memristor acts as an input,
output, computational logic element, and latch in different
stages of the computing process [6]. This approach is suitable
for crossbar array architectures and can therefore be integrated
within a standard memristor-based crossbar, commonly used
for memory. This approach is appealing since it provides
an opportunity to explore advanced computer architectures
different from the classical von Neumann architecture. In these
architectures, the memory can perform logical operations on
the same devices that store data, i.e., performing computation
inside the memory. This paper focuses on this approach.

Material implication (IMPLY logic gate) [7] is one example
of a basic logical element using this approach, combining
state memory and a Boolean operator. Additional logic fam-
ilies, which extends the IMPLY logic gate by using certain
variations of a regular memristor-based crossbar, have also
been proposed [8], [9] and are not considered in this paper.
A specific modification of the crossbar structure is, however,
presented in this paper to enhance the performance of the logic
gate.

In this paper, the IMPLY logic gate is described in
Section III, and a memristor-based crossbar in Section IV.
A design methodology for the IMPLY logic gate is proposed
in Section V. This design methodology consists of a design
flow appropriate for all memristor-based logic families, as
well as the IMPLY logic family. This design methodology
is demonstrated by a case study of an 8-bit IMPLY full adder
in Section VI. Logic inside a memristor-based memory is dis-
cussed in Section VII. This paper is concluded in Section VIII.

II. MEMRISTORS

Memristors were conceived in 1971 by Chua [1] based on
fundamental principles of symmetry. Chua proposed a fourth
fundamental electronic component in addition to the three
already well-known fundamental electronic components: the
resistor, capacitor, and inductor. The memristor has varying

1063-8210 © 2013 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 1. Memristive device symbol. The thick black line on the left side of
the device represents the polarity of the device. If the current flows into the
device, the resistance of the device decreases. If the current flows out of the
device, the resistance increases.

resistance (also named memristance). Changes in the mem-
ristance depend upon the history of the device (e.g., the
memristance may depend on the total charge passing through
the device, or alternatively, on the integral over time of the
applied voltage across the ports of the device).

The theory of memristors was extended to memristive
devices in 1976 [2]. Formally, a current-controlled time-
invariant memristive system is represented by

dx

dt
= f (x, i) (1)

v(t) = R(x, i) · i(t) (2)

where x is an internal state variable, i (t) is the memristive
device current, v(t) is the voltage of the memristive device,
R(x, i) is the memristance, and t is time. The symbol of a
memristor is illustrated in Fig. 1. Note that the polarity of the
symbol defines the sign (positive or negative) of the current.

Since Hewlett–Packard announced the fabrication of a
working memristor in 2008 [12], there has been increasing
interest in memristors and memristive systems. New devices
exhibiting memristive behavior have been announced [13],
[14], and existing devices such as spin-transfer torque
magnetoresistive random access memory (STT-MRAM)
have been redescribed in terms of memristive systems [15].
Actually, most emerging memory technologies obey (1) and
(2) and can therefore be described as memristive devices or
memristors [11].

Several memristor models have been proposed to describe
the behavior of physical memristors [16]–[23]. These models
are deterministic and do not consider stochastic switching [40],
[41]. In this paper, the threshold adaptive memristor (TEAM)
model [23] is used. In the TEAM model, memristors have an
adaptive nonlinearity and a current threshold. For this model,
(1) becomes

dx(t)

dt
=

⎧
⎪⎪⎨

⎪⎪⎩

kOFF ·
(

i(t)
iOFF

− 1
)αOFF · fOFF(x), 0 < iOFF < i 3(a)

0, iON < i < iOFF 3(b)

kON ·
(

i(t)
iON

− 1
)αON · fON(x), i < iON < 0 3(c)

where kOFF and kON are fitting parameters, αON and αOFF are the
adaptive nonlinearity parameters, iOFF and iON are the current
threshold parameters, and fON(x) and fOFF(x) are window
functions. An I–V curve for the TEAM model is shown in
Fig. 2 for memristors where (2) is

v(t) =
[

RON + ROFF − RON

xOFF − xON
(x − xON)

]

· i(t) (4)

where RON and ROFF are, respectively, the minimum and
maximum resistance of the memristor, and xON and xOFF are,

Fig. 2. I–V curve of a memristor based on the TEAM model driven with
a sinusoidal input of 1 volt, where RON = 50�, ROFF = 1 k�, kOFF =
1.46e−9 nm/s, αOFF = 10, iOFF = 115 μA, kON = −4.68e−13 nm/s, αON =
10, iON = 8.9 μA, xON = 1.2 nm, and xOFF = 1.8 nm.

Fig. 3. Schematic of the physical model proposed in [20] for a TiO2
memristor.

respectively, the minimum and maximum allowed value of the
internal state variable x .

Memristors are nonvolatile and compatible with standard
CMOS technologies [24]. These devices are fabricated in the
metal layers of an integrated circuit, where the memristive
effects occur in the oxide between the metal layers (e.g.,
in TiO2 and TaOx) [25] or within the metal layers (e.g.,
in STT-MRAM). The physical model of a TiO2 memristor,
proposed in [20], is shown in Fig. 3. The size of a typical
memristor is relatively small, since the fabrication process
is similar to processing the cross-layer via between metal
layers. Memristors therefore exhibit high density and good
scalability. The read and write time for these devices can be
as fast as 120 picoseconds [25]. Currently, except for STT-
MRAM, memristors suffer from endurance limitations, where
the number of allowed writes per cell is approximately 1010

[26]. It is believed, however, that this limit will increase
to at least 1015 [27]. Memristors may therefore solve many
significant problems in the semiconductor industry, providing
nonvolatile, dense, fast, and power-efficient memory.

III. IMPLY LOGIC GATE

The logic function p→q or p IMPLY q (also known as p
IMPLIES q, material implication, and if p then q) is described
in [7] and a truth table is listed in Table I. The IMPLY logic

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KVATINSKY et al.: IMPLY LOGIC: DESIGN PRINCIPLES AND METHODOLOGIES 3

TABLE I

TRUTH TABLE OF IMPLY FUNCTION

Fig. 4. IMPLY logic gate. The initial state of memristors p and q is the
input of the logic gate and the output is the final state of the memristor q after
applying the voltages VSET and VCOND. A load resistor RG is connected to
both memristors.

function together with FALSE (a function that always yields
the value zero as an output) comprises a computationally
complete logic structure. Since the IMPLY function can be
integrated within a memristor-based crossbar, IMPLY logic
provides a basic logic element for a memristor-based circuit.

A. Basic Logic Gate Operation

The proposed memristor-based IMPLY logic gate uses a
resistor RG (RON < RG < ROFF) connected to two memristors,
named P and Q, acting as digital switches. The corresponding
initial memristances p and q are the inputs of the gate;
while the output of the gate is the final memristance of Q
(the result is written into the logic state q). Note that the
memristance of both memristors changes during operation, i.e.,
the computation is destructive to both inputs. A schematic of
an IMPLY gate is shown in Fig. 4.

The basic concept is to apply two different voltages to
P and Q, where VSET, the applied voltage on Q, has a
higher magnitude than VCOND, the applied magnitude on P
(|VCOND|< |VSET|). If p = 1 (low resistance), the voltage on
the common terminal is approximately VCOND and the voltage
on the memristor Q is approximately VSET − VCOND, which is
sufficiently small to maintain the logic state of q . In the case
of p = 0 and q = 0 (high resistances), the applied voltage on
Q is approximately VSET and Q is switched ON (q = 1). In the
case of p = 0 and q = 1, the logic state of q is maintained.
The memristance of an ideal IMPLY logic gate (zero delay
time) for input cases 1 and 3 is shown in Fig. 5.

B. Analyzing the Behavior of a Logic Gate

VSET and VCOND, the applied voltages on P and Q, are
fixed. For any initial state, the memristor state q tends to drift

Fig. 5. Behavior of an ideal IMPLY logic gate. (a) Applied voltages on
both memristors P and Q. (b) Memristance of Q for cases 1 and 3. While
the memristance in case 1 decreases to RON within a zero write time, the
memristance in case 3 does not change. (c) Current of memristor Q. The
current in case 1 is sufficiently high to decrease the resistance of Q.

toward the ON state. For digital operation, the state of q should
either stay unchanged or switch fully ON (changing the logic
state from logical zero to logical one).

The different input combinations are listed in Table I. Due
to the polarity of the memristors and the applied voltages, the
memristance of memristor Q can only be reduced. Note that
in cases 2 and 4, the initial logic state of q is logical one and
the logic gate output q is also logical one. The gate operation,
therefore, electrically reinforces the logic state of q since the
memristance of Q is reduced.

In case 1, the initial state of q is logical zero; after applying
the external voltages, q is switched ON. This case determines
the time required to apply VSET and VCOND until the logic
state of q reaches the desired state (above a certain level of
conduction that maintains correct logical behavior). This case
determines the write time of the circuit (the delay time of the
logic gate).

In case 3, the initial state of q is logical zero. This logic state
should remain unchanged after applying VSET and VCOND,
although the voltages tend to change the internal state of
q toward the ON state of logical one. This phenomenon is
state drift. The logical zero state of q , which is the output
of the gate, is electrically weaker than the input logical state
of q (the memristance of Q after applying the voltages is
lower than the initial memristance). State drift may require

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

refreshing the state; otherwise, repeated or prolonged sensing
action may incorrectly switch the logic state of q . Note that
the state drift phenomenon is a deterministic phenomenon.
Stochastic switching [40], [41] can change the logical state
of the memristors, and is not considered in this paper.

C. Speed–Robustness Tradeoff

The permissible value of the time required to apply VCOND
and VSET is determined from case 1. This write time is the
delay time of the logic gate and determines the performance of
the logic gate. Since the initial logical state of the memristors
is unknown during operation (no preliminary read operation
is applied), the voltages are applied at the same time for all
input cases.

The state drift is determined from case 3, which depends
upon the write time determined for case 1. Furthermore, any
improvement in the performance due to changes in the applied
voltage increases the state drift and degrades the robustness of
the logic gate [28].

D. Extended Logic Functions Based on IMPLY

Any general Boolean function f :Bn → B can be imple-
mented with only n + 3 memristors [29], where three addi-
tional memristors carry out the computation. Only two mem-
ristors are required for up to three inputs. Computation of the
function is performed in steps. In each step, either FALSE
is applied to one memristor, or an IMPLY is applied to two
memristors, where the output is written to a memristor (which
is one of the inputs of the computational IMPLY stage). This
process requires a long sequence of operations depending upon
the number of inputs. This methodology has been improved
in [30], where only two additional memristors are used rather
than three. While a general algorithm to compute any Boolean
function with a minimal number of memristors has been
developed [29], [30], the computational process requires a
large number of functional stages, and therefore requires
significant computational time.

The schematic and sequence of a two input NAND, based on
a memristor-based IMPLY gate and a FALSE logic gate, are
shown in Fig. 6. This NAND gate is designed to minimize
the computational time and number of memristors and is
comprised of three memristors. The operation of this NAND

logic gate changes the function of each memristor during the
computing process. Two memristors act as inputs in the initial
stage, one memristor acts as the output in the last stage, and all
memristors act together as a computational logic element (as
a memristor-based IMPLY gate) during different stages of the
computing process. This application requires three computing
stages (one FALSE and two IMPLY).

The IMPLY logic gate can also be extended to a multiple
input NOR logic gate [31]. In this extension, as illustrated in
Fig. 7(a), k input memristors P1, P2, . . . , Pk , and a separate
output memristor Q are assumed. The operation of this NOR

gate requires two computational stages, the first stage initial-
izes Q to logical zero (q = 0) and the second stage applies
VSET and VCOND in a manner similar to regular IMPLY. The
extended NOR suffers from low fan-in since RG needs to be

Fig. 6. IMPLY NAND, (a) The logic gate requires three sequential steps.
(b) Schematic of IMPLY-based NAND gate.

Fig. 7. Extension to IMPLY, a k-input NOR. (a) Schematic based on execution
of multiple implications in a single step and (b) improved fan-in structure,
where the load resistors are dedicated to the participating logic devices.

scaled to all possible number of inputs. To solve this issue,
a different structure has been proposed where a load resistor
RG is connected to every memristor and the load resistance
varies, as shown in Fig. 7(b).

IV. IMPLY INSIDE A MEMRISTOR-BASED CROSSBAR

The IMPLY logic gate cannot be easily integrated with
standard CMOS logic since both circuit structures are sig-
nificantly different. In the IMPLY logic family, a resistance,
rather than a voltage, represents the logical state. Furthermore,
to operate the logic gate, a sequence of specific voltages is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KVATINSKY et al.: IMPLY LOGIC: DESIGN PRINCIPLES AND METHODOLOGIES 5

Fig. 8. Basic structure of a memristor-based crossbar. Each junction of the
parallel lines is a memory cell with varying resistance Rjunction.

applied to the memristors. The IMPLY logic gate therefore
requires several computational stages (usually a different com-
putational stage is executed during each clock cycle), and a
separate mechanism to read the result of the computation and
control the voltages. To integrate the IMPLY logic gate with
standard voltage-based CMOS logic, a conversion mechanism
is required. This mechanism includes a sense amplifier as well
as additional components. The additional circuitry reduces
the efficiency of integrating CMOS with a memristor-based
IMPLY logic gate.

Alternatively, the IMPLY logic gate can be integrated inside
a memristor-based crossbar array, commonly used for memory,
where the input and output are values stored in the memory
cells. This integration reduces power and provides an opportu-
nity for novel non-von Neumann architectures. In this section,
the basic structure of a memristor-based crossbar is presented,
and a version of the IMPLY logic gate is illustrated.

A. Memristor-Based Crossbar

The basic structure of a memristor-based crossbar consists
of two sets of parallel conductive (metal) lines. The conductive
lines are perpendicular and behave as top and bottom elec-
trodes to the memristive material, located between the lines
[33]. The basic structure of a memristor-based crossbar is
shown in Fig. 8. The write operation to a cell within the
crossbar is achieved by applying a specific voltage to the
junction, where a voltage is applied to both lines. For example,
to write a logical one (low resistance), a positive voltage is
applied to the column line and ground is connected to the row
line (a positive voltage is applied to the memristor). To write
a logical zero (high resistance), the column line is connected
to ground and a positive voltage is connected to the row
line (a negative voltage is applied to the memristor). These
voltages are sometimes called VSET (positive voltage to write
a logical one, not necessarily the same voltage as in IMPLY)
and VRESET (negative voltage to write a logical zero). Since
memristors are nonvolatile, the data does not change when no
voltage is applied to the lines. The crossbar structure allows
the density of the memory to be relatively high, since CMOS
transistors are not used for each memory cell, but rather only
to select the line. This memory structure is more than 20 times
denser than DRAM [34].

The read operation of the crossbar is achieved by applying
a relatively low voltage (e.g., lower than VSET) to a junction
and measuring the current. From Ohm’s law, the resistance

Fig. 9. Sneak path in a memristive crossbar. (a) Example sneak path. Every
node in the grid is a memristor. The desired path is marked by a solid line
and a sneak path is marked by a dashed line. (b) Equivalent circuit. All sneak
paths have an equivalent resistance RSP connected in parallel to the resistance
of the memristor RM .

of the memristor is determined from this measured current.
The current measurement is usually achieved by converting
the current into a voltage through a voltage divider with a
known resistance Rpu. The sensed voltage vs is compared to
a known voltage.

An undesired phenomenon in crossbars is sneak paths
[35]–[38], which are undesired paths for the current flow.
When a voltage is applied to a junction in the crossbar, current
also flows through paths different than the desired path. These
paths cross more than one memristor and add a resistance in
parallel to the resistance of the memristor in the junction being
read. An illustration of the sneak path phenomenon is shown
in Fig. 9. This parallel resistance depends upon the stored
data in the memristors in the undesired paths and changes
the sensed voltage vs from a simple voltage divider between
Rpu and the resistance of the memristor to a voltage divider
between Rpu and the total resistance of all memristors in all
paths. A practical sensing operation should therefore consider
all possible sneak paths. A schematic of a crossbar, including
the read and write mechanisms, is depicted in Fig. 10. Several
approaches exist to eliminate or reduce sneak paths, e.g.,
grounding inactive rows. In this paper, it is assumed that these
approaches are used.

B. IMPLY in a Crossbar

The IMPLY logic gate can be integrated inside a crossbar,
where P and Q are two memristors in the same row within
the crossbar. The voltages VSET and VCOND are the voltages
of the word line, and the bit line is connected to a resistor RG .
To compute different Boolean functions with more than two
memristors, the memristors are placed within the same row
within the crossbar. Since the IMPLY operation is destructive
to P and Q, if the data of the input to P is significant, a
copy is assigned to a designated memristor. A schematic of a
crossbar-based IMPLY logic gate is shown in Fig. 11.

V. LOGIC GATE DESIGN METHODOLOGY

In this section, design considerations and constraints for a
memristor-based IMPLY logic gate in a crossbar are described.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 10. m × n memristive crossbar. The columns show the word lines and
the rows identify the bit lines. Each M − i j is a memristor. The resistance of
the conductive line is nrw for the column line and mrw for the row line. Rw
and Rb are, respectively, the word and bit line resistance.

Fig. 11. IMPLY logic gate inside a memristor-based crossbar.

It is assumed that the memristor behavior is deterministic,
rather than stochastic.

A. Design Flow and Constraints

Although no complete and accurate memristor model yet
exists, all of the proposed memristor models are relatively
complicated and the exact behavior of a memristive logic
circuit is therefore mathematically cumbersome. A need there-
fore exists for heuristics for designing memristive circuits. For
memristor-based IMPLY logic gates, the appropriate circuit
parameters (RG ,VSET, VCOND, and the time to apply the volt-
ages T) need to be determined under some general constraints.
These constraints include minimizing power consumption
(only dynamic power consumption in a memristor-based cross-
bar), reducing area (the number of active memristors in a
crossbar and the number of transistors in the controller),
lowering the delay time of the logic gate, and increasing the
robustness of the circuit (by reducing resistance drift during
operation for those input cases where the logical output does

Fig. 12. Design flow for memristor-based IMPLY logic gates.

TABLE II

INPUT GATE VOLTAGES VQ AND VP , RESPECTIVELY, AT MEMRISTORS

P AND Q AT t = 0, UNDER THE ASSUMPTIONS THAT THE

MEMRISTANCE OF LOGIC ONE AND LOGIC ZERO IS,

RESPECTIVELY, RON AND ROFF , WHERE ROFF � RON

not change). The parasitic capacitance of the CMOS transistors
connected to the crossbar and the parasitic resistance of the
metal lines as well as the sneak path phenomenon also need
to be considered.

A general flow for the design of a memristor-based IMPLY
logic gate is shown in Fig. 12. The design of a general Boolean
function is demonstrated through a case study in Section VI.
After determining the topology of the circuit, the conditions at
the beginning of operation need to be determined. These static
conditions do not depend on the memristor model and provide
necessary conditions for correct circuit behavior. Simplified
memristor models use several heuristics to approximate the
circuit characteristics. The TEAM model [23] is used here to
estimate the circuit parameters.

B. Design Constraints and Parameter Determination for
IMPLY Logic Gate

In the design of a basic IMPLY logic gate, the circuit
parameters VSET, VCOND, and RG and the time to apply the
voltages T need to be determined. The memristor parameters
(RON, ROFF, kON, kOFF, αON, αOFF, iON, and iOFF in the TEAM
model) are fixed for a given technology.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KVATINSKY et al.: IMPLY LOGIC: DESIGN PRINCIPLES AND METHODOLOGIES 7

Fig. 13. Allowed write time T in case 1 for three values of ROFF

(5, 10, and 100 k�) under the assumptions of a binary resistance model and
Q′ = 5 × 10−14C.

Although difficult to compute the time evolution of the
voltage at Q (Fig. 4), it is possible to determine the voltage at
Q at the beginning of the logic gate activity. The initial applied
voltage at Q is different for each input case (a different initial
memristance for Q and P). The initial voltages at P and Q are
listed in Table II under the assumptions that the memristance
of the logic one and logic zero is, respectively, RON and ROFF,
where ROFF � RON.

From the initial applied voltages, some necessary conditions
for correct logic behavior can be determined. The basic design
principle is that the write (delay) time of the logic gate is
determined from input case 1 (see Table II), but the circuit
should also not exceed a specific state drift in input case 3.

A useful switching model is a binary memristance model
[28]. Assume only two allowed memristances, RON and ROFF.
A total charge Q′ flows through the memristor to cause the
memristance ROFF to switch to memristance RON. Under these
assumptions and by solving both the switching behavior in
case 1 and the write time T as a function of Q′, the circuit
parameter T is

T =
[

R2
OFF + 2ROFF RG

ROFFVSET + RG [VSET − VCOND]

]

· Q′. (5)

The write time for different circuit parameters and varying
VSET is shown in Fig. 13. Note that the logic gate is faster
with a higher applied voltage or a smaller ROFF.

Under this model, it is possible to limit the state drift (case
3 in Table II) for a fixed drift. The state drift is

qq(T) ≈
[

VSET − RG

RON + RG
VCOND

]

·
[

ROFF + 2RG

ROFFVSET + RG [VSET − VCOND]

]

· Q′ (6)

where qq(T) is the total charge flowing through memristor
Q after time T , as in case 3. If the state drift is limited
to a value of Q′/4 as the maximum state drift, after four
executions of the logic gate in case 3 the state drift would
change the memristive logic state of q . This phenomenon
requires a refresh every three executions of the logic gate
since the logic state would change to an invert value during
the fourth time. The allowed value of VSET for several circuit
parameters is shown in Fig. 14. Note that the state drift is more

Fig. 14. Allowed values of VSET for limited state drift in case 3 of Q′/4.VSET
is allowed if qq (T) is smaller than Q′/4 (horizontal line).

Fig. 15. Tradeoff between the speed (write time) and robustness (the state
drift in case 3 for memristor Q) for three values of ROFF (5, 10, and 100 k�)
under the assumptions of a binary resistance model and Q′ = 5 × 10−14C.

significant with a higher applied voltage, or with a smaller
ROFF. Combining Figs. 13 and 14, the tradeoff between the
speed and robustness of a memristive IMPLY logic gate is
illustrated in Fig. 15.

Another simple and useful memristor model assumes non-
linear behavior with a fixed threshold voltage VON [28]. Under
this model, for an applied voltage below VON, the memristance
is unchanged. To produce correct logical behavior, the initial
applied voltage on Q must be above the threshold voltage in
case 1 and below the threshold voltage in case 3. Adding this
assumption to the initial applied voltage (see Table II) leads
to the following two conditions on the circuit parameters:

RON · VSET − VON

VON − [VSET − VCOND]
< RG

< ROFF · VSET − VON

2VON − [VSET − VCOND]
(7)

VSET

VCOND
<

ROFF

RON

. (8)

The allowed value for RG for several circuit parameters with
varying VSET is shown in Fig. 16. A reasonable value of RG

is the geometric mean of RON and ROFF

RG = √
RON · ROFF (9)

to maintain a constant ratio between each pair of resistances,
RON and RG , and RG and ROFF. Other values of RG are also
possible.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 16. Allowed value of RG depends on VSET. The upper line is the upper
bound for allowed RG and the lower line is the lower allowed bound for RG .
Under the assumption of a threshold voltage VON = 0.55 V, VCOND = 0.5 V,
RON = 100 �, and ROFF = 10 k�.

Fig. 17. State variable of q when applying an IMPLY logic gate for cases 1
(dashed line) and 3 (solid line). The parameters of the circuit are VSET = 1 V,
VCOND = 0.5 V, and RG = 10 k�. The parameters of the memristors are
kON = 0.05, iON = 7μA, and αON = 3. The delay of the IMPLY logic gate
is 397.1 ns and the state drift is 0.0007%, equivalent to 145,000 executions
before the need to refresh.

C. Example of 1-Bit IMPLY Logic Gate

As a specific example of applying the flow chart of Fig. 12,
assume the requirement is a maximum write time (delay)
of 0.5 μsec. Note that the actual write time of a practical
memristor is significantly faster [25]. The maximum allowed
state drift is 0.00001 ROFF (0.001% of the state drift as
compared to full switching, equivalent to 105 executions of
the logic gate before completely switching).

Assume a memristor with RON and ROFF, respectively, of 1
and 100 k�. Set one circuit parameter VCOND to 0.5 V. From
Figs. 13 and 14, note that as VSET rises, the logic gate write
time T decreases and the gate response is faster; however, the
state drift phenomenon is more significant. From (8)

0.5 V < VSET < 50 V. (10)

This expression only produces a lower bound on VSET,
since the upper bound is significantly higher than practical
on-chip supply voltages. For a current-controlled memristor
(e.g., TEAM model), it is unrealistic to determine an exact
equivalent voltage threshold (which depends on the transient
memristance of the device). A sufficient approximation for an
equivalent threshold voltage is

VON = iON · ROFF (11)

where VON is the voltage threshold, and iON is the cur-
rent threshold. For a memristor with a current threshold of

TABLE III

WRITE TIME AND STATE DRIFT FOR DIFFERENT VALUES OF RG .

ALL VALUES SATISFY (10) AND (12). VCOND IS SET TO

0.5 V, KON = 0.05, ION = 7 μA, AND αON = 3

TABLE IV

WRITE TIME AND STATE DRIFT FOR DIFFERENT VALUES OF VSET AND

MEMRISTOR PARAMETERS. ALL VALUES SATISFY (19) AND (12).

USING THE SAME DEFAULT VALUES AS TABLE III. RG = 10 K�

7 μA, the equivalent voltage threshold is 0.7 volts. From (7),
RG is

1.5 k� < RG < 33.3 k�. (12)

The widely used linear ion drift memristor model [12], [23]
is incompatible with IMPLY logic gates. In this model, the
memristance changes linearly for any applied voltage; the state
drift phenomenon is therefore significant and intolerable for
IMPLY logic gates [28]. Hence, a different memristor model
with a current threshold, such as the TEAM model [23], is
preferable. The TEAM model accurately describes the physical
behavior of memristors. The chosen circuit parameters for this
example are RON = 1 k�, ROFF = 100 k�, VCOND = 0.5 V,
VSET = 1 V, and RG = 10 k�. SPICE simulation based
on these parameters for the memristance of q are shown in
Fig. 17, where the write time (delay) of this logic gate is
397.1 ns and the state drift is 0.00069%, equivalent to about
145,000 executions before switching.

The write time (delay) and state drift for varying RG and
VSET are listed in Tables III and IV. An increase in the
resistance of RG or decrease in the voltage level of VSET
increases the delay of the gate, but lowers the state drift
phenomenon (and vice versa). The write time (delay) and
state drift for different memristor parameters are listed in
Table IV. An increase in the nonlinearity of the memristors
(αON) increases the delay of the gate, but lowers the state drift
phenomenon (and vice versa). An increase in kON decreases the
delay of the gate without changing the state drift phenomenon.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KVATINSKY et al.: IMPLY LOGIC: DESIGN PRINCIPLES AND METHODOLOGIES 9

TABLE V

RESISTANCE OF A CMOS DRIVER FOR 0.12 μm CMOS PROCESS

Fig. 18. Write time of an IMPLY logic gate with CMOS drivers for various
CMOS widths (solid blue line) as compared to the write time with ideal
voltage source (dashed red line). A 0.12 μm CMOS process is used; other
circuit parameters are the same as in Fig. 17.

D. Variations in VSET and VCOND

In previous sections, it is assumed that ideal voltage sources
are used for VSET and VCOND. Practical implementations,
however, suffer from variations in the voltage level, mainly
due to the resistance of the CMOS drivers. The CMOS
drivers add resistance in series with the circuit and change the
applied voltages. These voltage drops change the performance
(as determined from input case 1) and the state drift (as
determined from input case 3).

To evaluate the influence of CMOS drivers on performance
and state drift, the IMPLY logic gate is simulated with similar
circuit parameters as in Section V-C. The equivalent resistance
of the CMOS driver for various CMOS widths is listed in
Table V. The write time for different driver widths is shown
in Fig. 18. For a W/L ratio of 10, the write time of the IMPLY
logic gate with CMOS drivers increases by approximately
15%, as compared to ideal voltage sources. For a W/L ratio
of 75, the increase in the write time is negligible (less than
1%).

To evaluate the change in the state drift phenomenon, the
IMPLY logic gate is evaluated for input case 3. The difference
in the state drift is listed in Table VI, exhibiting negligible
difference for all W/L ratios. To overcome variations in the

TABLE VI

STATE DRIFT OF THE IMPLY LOGIC GATE WITH CMOS BUFFERS AS

COMPARED TO IDEAL VOLTAGE SOURCES FOR VARIOUS W/L RATIO

voltage source, the applied voltages (VSET and VCOND) can
be increased. Alternatively, the resistance of the circuit can be
increased, by increasing RG or using memristors with higher
RON and ROFF (e.g., the memristors in [42] have RON of
approximately 300 k�), or the resistance of the CMOS driver
can be decreased by increasing the W/L ratio.

VI. 8-BIT IMPLY FULL ADDER: A CASE STUDY

IMPLY together with FALSE (the function that always
yields zero as an output) provide a complete logical structure.
While any Boolean function can be executed, an efficient
procedure is required to reduce the area and computational
time. In this section, a case study of an 8-bit full adder is
presented to discuss several design constraints and issues for
general Boolean functions. In this case study, three approaches
are considered: a general algorithm [29] is considered first,
which requires a long sequence and only two additional
memristors. Two other specific approaches–serial and parallel–
are also considered. These approaches significantly reduce
the required sequence of operational steps, where the parallel
approach requires more memristors for faster execution as
compared to the serial approach.

A. General Boolean Functions

An algorithm to implement any general Boolean function
using only IMPLY and FALSE has been proposed in [29]. This
algorithm requires n + 3 memristors for any general Boolean
function f :Bn → B . While this algorithm is efficient in terms
of area (the number of memristors to compute a function),
it is inefficient in terms of computational time and requires
O(2kn) computational steps, where n is the number of input
memristors and k is the number of additional functional mem-
ristors for the computational process. A different approach is
therefore required to improve the computational time. This
new approach is demonstrated in this section through a case
study.

Several Boolean functions being implemented by IMPLY
and FALSE are listed in Table VII. These functions are
the basic building blocks of any general Boolean function.
Choosing the proper building blocks and computing sequence
are key when the objective is to minimize the number of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE VII

BASIC BOOLEAN OPERATIONS BASED ONLY ON IMPLY AND FALSE

Fig. 19. Full adder consisting of two XOR gates, two AND gates, and an OR

gate.

computational steps and memristors. To reduce the number
of computational steps, parallelism can be exploited, where
several IMPLY and FALSE operations occur during the same
clock cycle. Since the operation is accomplished within the
crossbar structure, the topology of the entire array needs to be
considered, including possible sneak paths. Other methods for
parallelism that do not suffer from sneak paths use unipolar
memristors or, alternatively, insert switches between rows,
which deviates from the crossbar structure. Modifying the
crossbar structure to parallelize the execution is discussed in
Section VI.

It is sometimes necessary to copy the value from a memory
cell to other cells. The copy operation is also required when
data is used multiple times, since the destruction of the input
is undesired, or there is a need to transfer data to different
rows within the crossbar. The copy operation is also listed in
Table VII.

B. CMOS Full Adder

The input of the full adder are two 8-bit numbers and the
output is one 8-bit number S7, S6, . . . , S0 and 1-bit carry Cout.
The basic structure of a CMOS 8-bit ripple carry adder consists
of eight full adders, where the logical operation of each
adder is

Si = Ai ⊕ Bi ⊕ Ci (13)

Cout = (Ai · Bi) + (Ci · (Ai ⊕ Bi)) . (14)

A single CMOS 8-bit adder consists of 400 CMOS transis-
tors, as shown in Fig. 19 for a basic full adder.

TABLE VIII

COMPARISON OF N-BIT FULL ADDERS. THE NUMBERS IN THE

BRACKETS ARE FOR AN 8-BIT FULL ADDER

C. IMPLY Full Adder

Several approaches exist to design an 8-bit full adder
based solely on IMPLY and FALSE operations. The basic
approach is to follow the algorithm proposed in [29]. Two
additional approaches are considered–serial and parallel. To
evaluate these approaches, the total number of memristors and
the number of computation steps are compared. The general
algorithm from [29] requires 712 computational steps, while
the serial approach lowers the computational time to 232
computational steps with approximately the same number of
memristors, and the parallel approach has the best performance
of 58 computational steps but requires double the number of
memristors. A comparison among the approaches is listed in
Table VIII.

To execute a XOR operation, two functional memristors M1
and M2 are required, where the complete sequence, as listed
in Table VII, is

A XOR B : FALSE(M1), FALSE(S), A → S, S → M1
FALSE(M2), FALSE(S), B → S, S → M2
B → M1, FALSE(S), M1 → S
A → M2, M2 → S.

The first two rows are copy operations of A and B , respec-
tively, to M1 and M2 since the IMPLY operation destroys both
inputs. To execute Si , the execution process is divided into two
XOR operations, where (13) is

Si = (Ai ⊕ Bi) ⊕ Ci . (15)

This execution requires two functional memristors and 26
computational steps for Si , while the intermediate XOR of Ai

and Bi is also used for Cout,i , where (14) becomes

Cout,i = (
Ai → (

Bi →′ 0′))

→ ((
Ci → ((

Ai ⊕ Bi
) →′ 0′)) →′ 0′). (16)

Several possible sequences exist for executing Ci using
three functional memristors to decrease the number of com-
putational steps. Furthermore, Ai , Bi , and Ci can also be
treated as functional memristors after the initial value is
changed during the execution process. The complete sequence
is described in the supplementary material.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KVATINSKY et al.: IMPLY LOGIC: DESIGN PRINCIPLES AND METHODOLOGIES 11

Fig. 20. 8-bit full adder for (a) serial approach and (b) parallel approach.
For the serial approach, 27 memristors are used in the same row of a
standard crossbar structure. The parallel approach requires a more complex
crossbar structure, where a switched connection between rows exists. Each
bit execution is done in a different row using nine memristors.

For an 8-bit full adder, two approaches have been examined
in the case study. The serial approach executes one operation
every clock cycle–IMPLY or FALSE. For the serial approach,
all memristors are in the same row, as shown in Fig. 20(a).
In the parallel approach, independent operations are executed
during the same clock cycle, reducing the number of required
computational stages. For the parallel approach, each bit in
the full adder is in a different row, as shown in Fig. 20(b).
The carry is passed between the different rows and the
FALSE operations are simultaneously completed for several
memristors. The parallel approach requires some modifications
which differ from the crossbar structure, adding connections
between the rows of the crossbar. These modifications also
eliminate the sneak path phenomenon while increasing the area
as compared to a conventional crossbar.

VII. BEYOND VON NEUMANN: LOGIC

INSIDE THE MEMORY

IMPLY logic is a natural method to execute logical oper-
ations within the memristors. Memristor-based IMPLY logic
has the same crossbar structure as a memristor-based mem-
ory and therefore enables the capability of performing logic

operations inside the memory with the same cells used to
store data. This combination enables innovative computing
architectures, rather than the classical von Neumann architec-
ture where the computing operations and the data storage are
separated.

For these novel architectures, part of the computation is
achieved inside the memory, with no separation with the
data read and write operations. These architectures are par-
ticularly appropriate for massive parallel applications, where
vast amount of data need to be processed. In von Neumann
architecture for massive parallel applications, the data transfer
requires a wide data bus, long latency, and consumes relatively
high power. In these novel architectures, the memory and
logical operations are in the same crossbar structure, almost
no data transfer is required, and the latency and power are
significantly reduced, although the memristor IMPLY logic
delay is greater than the CMOS logic delay.

In these innovative architectures, the memristive memory
serves two roles–as memory to store data and as a com-
putational unit. The function of a specific memristor can
be decided dynamically. Each memristor can act as either a
memory cell or as part of an IMPLY logic gate in different
stages of the operation. The effective size of the memory and
the computational unit is flexible and can vary for different
applications. A memristor-based memory requires a relatively
complex controller that behaves as a regular memory controller
and also sends control signals (VSET and VCOND) to the IMPLY
logic gates. This novel architecture requires a new instruction
set, requiring specific instructions for logic operations inside
the memory.

VIII. CONCLUSION

An IMPLY logic gate is a natural way to perform logic
operations with memristors. This logic gate can be integrated
within a memristor-based memory and, together with FALSE,
provide a complete logic family. This memristive logic gate
also enables non-von Neumann architectures, which may open
a new era in computer architecture.

The potential benefits of memristive circuits in terms of
density and power support further work in this field. The
results described in this paper can be used to direct further
research on device structure optimization, logic synthesis
methods, array structures, and computing architectures.

REFERENCES

[1] L. O. Chua, “Memristor—The missing circuit element,” IEEE Trans.
Circuit Theory, vol. 18, no. 5, pp. 507–519, Sep. 1971.

[2] L. O. Chua and S. M. Kang, “Memristive devices and systems,” Proc.
IEEE, vol. 64, no. 2, pp. 209–223, Feb. 1976.

[3] D. B. Strukov and K. K. Likharev, “CMOL FPGA: A reconfigurable
architecture for hybrid digital circuits with two-terminal nanodevices,”
Nanotechnology, vol. 16, no. 6, pp. 888–900, Jun. 2005.

[4] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and
U. C. Weiser, “Hybrid CMOS-memristor logic,” IEEE Trans. Very Large
Scale Integr. (VLSI), in preparation.

[5] M. Klimo and O. Such, Memristors Can Implement Fuzzy Logic. Ithaca,
NY, USA: Cornell Univ. Press, Oct. 2011.

[6] G. Snider, “Computing with hysteretic resistor crossbars,” Appl. Phys.
A, Mater. Sci. Process., vol. 80, no. 6, pp. 1165–1172, Mar. 2005.

[7] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “Memristive switches enable ‘stateful’ logic operations
via material implication,” Nature, vol. 464, pp. 873–876, Apr. 2010.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[8] Y. V. Pershin and M. Di Ventra, “Neuromorphic, digital and quantum
computation with memory circuit elements,” Proc. IEEE, vol. 100, no. 6,
pp. 2071–2080, Jun. 2012.

[9] S. Shin, K. Kim, and S.-M. Kang, “Reconfigurable stateful NOR gate
for large-scale logic-array integrations,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 58, no. 7, pp. 442–446, Jul. 2011.

[10] D. Biolek, Z. Biolek, and V. Biolkova, “Pinched hysteresis loops of ideal
memristors, memcapacitors, and meminductors must be ‘self-crossing’,”
Electron. Lett., vol. 47, no. 25, pp. 1385–1387, Dec. 2011.

[11] L. O. Chua, “Resistance switching memories are memristors,” Appl.
Phys. A, Mater. Sci. Process., vol. 102, no. 4, pp. 765–783, Mar. 2011.

[12] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, pp. 80–83, May 2008.

[13] D. Sacchetto, M. H. Ben-Jamaa, S. Carrara, G. DeMicheli, and
Y. Leblebici, “Memristive devices fabricated with silicon nanowire
Schottky barrier transistors,” in Proc. IEEE Int. Symp. Circuits Syst.,
May/Jun. 2010, pp. 9–12.

[14] K. A. Campbell, A. Oblea, and A. Timilsina, “Compact method for mod-
eling and simulation of memristor devices: Ion Conductor Chalcogenide-
based Memristor Devices,” in Proc. IEEE/ACM Int. Symp. Nanosc.
Architect., Jun. 2010, pp. 1–4.

[15] X. Wang, Y. Chen, H. Xi, and D. Dimitrov, “Spintronic memris-
tor through spin-torque-induced magnetization motion,” IEEE Electron
Device Lett., vol. 30, no. 3, pp. 294–297, Mar. 2009.

[16] Z. Biolek, D. Biolek, and V. Biolkova, “SPICE model of memristor with
nonlinear dopant drift,” Radioengineering, vol. 18, no. 2, pp. 210–214,
Jun. 2009.

[17] T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou, “A ver-
satile memristor model with non-linear dopant kinetics,” IEEE Trans.
Electron Devices, vol. 58, no. 9, pp. 3099–3105, Sep. 2011.

[18] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and
R. S. Williams, “Memristive switching mechanism for metal/oxide/metal
nanodevices,” Nature Nanotechnol., vol. 3, pp. 429–433, Jul. 2008.

[19] E. Lehtonen and M. Laiho, “CNN using memristors for neighborhood
connections,” in Proc. 12th Int. Workshop Cellular Nanosc. Netw. Appl.,
Feb. 2010, pp. 1–4.

[20] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider,
D. R. Stewart, and R. S. Williams, “Switching dynamics in titanium
dioxide memristive devices,” J. Appl. Phys., vol. 106, no. 7, pp. 1–6,
Oct. 2009.

[21] H. Abdalla and M. D. Pickett, “SPICE modeling of memristors,” in Proc.
IEEE Int. Symp. Circuits Syst., May 2011, pp. 1832–1835.

[22] C. Yakopcic, T. M. Taha, G. Subramanyam, R. E. Pino, and S. Rogers,
“A memristor device model,” IEEE Electron Device Lett., vol. 32, no. 10,
pp. 1436–1438, Oct. 2011.

[23] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser,
“TEAM—ThrEshold adaptive memristor model,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 60, no. 1, pp. 211–221, Jan. 2013.

[24] J. Borghetti, Z. Li, J. Strasnicky, X. Li, D. A. A. Ohlberg, W. Wu,
D. R. Stewart, and R. S. Williams, “A hybrid nanomemristor/transistor
logic circuit capable of self-programming,” Proc. Nat. Acad. Sci. United
States Amer., vol. 106, no. 6, pp. 1699–1703, Feb. 2009.

[25] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams,
“Sub-nanosecond switching of a tantalum oxide memristor,” Nanotech-
nology, vol. 22, no. 48, pp. 1–7, Nov. 2011.

[26] J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett,
R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, “High switching
endurance in TaOx memristive devices,” Appl. Phys. Lett., vol. 97,
no. 23, pp. 1–3, Dec. 2010.

[27] J. Nickel, “Memristor materials engineering: From flash replacement
towards a universal memory,” in Proc. IEEE IEDM Adv. Memory
Technol. Workshop, Dec. 2011, pp. 1–3.

[28] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser,
“Memristor-based IMPLY logic design procedure,” in Proc. IEEE Int.
Conf. Comput. Design, Oct. 2011, pp. 142–147.

[29] E. Lehtonen and M. Laiho, “Stateful implication logic with memristors,”
in Proc. IEEE/ACM Int. Symp. Nanosc. Archit., Jul. 2009, pp. 33–36.

[30] E. Lehtonen, J. H. Poikonen, and M. Laiho, “Two memristors suffice
to compute all boolean functions,” Electron. Lett., vol. 46, no. 3,
pp. 239–240, Feb. 2010.

[31] S. Shin, K. Kim, and S.-M. Kang, “Reconfigurable stateful NOR gate
for large-scale logic-array integrations,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 58, no. 7, pp. 442–446, Jul. 2011.

[32] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary
resistive switches for passive nanocrossbar memories,” Nature Mater.,
vol. 9, no. 5, pp. 403–406, Apr. 2010.

[33] A. Flocke and T. G. Noll, “Fundamental analysis of resistive nano-
crossbars for the use in hybrid Nano/CMOS-memory,” in Proc. Eur.
Solid State Circuits Conf., Sep. 2007, pp. 328–331.

[34] M. A. Zidan and K. N. Salama, “Memristor based memory: The sneak
paths problem and solutions,” Microelectron. J., vol. 44, no. 2, pp. 176–
183, Feb. 2013.

[35] C. A. David and B. Feldman, “High-speed fixed memories using large-
scale integrated resistor matrices,” IEEE Trans. Comput., vol. 17, no. 8,
pp. 721–728, Aug. 1968.

[36] W. T. Lynch, “Worst-case analysis of a resistor memory matrix,” IEEE
Trans. Comput., vol. 18, no. 10, pp. 940–942, Oct. 1969.

[37] S. Shin, K. Kim, and S.-M. Kang, “Analysis of passive memristive
devices array: Data-dependent statistical model and self-adaptable sense
resistance for RRAMs,” Proc. IEEE, vol. 100, no. 6, pp. 2021–2032,
Jun. 2012.

[38] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “Sneak-path constraints
in memristor crossbar arrays,” in Proc. IEEE Int. Symp. Inf. Theory,
Jul. 2013, pp. 1–5.

[39] O. Kavehei, S. Al-Sarawi, K.-R. Cho, K. Eshraghian, and D. Abbot,
“An analytical approach for memristive nanoarchitectures,” IEEE Trans.
Nanotechnol., vol. 11, no. 2, pp. 374–385, Mar. 2012.

[40] T. Devolder, J. Hayakawa, K. Ito, H. Takahashi, S. Ikeda, P. Crozat,
N. Zerounian, J.-V. Kim, C. Chappert, and H. Ohno, “Single-shot
time-resolved measurement of nanosecond-scale spin-transfer induced
switching: Stochastic versus deterministic aspects,” Phys. Rev. Lett.,
vol. 100, no. 5, pp. 057206-1–057206-4, Feb. 2008.

[41] R. Soni, P. Meuffels, G. Staikov, R. Weng, C. Kügeler, A. Petraru,
M. Hambe, R. Waser, and H. Kohlstedt, “On the stochastic nature of
resistive switching in Cu doped Ge0.3Se0.7 based memory devices,”
J. Appl. Phys., vol. 110, no. 5, pp. 054509-1–054509-10, Sep. 2011.

[42] T. Chang, S.-H. Jo, K.-H. Kim, P. Sheridan, S. Gaba, and W. Lu,
“Synaptic behaviors and modeling of metal oxide memristive device,”
Appl. Phys. A, vol. 102, no. 4, pp. 857–863, Feb. 2011.

Shahar Kvatinsky (S’12) received the B.Sc. degree
in computer engineering and applied physics and
the M.B.A. degree from the Hebrew University of
Jerusalem, Jerusalem, Israel, in 2009 and 2010,
respectively. He is currently pursuing the Ph.D.
degree with the Electrical Engineering Depart-
ment, Technion-Israel Institute of Technology, Haifa,
Israel.

Prior to his Ph.D. studies, he worked for Intel as
a circuit designer.

Guy Satat received the B.Sc. degree in electrical
engineering and the B.Sc. degree in physics from
the Technion-Israel Institute of Technology, Haifa,
Israel, as part of the Technion’s Program for excel-
lent students.

He joined Intel, Inc., in 2011, and worked on inter-
connect architecture. In 2013, he joined the Media
Laboratory, Camera Culture Group, Massachusetts
Institute of Technology, Cambridge, MA, USA, as a
Graduate Student, and worked on ultrafast imaging
and health imaging.

Nimrod Wald received the B.Sc. degree in electrical
engineering and physics from Technion-Israel Insti-
tute of Technology, Haifa, Israel, in 2013.

He joined Qualcomm, Inc., San Diego, CA, USA,
in 2011, as a Hardware Designer, and he has been
a Hardware Architect since 2013 in the area of
performance analysis.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KVATINSKY et al.: IMPLY LOGIC: DESIGN PRINCIPLES AND METHODOLOGIES 13

Eby G. Friedman (M’79–SM’90–F’00) received
the B.S. degree from Lafayette College, Easton, PA,
USA, in 1979, and the M.S. and Ph.D. degrees
from the University of California, Irvine, CA, USA,
in 1981 and 1989, respectively, all in electrical
engineering.

He was with Hughes Aircraft Company, Glendale,
CA, USA, from 1979 to 1991, rising to the position
of manager of the Signal Processing Design and
Test Department, responsible for the design and test
of high performance digital and analog IC’s. He

has been with the Department of Electrical and Computer Engineering at
the University of Rochester, Rochester, NY, USA, since 1991, where he
is a Distinguished Professor, and the Director of the High Performance
VLSI/IC Design and Analysis Laboratory. He is also a Visiting Professor
with the Technion-Israel Institute of Technology. His current research interests
include high performance synchronous digital and mixed-signal microelec-
tronic design and analysis with application to high speed portable processors
and low power wireless communications.

Dr. Friedman is the author of over 400 papers and book chapters, 12
patents, and the author or editor of 16 books in the fields of high speed
and low power CMOS design techniques, 3-D design methodologies, high
speed interconnect, and the theory and application of synchronous clock and
power delivery. He is the Regional Editor of the Journal of Circuits, Systems
and Computers, a member of the editorial boards of the Analog Integrated
Circuits and Signal Processing, Microelectronics Journal, Journal of Low
Power Electronics, Journal of Low Power Electronics and Applications, and
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND
SYSTEMS, Chair of the IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION (VLSI) SYSTEMS steering committee, and a member of the
technical program committee of a number of conferences. He previously was
the Editor-in-Chief of the IEEE TRANSACTIONS ON VERY LARGE SCALE
INTEGRATION (VLSI) SYSTEMS, a member of the editorial board of the
Proceedings of the IEEE, IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, and Journal of Signal Processing
Systems, a Member of the Circuits and Systems (CAS) Society Board of
Governors, Program and Technical chair of several IEEE conferences, and
a recipient of the University of IEEE CAS Charles A. Dosoer Technical
Achievement Award, Rochester Graduate Teaching Award, and a College of
Engineering Teaching Excellence Award. He is a Senior Fulbright Fellow.

Avinoam Kolodny (SM’11) received the Doctoral
degree in microelectronics from the Technion-Israel
Institute of Technology, Haifa, Israel, in 1980.

He joined Intel Corporation, where he was
engaged in Research and Development in the areas
of device physics, VLSI circuits, electronic design
automation, and organizational development. He has
been a member of the Faculty of Eletrical Engi-
neering, Technion since 2000. His current research
interests include interconnects in VLSI systems at
both physical and architectural levels.

Uri C. Weiser (F’02) received the bachelor’s and
master’s degrees in electrical engineering from Tech-
nion, Haifa, Israel and the Ph.D. degree in computer
science from the University of Utah, Salt Lake City,
UT, USA.

He is a Visiting Professor with the Electrical Engi-
neering Department, Technion IIT, and an Advisor
at numerous startups. He was with Intel from 1988
to 2006. At Intel, he initiated the definition of
the first Pentium processor, drove the definition of
Intel’s MMX technology, invented (with A. Peleg)

the Trace Cache, he co-managed and established the Intel Microprocessor
Design Center, Austin, TX, USA, and later initiated an advanced media
applications research activity. He was appointed Intel Fellow in 1996. He was
with the Israeli Department of Defense as a Research and System Engineer
and with National Semiconductor Design Center, Israel, where he led the
design of the NS32532 microprocessor.

Dr. Weiser was an Associate Editor of the IEEE Micro Magazine from 1992
to 2004 and Computer Architecture Letters. He was a fellow of ACM.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. XXX, NO. XXX, XXX 2014

Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes

must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

Abstract— Memristors are passive components with a varying

resistance which depends on the previous voltage applied across

the device. While memristors are naturally used as memory,

memristors can also be used for other applications, including logic

circuits. In this paper, a memristor only logic family, MAGIC

(Memristor Aided LoGIC), is presented. In each MAGIC logic

gate, memristors serve as an input with previously stored data

and an additional memristor serves as an output. The topology of

a MAGIC NOR gate is similar to the structure of a common

memristor-based crossbar memory. A MAGIC NOR gate can

therefore be placed within a memory, opening opportunities for

novel non-von Neumann computer architectures. Other MAGIC

gates also exist (e.g., AND, OR, NOT, and NAND) and are

described in the paper.

Index Terms—Memristive systems, memristor, IMPLY,

MAGIC, in-memory computing.

I. INTRODUCTION

n recent years, the concept of a memristor, originally

proposed by Leon Chua in 1971, has generated renewed

interest. In [1], Chua proposed a fourth fundamental

component in addition to the three already well known

fundamental electronic components: the resistor, capacitor,

and inductor. In [13], Chua and Kang extended the theory of

memristors to memristive systems. Memristors and memristive

devices are two-terminal devices, where the resistance of the

device is changed by the electrical current, as shown in Figure

1. The resistance of the memristor is bounded by a minimum

resistance RON and a maximum resistance ROFF. In this paper,

for simplicity, the terms memristor and memristive device are

used interchangeably [14].

For almost forty years, the concept of a memristor was just

theory, as no device exhibiting the behavior of a memristor

Manuscript received 24nd April, 2014. This work was partially supported

by Hasso Plattner Institute, by the Advanced Circuit Research Center at the

Technion, by the Intel Collaborative Research Institute for Computational

Intelligence (ICRI-CI), and by Binational Science Foundation under Grant no.

2012139.

 S. Kvatinsky, D. Belousov, S. Liman, A. Kolodny, and U. C. Weiser are

with the Department of Electrical Engineering, Technion – Israel Institute of

Technology, Haifa 32000, Israel. (S. Kvatinsky corresponding author phone:

972-77-887-1923; fax: 972-4829-5757; e-mail: skva@tx.technion.ac.il).

N. Wald is with Qualcomm Inc., 1 Nahum Het St., Haifa 3190500, Israel. G.

Satat is with the MIT Media Lab, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA. E. G. Friedman is with the Department of

Electrical Engineering and Computer Engineering, University of Rochester,

Rochester, NY 14627, USA.

had been produced. In 2008, Hewlett Packard Laboratories [2]

announced that they had succeeded in producing a memristor.

Since 2008, several possible applications of memristors have

been presented. Nonvolatile emerging memory technologies,

including Resistive RAM (RRAM) and Spin-Transfer Torque

Magnetoresistive RAM (STT-MRAM), can be considered as

memristors [14]. The primary application of memristors has

been memory [3, 16, 22], where the resistance serves to store

data. Another interesting and new application is memristor-

based logic [4-5, 9-12, 17-18].

Material implication (IMPLY) as a memristor-based logic

gate is presented in [5], [9], [11], and [17]. The memristor-

based IMPLY logic gate is built within a memristive crossbar,

the most commonly used memristive memory structure

(particularly for RRAM). The stored data within the

memristors are the input and output of the logic gate. This

method, however, requires sequential voltage activation at

different locations within the circuit. Furthermore, with

IMPLY, the result is stored by one of the inputs and not a

dedicated output memristor. The technique also requires

additional circuit components (for example, a controller and an

additional resistor within each row of the crossbar), dissipates

high power, has high computational complexity, and requires

complicated control circuitry.

In this paper, Memristor Aided LoGIC (MAGIC) - a method

for memristive-only logic - is presented. This method does not

require a complicated structure and enables stable evaluation

of the gate function. Stable evaluation is achieved by applying

a single voltage pulse at the gateway of the circuit. MAGIC

NOR gates can also be fabricated within a crossbar, enabling

computing within memory.

II. OPERATING PRINCIPLE OF MAGIC

MAGIC requires only memristors within the logic gates.

The logical state in a MAGIC gate is represented as a

resistance, where the high and low resistances are considered,

respectively, as logical zero and one (for simplicity, the

resistance of logical zero and logical one is considered,

respectively, as Roff and Ron). The inputs and output of the

logic gates are the logical states of the memristors. Unlike an

IMPLY logic gate, separate memristors are required for the

input and output. The inputs of the MAGIC gates are the initial

logical state of the input memristors and the output is the final

logical state of the memristor.

MAGIC – Memristor Aided LoGIC

Shahar Kvatinsky, Student Member, IEEE, Dmitry Belousov, Slavik Liman, Guy Satat, Student

Member, Nimrod Wald, Eby G. Friedman, Fellow, IEEE, Avinoam Kolodny, Senior Member, IEEE,

and Uri C. Weiser, Fellow, IEEE

I

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. XXX, NO. XXX, XXX 2014

2

Figure 2. Example of placing a memristor into the initialization

stage. This example is similar to writing a configurable analog

circuit [19]. A different initialization scheme is presented in Section

III for MAGIC within memory.

Out In

Resistance decreases

Resistance increases

Figure 1. Memristor symbol. The polarity of the memristor is

represented by a thick black line. When current flows into the device

(the upper arrow), the resistance of the device increases. When

current flows out of the device (the lower arrow), the resistance of

the device decreases.

Operation of a MAGIC gate consists of two sequential

stages. The first stage initializes the output memristor to a

known logical state. In the second stage of operation, a voltage

V0 is applied across the logic gate. While applying V0, the

voltage across the output memristor depends upon the logical

state of the input and output memristors. The nonlinear

characteristics of the memristor, namely the threshold currents

or voltages [8], are exploited to maintain correct operation.

For specific input combinations, the voltage is sufficient to

change the logical state of the output memristor, i.e., the

memristor voltage/current is greater than the threshold

voltage/current, while for other input combinations, the output

remains at the initialize state, i.e., the memristor

voltage/current is below the threshold current or voltage.

Initialization of the memristors can be achieved in several

ways. For example, it is possible to use a similar topology as

the circuit used in [19] for configurable memristive analog

circuits, as shown in Figure 2. For MAGIC gates within

memory (as described in Section III), initialization is achieved

as a regular write operation within the memory cells.

In the next section, the basic MAGIC NOR gate is

described. Additional MAGIC gates for different Boolean

functions based on the MAGIC topology are also available,

and described in Section VI.

III. MAGIC NOR GATE

A two input NOR gate consists of two input memristors

(in1, in2) connected in parallel and an additional memristor

(out) as the output. A schematic of a two input NOR gate is

shown in Figure 3a. The initial execution step includes writing

a low resistance into the output memristor (initialization to

logical one) and, if necessary, writing the input value into

memristors in1 and in2. In the final execution step, the

evaluation is achieved by applying a voltage pulse V0 at the

gateway of the logic gate (the gateway is defined as shown in

Figure 3a).

The applied voltage produces a current that passes through

the circuit and appears at memristor out. For the case where

both input memristors are logical zero (high resistance), the

voltage/current of the output memristor is lower than the

memristor threshold voltage/current. Hence, the logical state of

the output memristor does not change and remains at logical

one. For all other input combinations, the voltage/current is

greater than the memristor threshold voltage/current. The

logical state of the output memristor for these input

combinations switches to logical zero. The behavior of the

MAGIC NOR gate is shown in Figure 3b.

Assume a memristor with voltage thresholds of VT,ON and

VT,OFF. For correct circuit behavior, the voltage at the output

memristor is lower than VT,OFF when both inputs are logical

zero. For all other input combinations, the voltage across the

output memristor should be greater than VT,OFF. The minimum

voltage at the output memristor greater than VT,OFF is achieved

when one input is logical one and the other input is logical

zero. Combining the cases where the voltage at the output

memristor is above and below the threshold voltage leads to a

design constraint on the applied voltage V0. The constraint is

(assuming Roff >> Ron)

, 0 ,2 .
2

OFF
T OFF T OFF

ON

R
V V V

R
< < ⋅ (1)

When an input memristor is logical zero, the operation of a

MAGIC NOR can be destructive, changing the input to logical

one during execution. To eliminate destroying the input, the

voltage across the input memristor needs to be below the

threshold voltage VT,ON. The maximum applied voltage for a

two-input NOR gate is therefore

0 , ,min , .
2

OFF
T OFF T ON

ON

R
V V V

R

 
< ⋅ 

 
 (2)

Multiple-input (three or more) NOR logic gates can also be

produced in a similar manner, as shown in Figure 3c. For χ

input memristors, the design constraints are

,

0 ,|| 1 .
1

T OFF OFF OFF
ON ON T OFF

ON ON

V R R
R R V V

R Rχ χ
    

⋅ + < < ⋅ +    −    
 (3)

For non-destructive operation of a χ-input NOR, the maximum

applied voltage is

0 , ,min 1 , 1 | | .OFF ON

T OFF T ON

ON OFF

R R
V V V

R R

χ
χ

    
< ⋅ + + ⋅    

    

 (4)

IV. MAGIC WITHIN A CROSSBAR ARRAY

RRAM commonly utilizes a crossbar structure. The crossbar

structure enables dense memory of 4 F
2
, where F is the feature

size. Memristive-only logic gates within a memristive crossbar

reduce power and provide an opportunity for novel non-von

Neumann architectures, where the logical operations are

executed within the memory [11]. When performing logic

within the memory, the input is the stored data within the

memristors and the output is the stored data after execution.

Initialization of the input and output is achieved as a regular

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. XXX, NO. XXX, XXX 2014

3

Figure 4. MAGIC NOR gate within a crossbar array. (a) Schematic

of a memristive crossbar structure. A two input NOR gate is

achieved in row i, where in1 and in2 are, respectively, in columns j+1

and j and out is in column j-1, as marked by an oval. (b) Schematic of

a two input NOR gate within a crossbar array. The voltage at the

gateway V0 is the applied voltage at columns j and j+1, while column

j-1 is connected to ground. Note that the schematic is identical to the

figure shown in Figure 3a.

TABLE I. COMPARISON BETWEEN IMPLY AND MAGIC

 IMPLY [11] MAGIC

No. of voltages 2 (VSET, VCOND) 1 (V0)

Separate input and

output
No Yes

Basic functions IMPLY (+ FALSE)
OR, AND, NOR,

NAND, NOT

No. of memristors

for NOR/NAND
3 (+ a resistor) 3

No. of steps for

NOR/NAND
4 2

Within memory Yes Yes (for NOR)

Logically complete Requires FALSE Yes (NOR, NAND)

Figure 3. MAGIC NOR. (a) Schematic of a two input NOR logic

gate. The logic gate consists of two input memristors in1 and in2,

and an output memristor out. During execution, a voltage V0 is

applied at the gateway of the circuit (marked by an arrow). (b)

Simulations of a two input NOR gate for all input combinations. The

different curves show the currents read from each memristor prior

to execution and after applying V0. (c) Schematic of an N input NOR

gate.

memory write operation, and sensing the result is achieved as a

regular memory read operation.

To integrate a memristive-only logic gate within a crossbar

array, two requirements need to be satisfied: the structure and

connections of the logic gate should be placed within a

crossbar array and the logical state of the logic gate is

represented as a resistance, as in a memristive memory. A

MAGIC NOR gate fulfills both of these requirements. The

structure of a memristive crossbar array and two-input MAGIC

NOR gate within a crossbar is shown in Figure 4.

 While a memristive IMPLY logic gate can also be

integrated within a memristive crossbar array [11], this

memristive logic family requires an additional resistor within

each row of the crossbar. Additionally, unlike the NOR

Boolean operation, the IMPLY operation is not logically

complete and requires the operation of FALSE (writing a

logical zero to a memristor). A comparison between

memristive IMPLY and MAGIC is listed in Table 1.

V. EVALUATION AND DESIGN CONSIDERATIONS FOR A

MAGIC NOR GATE

The speed of a MAGIC NOR gate is evaluated in SPICE for

a 0.18 µm CMOS process. A memristor model, the VTEAM

model [20], which extends the TEAM model with a threshold

voltage, is used with a Biolek window function [8]. The

parameters of the memristors are chosen to produce a

switching time of 1 ns for a voltage pulse of 1 volt for RESET

and 2 volts for SET, and to fit practical devices, as reported in

[21]. The parameters of the circuit simulations are listed in

Table 2.

The behavior and speed of a MAGIC NOR gate for

different values of V0 are shown in Figure 5. To evaluate the

delay of the logic gate, the slowest input case is considered.

The delay of a MAGIC NOR gate is determined from an input

combinations of {1,0} or {0,1}.

From (1) and (2), V0 can vary from 0.6 to 1.5 volts for the

parameters listed in Table 2. As shown in Figure 5b,

increasing the applied voltage V0 decreases the delay of the

logic gate. For V0 at 1 volt, the delay of the logic gate is 1.3 ns,

an increase of 30% as compared to the switching time of a

single memristor.

VI. ADDITIONAL MAGIC GATES

With the same design principles described in Section II,

additional Boolean functions can be provided as part of the

MAGIC family. The additional MAGIC gates described in this

section are not placed within a crossbar array (except for the

NOT gate), but can be used as standalone logic.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. XXX, NO. XXX, XXX 2014

4

Figure 6. MAGIC NAND gate. (a) Schematic of a two input NAND

gate. The logic gate consists of two input memristors in1 and in2,

and an output memristor out. During execution, a voltage V0 is

applied at the gateway of the circuit. (b) Simulation results for a two

input NAND gate for all input combinations. The different curves

exhibit the currents of each memristor prior to execution and after

applying V0, and (c) schematic of an N input NAND gate.

Figure 7. MAGIC OR and AND gates. The structure of the logic

gates is similar to MAGIC NOR and NAND gates. The output

memristor out is connected with the same polarity as the input

memristors, and is initialized to logical zero. (a) Schematic of a two

input OR gate. (b) Simulation results for a two input OR gate for all

input combinations. (c) Schematic of a two input AND gate. (d)

Simulation results for a two input AND gate for all input

combinations.

TABLE II. MEMRISTOR PARAMETERS (FOR VTEAM MODEL [20])

kon -216.2 m/sec

koff 0.091 m/sec

VT,ON -1.5 volt

VT,OFF 0.3 volt

xon 0

xoff 3 nm

αon 4

αoff 4

RON 1 kΩ

ROFF 300 kΩ

Figure 5. SPICE simulations of a two input MAGIC NOR gate. (a)

Output memristor for different input combinations, V0 = 1 volt. The

delay is evaluated as the time required to switch the output

memristor to logical zero when one input is logical one and the other

input is logical zero (dashed line), and (b) delay for different values

of voltage V0.

Connecting the input memristors in series within the same

topology as in the MAGIC NOR gate produces a NAND gate,

as shown in Figure 6. OR and AND logic gates have a similar

structure as, respectively, NOR and NAND, except for the

opposite polarity of the output memristor out. Unlike NAND

and NOR, out is initialized to logical zero prior to execution.

The schematic and behavior of OR and AND MAGIC gates

are shown in Figure 7. Similar to MAGIC NOR and NAND

gates, multi-input logic gates are also possible for MAGIC OR

and AND gates.

A MAGIC NOT gate (inverter) consists of an input

memristor in and an output memristor out. The memristors are

connected in series with an opposite polarity in a

complementary memristor structure (or complementary

resistive switches) [15], as shown in Figure 8a. In the first

stage of execution, the output memristor is initialized to

logical one. When applying V0 at the gateway of the circuit,

the voltage divider between in and out determines whether the

resistance of the output memristor changes. For the case where

in is logical zero, the voltage across out is below the threshold

voltage and the logical state of out remains logical one, as

desired. Note that in this case, the voltage at in is relatively

high and the logical state at in therefore may be switched to

logical zero. Hence, the MAGIC NOT operation can be

destructive to the input unless the applied voltage at memristor

in is below VT,ON. For the case where in is logical one, the

voltage across memristor out is sufficient to switch the logical

state of out (greater than the threshold voltage) to logical zero.

Simulation results for a NOT gate are shown in Figure 8b. A

summary of several MAGIC gates, including the design

constraints, is listed in Table 3.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. XXX, NO. XXX, XXX 2014

5

TABLE III. SUMMARY OF MAGIC GATES

Function Design Constraints Design Constraints – Multiple Inputs
Within

Crossbar?

NOR , 0 , ,2 min ,
2

OFF
T OFF T OFF T ON

ON

R
V V V V

R

 
< < ⋅ 

 

,

0 , ,|| min 1 , 1 | |
1

T OFF OFF OFF ON
ON ON T OFF T ON

ON ON OFF

V R R R
R R V V V

R R R

χ
χ χ

       
⋅ + < < ⋅ + + ⋅      −        

Yes

NAND , 0 , ,3 min , 2 OFF

T OFF T ON T OFF

ON

R
V V V V

R

  
< < + ⋅  

  

() , 0 , .

1 min 1 ,ON OFF
T OFF T ON T OFF

OFF ON

R R
V V V V

R R

χ
χ χ

    
+ ⋅ < < ⋅ + + ⋅    

    

No

OR , 0 ,1.5
T ON T ON

V V V< <
, 0 ,

1
1T ON T ONV V V

χ
 

< < + 
 

No

AND , 0 ,2T ON T ONV V V< <
, 0 ,1 2 (1)ON ON

T ON T ON

OFF OFF

R R
V V V

R R
χ χ

   
+ < < + −   

   

No

NOT (), 0 , ,2 min ,| |OFF

T OFF T OFF T ON

ON

R
V V V V

R
< < ⋅

- Yes

Figure 8. MAGIC NOT gate. (a) Schematic of a NOT gate. The logic

gate consists of an input memristor in and an output memristor out,

and (b) simulation results for a NOT gate.

VII. CONCLUSIONS

MAGIC, a novel method for memristor-based logic, is

presented in this paper. Five basic logic functions, NOT,

AND, NAND, NOR, and OR, use simple connections among

memristors, where the number of memristors is equal to the

number of inputs plus one additional memristor at the output.

Only one applied voltage controls these logic gates,

different than the memristor-based IMPLY logic gate. Unlike

the IMPLY gate, the input and output in MAGIC are

separated, and the output is written to a dedicated memristor.

The use of MAGIC NOR gates within a memristive crossbar

can lead to more efficient systems in terms of performance and

power consumption, and to novel non-von Neumann

architectures.

REFERENCES

[1] L. O. Chua, “Memristor – the Missing Circuit Element,” IEEE

Transactions on Circuit Theory, Vol. 18, No. 5, pp. 507-519, September

1971.

[2] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The

Missing Memristor Found,” Nature, Vol. 453, pp. 80-83, May 2008.

[3] Y. Ho, G. M. Huang, and P. Li, "Nonvolatile Memristor Memory: Device

Characteristics and Design Implications," Proceedings of the IEEE

International Conference on Computer-Aided Design, pp. 485-490,

November 2009.

[4] Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinalli, J. J.

Yang, W. Wu, X. Li, W. M. Tong, D. B. Strukov, G. S. Snider, G.

Mederios-Riberio, and R. S. Williams, "Memristor-CMOS Hybrid

Integrated Circuits for Reconfigurable Logic," Nano Letters, Vol. 9, No.

10, pp. 3640-3645, 2009.

[5] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R.

S. Williams, "Memristive Switches Enable 'Stateful' Logic Operations via

Material Implication," Nature, Vol. 464, pp. 873-876, April 2010.

[6] E. Lehtonen, J. H. Poikonen, and M. Laiho, "Two Memristors Suffice to

Compute All Boolean Functions," Electronics Letters, Vol. 46, No. 3, pp.

239-240, February 2010.

[7] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider, D.

R. Stewart, and R. S. Williams, "Switching Dynamics in Titanium

Dioxide Memristive Devices," Journal of Applied Physics, Vol. 106,

074508, October 2009.
[8] S. Kvatinsky, E. G. Friedman, A. Kolodny and U. C. Weiser, "TEAM:

ThrEshold Adaptive Memristor Model," IEEE Transactions on Circuits

and Systems I: Regular Papers, Vol. 60, No. 1, pp. 211-221, January

2013.

[9] S. Kvatinsky, E. G. Friedman, A. Kolodny and U. C. Weiser, "Memristor-

based IMPLY Logic Gate Design Procedure," Proceedings of the IEEE

International Conference on Computer Design, pp. 142-147, October

2011.

[10] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U. C.

Weiser, " MRL – Memristor Ratioed Logic for Hybrid CMOS-Memristor

Circuits," IEEE Transactions on Nanotechnology (in review).

[11] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser,

"Memristor-based Material Implication (IMPLY) Logic: Design

Principles and Methodologies," IEEE Transactions on Very Large Scale

Integration (VLSI) (in press).

[12] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U. C.

Weiser, "MRL – Memristor Ratioed Logic," Proceedings of the

International Cellular Nanoscale Networks and their Applications, pp.

1-6, August 2012.

[13] L. O. Chua and S. M. Kang, “Memristive Devices and Systems,”

Proceedings of the IEEE, Vol. 64, No. 2, pp. 209-223, February 1976.

[14] L. O. Chua, "Resistance Switching Memories are Memristors," Applied

Physics A: Materials Science & Processing, Vol. 102, No. 4, pp. 765-

783, March 2011.

[15] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, "Complementary

Resistive Switches for Passive Nanocrossbar Memories," Nature

Materials, Vol. 9, No. 5, pp. 403–406, April 2010.

[16] R. Patel, S. Kvatinsky, E. G. Friedman, and A. Kolodny, "Multistate

Register Based on Resistive RAM," IEEE Transactions on Very Large

Scale Integration (VLSI) (in review).

[17] E. Lehtonen and M. Laiho, "Stateful Implication Logic with

Memristors," Proceedings of the IEEE/ACM International Symposium

on Nanoscale Architectures, pp. 33-36, July 2009.

[18] Y. Levy, J. Bruk, Y. Cassuto, E. G. Friedman, A. Kolodny, E. Yaacobi,

and S. Kvatinsky, "Logic Operation in Memory Using a Memristive

Akers Array," Microelectronics Journal (in review).

[19] Y. V. Pershin and M. Di Ventra, "Practical Approach to Programmable

Analog Circuits with Memristors," IEEE Transactions on Circuits and

Systems I: Regular Papers, Vol. 57, No. 8, pp. 1857-1864, August

2010.

[20] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny,

"VTEAM: Voltage Threshold Adaptive Memristor Model," CCIT

Technical Report #856, April 2014.

[21] J. J. Yang, D. B. Strukov, and D. R. Stewart, "Memristive Devices for

Computing," Nature Nanotechnology, Vol. 8, pp. 13-24, January 2013.

Figure 1. Memristive device symbol. The thick black line on the left
side of the device represents the polarity of the device. If the current

flows into the device, the resistance of the device decreases. If the
current flows out of the device, the resistance increases.

MRL – Memristor Ratioed Logic

Shahar Kvatinsky, Nimrod Wald, Guy Satat,

Avinoam Kolodny, and Uri C. Weiser
Department of Electrical Engineering

Technion – Israel Institute of Technology
Haifa 32000 ISRAEL

{skva@tx, guys@tx, kolodny@ee,
uri.weiser@ee}.technion.ac.il

Eby G. Friedman
Department of Electrical and Computer Engineering

University of Rochester
 Rochester, New York 14627 USA

friedman@ece.rochester.edu

Abstract— Memristive devices are novel structures, developed
primarily as memory. Another interesting application for
memristive devices is logic circuits. In this paper, MRL
(Memristor Ratioed Logic) - a hybrid CMOS-memristive logic
family - is described. In this logic family, OR and AND logic
gates are based on memristive devices, and CMOS inverters are
added to provide a complete logic structure and signal
restoration. Unlike previously published memristive-based logic
families, the MRL family is compatible with standard CMOS
logic. A case study of an eight-bit full adder is presented and
related design considerations are discussed.

I. INTRODUCTION

Memristors [1] and memristive devices [2] are novel
structures, useful in many applications. This device is
basically a resistor with varying resistance, dependent on the
history of the device. It can be used for memory, where the
data is stored as a resistance. While memory is the common
application for memristive devices, additional applications
can also use memristive devices as building blocks, such as
analog circuits, neuromorphic systems, and logic circuits.

This paper is focused on bipolar memristive devices [3],
such as TiO2 memristive devices and STT-MRAM (Spin
Transfer Torque Magnetoresistance Random Access
Memory). In bipolar memristive devices, the resistance of the
device increases due to current flow in one direction, and
decreases due to current flow in the other direction. The
symbol and polarity of a memristive device are shown in
Figure 1. Several memristive device models have been
developed. In this paper, the TEAM model [4] is used since
this model can fit any memristive device.

Practical memristive devices are nonvolatile and compatible
with standard CMOS technology [5]. These devices are
fabricated in the metal layers of an integrated circuit, where
the memristive effects occur in the oxide between the metal
layers (e.g., in TiO2) or within the metal layers (e.g., in STT-
MRAM). Memristive devices can therefore be fabricated
above the CMOS transistors. The size of a typical memristive
device is relatively small, since the fabrication process is
similar to the processing of a via between metal layers. Hence,

memristive-based circuits may be smaller than transistor-only
CMOS circuits. Memristive devices therefore exhibit high
density and good scalability. The read and write time for these
devices can be as fast as one nanosecond [6]. Currently,
except for STT-MRAM, memristive devices suffer from
endurance limitations, where the number of allowed writes per
cell is approximately 1010 [7]. It is believed however that this
limit will increase to at least 1015 [8]. Memristive devices may
therefore solve many major problems in the semiconductor
industry, providing nonvolatile, dense, fast, and power
efficient memory.

Integrating memristive devices and CMOS for performing
logical operations may be beneficial. Since memristive
devices are fabricated within the metal layers, the integration
saves physical area and therefore increases the logic density.
Furthermore, with deeply scaled CMOS, CMOS logic suffers
from problems such as leakage current, requiring novel logic
structures.

Logic operations with memristive devices open
opportunities for novel functionality. Although the use of
memristive devices as logic gates is early, several approaches
have been proposed, mainly for logic gates designed within
the structure of a crossbar array originally targeted for
memory [9]. Logic in a memristive-based crossbar opens an
opportunity to explore advanced computer architectures
different from the classical Von Neumann architecture. In
these architectures, the memory can perform logic operations
on the same devices that store data. The decision regarding
which elements act as logic gates and which act as memory

This work was partially supported by Hasso Plattner Institute and by an
Intel grant, "Heterogeneous Computing, the Inevitable Solution: Power
Management, Scheduling and ISA," Grant no. 864-737-13.

Piercarlo
Casella di testo
978-1-4673-0289-0/12/$31.00 ©2012 IEEE

cells can be done dynamically during the operation of the
memory [10].

Material implication (IMPLY logic gate) [11] is one option
for logic inside a memristive-based crossbar. The IMPLY
logic gate is extended in [12] to a NOR logic gate. Another
logic family within a crossbar is MAGIC [13]. In MAGIC, all
basic Boolean functions can be produced, e.g., AND, NAND,
NOR, and OR logic gates. All of these logic gates require a
sequencer to operate the logic gate, i.e., any basic Boolean
function requires more than one clock cycle to execute the
computation. The logic within a crossbar is therefore
relatively slow. These logic gates also suffer from state drift
and lack signal restoration [14].

Memristive-based logic families within a crossbar cannot
be easily integrated with standard CMOS logic. In these logic
families, a resistance, rather than a voltage, represents the
logical state. To integrate memristive devices with CMOS for
logic circuits, several requirements need to be fulfilled: the
technology of the memristive devices needs to be compatible
with a standard CMOS process, the logical state, used for
input and output signal transfer between the logic gates,
needs to be converted from a resistance into a voltage, and
the interface between the memristive device layers and the
CMOS layer should require minimal additional circuitry. To
integrate these logic families with standard voltage based
CMOS logic, a conversion mechanism is required. This
mechanism includes a sense amplifier as well as additional
components. The additional required circuitry reduces the
efficiency of integrating CMOS and memristive-based logic
families within a memory [10].

In this paper, MRL (Memristor Ratioed Logic) for
integration with CMOS is described. This logic family uses
the programmable resistance of memristive devices for
computation of Boolean AND/OR functions with voltage as
the state variable, hence it avoids the drawbacks described
above. Design principles and constraints of this logic family
are discussed in Section II. A case study of an eight-bit full
adder is used to demonstrate the MRL design process in
Section III. The dependence of the MRL gates on the behavior
of the memristive device, as well as several tradeoffs in the
design procedure is discussed in Sections III and IV.

II. MEMRISTOR RATIOED LOGIC (MRL) FAMILY

An interesting method for integrating memristive devices
with standard CMOS logic is using memristive devices as
computational elements, OR and AND logic gates [15]. Since
these functions are non-inverting logic gates, a complete logic
structure can be achieved by adding a standard CMOS
inverter. In this logic family, the logical is represented as a
voltage, consistent with CMOS. The memristive devices are
utilized solely for logic computation and not for storing a
logical state. The computational result is independent of the
initial state of the memristive devices, and the initial state
only affects the computational time. Unlike other logic
methods (such as IMPLY), the computational process is

composed of only a single step. Similar to standard
combinatorial logic using CMOS, the topology of the circuit
determines the logical function.

A. Description of Logic Gates

Both OR and AND logic gates consist of two memristive
devices connected in series with opposite polarity, as shown
in Figures 2a and 2b. The output node is the common node of
the memristive devices, while the signals on the other
terminal of each memristive device are the inputs of the logic
gate.

Due to the polarity of the memristive devices, in an OR
logic gate, when current flows into the logic gate through one
of the inputs, the resistance of this memristive device
decreases. Similarly, in an AND logic gate, the opposite
polarity is used, and the resistance of the memristive device
increases when current flows into the device.

Both the OR and AND logic gates react similarly to
identical inputs (where either both inputs are logical 1 or both
are logical 0). For identical inputs, the voltage drop between
inputs is zero; hence no current flows within the circuit. The
output voltage is therefore equal to the input voltage. For the
case where both inputs are logical zero (one), the ground
(supply) voltage is at the inputs, the output voltage is ground
(supply) and the logical state of the output is logical zero
(one).

For the case where the inputs are different, i.e., one input is
logical one and the other input is logical zero, current flows
from the high voltage (the terminal of the memristive device
where the input is logical one) to the low voltage (the
terminal of the memristive device where the input is logical
zero), thus changing the resistance of both memristive
devices. This case for an OR logic gate is illustrated in Figure
2c. The resistance of the memristive device connected to the
logical one input R1 is lower, and the resistance of the
memristive device R2 is higher, as shown in Figure 2e. At the
end of the computational process, the resistance of both
memristive devices is approximately RON and ROFF,
respectively, the minimum and maximum resistance of the
device. Assuming ROFF >> RON, the output voltage of the
logic gate is determined by the voltage divider across both of
the memristive devices,

, .off

out OR high high
off on

R
V V V

R R
= ≈

+
 (1)

In the AND logic gate, the opposite polarity, as compared
to the OR logic gate, is used. For the case where the inputs
are different, the resistance of the memristive devices is the
opposite of the resistance of the OR logic gate. This behavior
is illustrated in Figures 2d and 2f. The output voltage of the
AND logic gate in this case is therefore

, 0.on

out AND high
off on

R
V V

R R
= ≈

+
 (2)

 Note that the initial resistance of both memristive devices
has no effect on the result of the computation. The only effect

Figure 2. Schematic and behavior of MRL gates. (a) The schematic of
an OR logic gate, and (b) an AND logic gate. Both logic gates consists

of two memristive devices where the polarity of the memristive devices
is the only structural difference. The behavior of (c) an OR logic gate,
and (d) an AND logic gate when VIN1 = '1' and VIN2 = '0'. The current
flows from VIN1 to VIN2 and the resistance of the memristive devices

changes for the (e) OR, and (f) AND logic gates. The continuous and
dashed lines are, respectively, the resistance of R1 and R2.

of the initial resistance on the behavior of the logic gate is the
delay time of the execution for the case where the inputs are
different, i.e., the time required to change the resistance of
both memristive devices to either the maximum or minimum
resistance. The delay time is also dependent on the voltage
level. A relatively low voltage level increases the delay time.
It is possible that the memristive devices do not fully switch
and achieve the maximum and minimum resistance since the
input voltages are not applied for a sufficiently long time or
the input voltage is too low. In this case, it would be difficult
to distinguish between the different output levels. The MRL
family is inspired by Diode Logic [16] and shares some
characteristics, such as both logic families are non-inverting
and non-restoring [17]. The number of inputs for both MRL
gates can be extended in a similar way as diode logic, as
shown in Figures 3a and 3b.

To provide a complete logic family, an inverter is needed
in addition to OR and AND logic gates. Furthermore,
memristive devices are passive elements and therefore cannot
amplify signals. The MRL OR and AND logic gates therefore
lack signal restoration, i.e., the output voltage levels degrade,
as expressed by (1) and (2). These logic gates cannot
therefore be cascaded for too many stages before signal
amplification is required. CMOS logic, alternatively, exhibits

signal restoration. Since the logical state of the input and
output in MRL OR and AND logic gates is represented as a
voltage, these logic gates can be integrated with standard
CMOS inverters. To provide a complete logic structure and
signal restoration, the addition of a CMOS inverter to the
MRL family is therefore proposed. The schematic of a two
input MRL NAND and NOR is shown in Figures 3c and 3d.

B. General design considerations

In the design process of an MRL gate, several issues need
to be considered. When the input changes from one input case
to another input case, i.e., changing the inputs from (0,1) to
(1,0) and vice versa, the output produces a dynamic hazard
until the switching process is completed. Another issue may
occur when both initial resistances are high (approximately
ROFF). In this case, the current through the logic gate is
relatively small, and the settling time is therefore relatively
long, also producing a dynamic hazard. The dynamic
behavior of the OR and AND logic gates is illustrated in
Figures 4a and 4b.

Power consumption is another issue. When both inputs are
identical, no current flows in the circuit and the power is zero.
If the inputs are different, current flows and power is
consumed. The power consumed during the switching of the
memristive devices is dependent on the resistance of both
memristive devices and changes during the computational
process. Generally, the power consumption of an MRL gate
for these input cases is

2

1 2

() ,
() ()

highV
P t

R t R t
=

+
 (3)

where Vhigh is the voltage of logical one and is assumed to be
constant, and R1(t) and R2(t) are the resistance of the
memristive devices, which change during the computational
process. The value of R1(t) and R2(t) is dependent on the
initial states and the value of Vhigh. For the case of different
inputs, a constant current flows from one input to the other
input, even after the resistance of the memristive devices
reaches the desired magnitude and the output becomes stable.
The static power consumed in these cases is approximately

2

.high
static

on off

V
P

R R
=

+
 (4)

The power consumption for all input cases is illustrated in
Figure 4c. The output voltage is dependent on the voltage
divider across the two memristive devices. This voltage
divider degrades the output signal. Although the degradation
is minor when ROFF >> RON, for cascaded logic gates, this
degradation accumulates and may become significant. This
phenomenon can be avoided by occasionally amplifying the
signal by CMOS inverters or buffers. Integrating a CMOS
inverter into an MRL OR or AND logic gate however adds
capacitance to the circuit. The delay time of the logic gates is
dependent on the CMOS gate capacitance and therefore needs
to be optimized. The delay of the logic gates is the time
required for the memristive devices to be fully switched, and

Figure 3. Schematic of an (a) N-input MRL OR, (b) N-input MRL
AND, (c) two-input MRL NAND, and (d) two-input MRL NOR.

is dependent on the determined by the case of different
inputs.

The MRL logic gates can be inserted into a standard cell
library as in standard CMOS logic. These standard cell
libraries can consist of OR and AND logic gates.
Alternatively, NOR and NAND logic gates, consisting of a
memristive-based OR (AND), and a CMOS inverter, can
produce the functionality of a NOR (NAND) logic gate.

III. EIGHT-BIT FULL ADDER CASE STUDY

An eight-bit full adder is considered as a case study for the
MRL family. Five different parameter sets of memristive
devices are chosen to evaluate a variety of memristive
devices. The primary parameters are the linearity coefficient
and the current threshold (respectively, α, ion, and ioff in the
TEAM model [4]). All other parameters are chosen to exhibit
a hysteretic behavior. The parameters for the memristive
devices are listed in Table 1.

To provide a standard cell design methodology, the
standard cell is a NAND (NOR) logic gate, as described in
Section IIB. No current flows from the output node in steady
state since the output node of the AND (OR) logic gate is
connected to an MOS gate. In this approach, every standard
cell requires two connections between the CMOS and
memristive layers, one for the middle stage transition and one
for the output. This approach is robust, albeit inefficient in
terms of power consumption and area as compared to an
optimized circuit, where the CMOS inverter is only applied
when signal restoration is needed or when the logic function
requires signal inversion. In this case study, the optimized
approach is used.

For the optimized approach, when connecting cascaded
memristive-based MRL gates, current can flow from the
output node into the input of the next logic gate. In this case,

the current flowing through the two memristive devices of
one gate is not equal, and the smaller current may drop below
the current threshold of the memristive devices, causing the
logic gate to partially switch. This phenomenon can degrade
the output voltage, and may perhaps cause the logic to fail
after a single logic stage.

TABLE 1. DIFFERENT PARAMETERS OF THE MEMRISTIVE DEVICES USED IN

THE CASE STUDY

 Device

Parameter

Linear
with no
current
thresh-

old

Linear
with

current
thresh-

old

Low
non-

linearity

Non-
linear

Highly
non-
linear

Parameter
set number

1 2 3 4 5

α 1 1 3 5 10
ion -100 fA -20 μA -5 μA -5 μA -10 μA
ioff 100 fA 20 μA 5 μA 5 μA 10 μA
kon -5· 10-8 -10 -0.1 -0.01 -0.001
koff 5· 10-8 10 0.1 0.01 0.001
Ron 1 kΩ
Roff 100 kΩ

One approach to eliminate a possible logic failure is to

increase the voltage of the high logical state to ensure that all
currents in the circuit are greater than the current threshold of
the devices. The increase in voltage is limited by the CMOS
process, since high voltages may cause breakdown in the
CMOS transistors (e.g., gate induced drain leakage [18]), and
also dissipate more power.

Another approach to eliminate logic failure is to amplify
the signal with CMOS logic gates, preventing steady state
current leakage and performing signal restoration. In this case
study, both approaches are used. The voltage is increased and
signal restoration is achieved through a CMOS inverter. The
behavior of an MRL XOR logic gate is shown in Figure 5 to
demonstrate the signal degradation. Note that these signal
degradation issues are circuit dependent, i.e., the degree of
signal degradation is dependent on the logic circuit structure
as well as the parameters of the memristive devices. A
schematic of the one-bit full adder used in this case study is
shown in Figure 6.

The design of the eight-bit full adder in this case study is
achieved using eight cascaded one-bit full adders. A tradeoff
between signal integrity and minimizing the number of vias is
the primary issue. To maintain a distinct value for the output
of the eight-bit full adder (Si for i = 1, …, 8 and COUT), a set
of CMOS buffers is added to the circuit to amplify the output
signal. For the intermediate signals (COUT → CIN), no
constraint is placed on the strength of the signal other than to
maintain the correct logical polarity. A lower signal strength
requires fewer CMOS gates and hence less area and power
consumption. The required number of CMOS buffers is
dependent on the signal degradation along the logic path.

For parameter sets 1, 3 and 4 (memristive devices with a
relatively low current threshold), the one-bit full adder shown

Figure 5. Dynamic behavior of an MRL XOR logic gate. The high
voltage is 4 Volts. The output voltage degrades by approximately

15% for the input cases of ('1', '0') and ('0', '1').

Figure 4. Dynamic behavior of MRL gates. Waveforms of (a) an

OR logic gate, and (b) an AND logic gate. The output voltage is
shown for different input states. Dynamic hazards occur when the

input changes to ('0', '1') or ('1', '0'), which is marked by an oval. (c)
The power consumption for both logic gates is identical. For the cases
where the input states are different ('0', '1') or ('1', '0'), static power

is consumed after the output is stable.

Figure 6. Schematic of an MRL one bit full adder (S = XOR[A, B, CIN],

COUT = A·B + CIN·XOR[A, B]) for the optimized method used in the case
study. The one-bit full adder consists of six memristive-based OR logic

gates, three memristive-based AND logic gates, and four CMOS inverters.
In this circuit, 18 memristive devices and eight CMOS transistors are used.

in Figure 6 exhibits correct logic functionality, which requires
amplifying the signal between different bit levels. Parameter
sets 2 and 5 demonstrate a high current threshold and are
therefore more sensitive to signal degradation due to partial
switching. For these parameter sets, the circuit fails for all
CMOS compatible voltages. For parameter sets 2 and 5,
buffers have been added to the one-bit full adder circuit to
ensure correct logic behavior. The required voltage levels and
number of buffers for each parameter set are listed in Table 2,
total number of devices is listed in Table 3, and normalized
power consumption1 for each parameter set is listed in Table
4.

1 The power is normalized since the parameter set of the memristive

devices is not correlated to the CMOS process.

Note from the data listed in Tables 3 and 4 that unlike most
digital applications [4], a linear memristive device with no
threshold (as in parameter set no. 1) is preferable to minimize
the number of connections between the CMOS and
memristive layers, and to reduce power. The optimized
approach consumes less dynamic power but more total
energy, as compared to a standard cell methodology, since the
static power is non-zero. Since decreasing the operating
voltage requires additional CMOS buffers, the number of
CMOS buffers in parameter set no. 3 (a high voltage of 3
Volts) is lower than in parameter set no. 1. The high voltage
used in parameter sets number 2 and 5 significantly increases
the power consumption.

IV. CONCLUSIONS

Memristor Ratioed Logic (MRL), a hybrid CMOS-
memristive logic family, is described in this paper. This logic
family uses less die area as compared to CMOS logic. It is
possible to reduce the design effort of an MRL circuit by
using standard library cells composed of only NOR and
NAND logic gates. Standard cells however limit the
flexibility of the design process and restrict the opportunity to
save area. Other optimization criteria are also possible, such
as increasing the operating voltage and minimizing the
number of connections between the CMOS and memristive
layers.

An eight-bit full adder is presented as a case study. This
full adder is optimized for minimum CMOS/memristive
connections and saves approximately 50% in area as
compared to CMOS logic, while requiring 44% fewer
connections and 30% less power as compared to an MRL
standard cell library.

It is also shown that a linear memristive device with no
current threshold is preferable for the MRL logic family,
unlike other digital applications, where a threshold and
nonlinearity are desirable. MRL gates based on linear
memristive devices are faster, smaller, and consume less
power as compared to nonlinear memristive devices.

TABLE 2. VOLTAGE LEVEL AND NUMBER OF BUFFERS FOR EACH

PARAMETER SET IN THE CASE STUDY

Parameter

set
Supply
voltage

Number of buffers needed

Inside
each one
bit full
adder

Between
each COUT

and CIN

After last
stage
COUT

After
each Si

1 1V 0 2 2 1
2 6.5V 2 1 2 2
3 3V 0 1 1 1
4 4V 0 2 2 1
5 6.5V 2 2 2 2

TABLE 3. SUMMARY OF CASE STUDY

Parameter set Number of

memristors
Number of

CMOS
transistors

Number of
vias

Supply
voltage

CMOS –
based

- 288 - 1 V

Standard cell
approach

144 144 144 1 V

1 144 160 80 1 V
2 144 228 96 6.5 V
3 144 128 80 3 V
4 144 160 80 4 V
5 144 256 96 6.5 V

TABLE 4. POWER CONSUMPTION AND ENERGY FOR CASE STUDY

Parameter set Average power

[normalized]
Total energy
[normalized]

Standard cell approach
(for parameter set 1)

1 1

1 0.72 5.02
2 386.4 2035.1
3 22.5 167.9
4 60.8 499.2
5 354.95 2004.5

The Memristor Ratioed Logic family opens an opportunity
for additional memristive/CMOS integrated circuits and
increases logic density. This enhancement can provide greater
computational abilities to processor and other computational
circuits.

REFERENCES
[1] L. O. Chua, “Memristor – The Missing Circuit Element,” IEEE

Transactions on Circuit Theory, Vol. 18, No. 5, pp. 507-519,
September 1971.

[2] L. O. Chua and S. M. Kang, “Memristive Devices and Systems,”
Proceedings of the IEEE, Vol. 64, No. 2, pp. 209- 223, February 1976.

[3] P. Vontobel, W. Robinett, J. Straznicky, P. J. Kuekes, and R. S.
Williams, “Writing to and Reading from a Nano-Scale Crossbar
Memory Based on Memristors,” Nanotechnology, Vol. 20, No. 42, pp.
1-21, October 2009.

[4] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "TEAM -
ThrEshold Adaptive Memristor Model," IEEE Transactions on Circuits
and Systems I: Regular Papers, April 2012 (in press).

[5] J. Borghetti, Z. Li, J. Strasnicky, X. Li, D. A. A. Ohlberg, W. Wu, D.
R. Stewart, and R. S. Williams, "A Hybrid Nanomemristor/Transistor
Logic Circuit Capable of Self-Programming," Proceedings of the
National Academy of Sciences, Vol. 106, No. 6, pp. 1699-1703,
February, 2009.

[6] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S.
Williams, "Sub-Nanosecond Switching of a Tantalum Oxide
Memristor," Nanotechnology, Vol. 22, No. 48, pp. 1-7, November
2011.

[7] J. J. Yang et al, "High Switching Endurance in TaOx Memristive
Devices," Applied Physics Letters, Vol. 97, No. 23, pp. 1-3, December
2010.

[8] J. Nickel, "Memristor Materials Engineering: From Flash Replacement
towards a Universal Memory," Proceedings of the IEEE IEDM
Advanced Memory Technology Workshop, December 2011.

[9] G. Snider, "Computing with Hysteretic Resistor Crossbars," Applied
Physics A, Vol. 80, No. 6, pp. 1165-1172, March 2005.

[10] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "Design
Principles and Methodologies for Integrated Memristor Memory and
Memristor Logic," unpublished.

[11] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, "Memristive Switches Enable 'Stateful' Logic
Operations via Material Implication," Nature, Vol. 464, pp. 873-876,
April 2010.

[12] S. Shin, K. Kim, and S.-M. Kang, "Reconfigurable Stateful NOR Gate
for Large-Scale Logic-Array Integrations," IEEE Transactions
on Circuits and Systems II: Express Briefs, Vol. 58, No. 7, pp. 442-
446, July 2011.

[13] S. Kvatinsky et al, "MAGIC – Memristor Aided LoGIC," unpublished.
[14] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser,

"Memristor-based IMPLY Logic Design Procedure," Proceedings of
the IEEE International Conference on Computer Design, pp. 142-147,
October 2011.

[15] K. Eshraghian, course notes on "Memristive Circuits and Systems,"
Technion, June 2011.

[16] R. H. Wilkinson, "A Method of Generating Functions of Several
Variables Using Analog Diode Logic," IEEE Transactions on
Electronic Computers, Vol. EC-12, No. 2, pp. 112-129, April 1963.

[17] G. G. Langdon Jr., Logic Design – A Review of Theory and Practice,
Academic Press, 1974.

[18] T. Y. Chan, J. Chen, P. K. Ko, and C. Hu, "The Impact of Gate-Induced
Drain Leakage Current on MOSFET Scaling," Proceedings of the IEEE
International Electron Devices Meeting, pp. 718-721, December 1987.

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. XXX, NO. XXX, XXX 2013

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes

must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.



Abstract — An attractive "beyond Moore" approach is to

combine standard CMOS and memristors, novel devices

developed primarily as memory, to perform logical operations. In

this paper, MRL (Memristor Ratioed Logic) - a hybrid CMOS-

memristor logic family - is described. In this logic family, OR and

AND logic gates are based on memristive devices, and CMOS

inverters are added to provide a complete logic structure and

signal restoration. The MRL family is compatible with standard

CMOS logic since the logical state is represented by voltage as in

CMOS. Design issues and considerations are discussed, including

area, power, and speed, and a case study of an eight-bit full adder

is presented.

Index Terms—Memristive systems, memristor, SPICE, logic

design.

I. INTRODUCTION

he advancements of computer capabilities over the past

several decades are closely linked to the efficient

exploitation of semiconductor technology. Since the 1960's,

integrated circuits have provided significant growth in the

number of processing elements and memory bits available to

system developers. This growth has enabled increasingly

complex computer hardware. Simultaneously, semiconductor

technology has provided orders of magnitude improvements in

speed, power consumption, and reliability, together with

significant reductions in the cost per device. These trends are

direct consequences of frequent miniaturization of device

dimensions in the semiconductor fabrication process. The

exponential rate of microelectronic device scaling cannot be

sustained indefinitely. There is broad agreement that nanoscale

CMOS transistor sizes will approach fundamental physical

limits within the next decade [1].

Once devices can no longer be scaled, microelectronic

technology will require innovations to enable continued

growth in the complexity of hardware systems. These

Manuscript received 13rd October, 2013. This work was partially

supported by Hasso Plattner Institute, by the Advanced Circuit Research

Center at the Technion, and by the Intel Collaborative Research Institute for

Computational Intelligence (ICRI-CI).

S. Kvatinsky, G. Satat, N. Wald, A. Kolodny, and U. C. Weiser are with

the Department of Electrical Engineering, Technion – Israel Institute of

Technology, Haifa 32000, Israel. (S. Kvatinsky corresponding author phone:

972-77-887-1923; fax: 972-4829-5757; e-mail: skva@tx.technion.ac.il).

E. G. Friedman is with the Department of Electrical Engineering and

Computer Engineering, University of Rochester, Rochester, NY 14627, USA.

enhancements may include revolutionary new devices such as

carbon nanotubes or spintronic devices rather than CMOS.

Less radical hybrid approaches, combining standard CMOS

with new technologies, may provide more practical and

continuous growth paths during the next 20 to 30 years. An

example is the fabrication of multi-layered integrated circuits

(i.e., three-dimensional circuits [2]) which are becoming

commercially available. Other attractive new technologies

which will extend the capabilities of CMOS are memristors [3]

and memristive devices [4]. These devices are added in the

metal layers above the standard CMOS layers, providing a

significant increase in functional density.

In this paper, a novel logic family named MRL (Memristor

Ratioed Logic) combining memristors with CMOS is

described. This logic family may be useful to further extend

CMOS technology and perform logic in the "beyond Moore"

era. The rest of the paper is organized as follows: memristors

and memristor-based logic circuits are described in Section II.

Design principles and constraints of this logic family are

discussed in Section III. A case study of an eight-bit full adder

is used to demonstrate the MRL design process in Section IV.

The dependence of MRL gates on the behavior of memristive

devices and other design considerations are discussed in

Sections IV and V.

II. MEMRISTOR-BASED LOGIC

In recent years, novel memory technologies have emerged,

especially to replace Flash technology. These emerging

technologies are based on two terminal devices with varying

resistance and include Phase Change Memory (PCM),

Resistive RAM (RRAM), and Spin Torque Transfer

Magnetoresistance Random Access Memory (STT-MRAM).

These technologies can be described as memristive devices

[4], [15], which their existence was suggested by Chua and

Kang in 1971 and 1976. The focus of this paper is on bipolar

memristive devices [5], such as TiO2 resistive switch and STT-

MRAM. In bipolar memristive devices, the resistance of the

device increases when current flows in one direction, and

decreases when current flows in the other direction. The

symbol, polarity, and behavior of a bipolar memristive device

are shown in Figure 1.

Although a memristive device is typically regarded as a

memory device, where the resistance represents the stored

state variable, a memristor can also be used to provide

MRL - Memristor Ratioed Logic for Hybrid

CMOS-Memristor Circuits

Shahar Kvatinsky, Student Member, IEEE, Nimrod Wald, Guy Satat, Eby G. Friedman, Fellow, IEEE,

Avinoam Kolodny, Senior Member, IEEE, and Uri C. Weiser, Fellow, IEEE

T

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. XXX, NO. XXX, XXX 2013

2

Figure 1. (a) Memristive device symbol. The thick black line on the

left side of the device represents the polarity of the device. If the

current flows into the device, the resistance of the device decreases.

If the current flows out of the device, the resistance increases. (b)

The current-voltage curve of a memristive device exhibit hysteresis

for a cyclic input.

combinational Boolean functions. Several memristive device

models have been developed. The TEAM (ThrEshold

Adaptive Memristor) model [6] is used in this paper since this

model can support any memristive device. The TEAM model

describes the behavior of the device by the following equations

()
1 (), 0 ,

()
0, ,

()
1 (), 0,

off

on

off off off

off

on off

on on on

on

i t
k f x i i

i
dx t

i i i
dt

i t
k f x i i

i





  
         


  


 
     
 

 () (),OFF ON
ON on

off on

R R
v t R x x i t

x x

 
    

  

 (2)

where koff and kon are fitting parameters, αon and αoff are the

adaptive nonlinearity parameters, ioff and ion are the current

threshold parameters, fon(x) and foff(x) are window functions,

RON and ROFF are, respectively, the minimum and maximum

resistance of the memristor, and xon and xoff are, respectively,

the minimum and maximum allowed value of the internal state

variable x.

Practical bipolar memristive devices are compatible with

standard CMOS technology [7]. These devices are fabricated

in the metal layers of an integrated circuit, where the

memristive effects occur in the oxide between the metal layers

(e.g., in TiO2) or within the metal layers (e.g., in STT-

MRAM). Memristive devices can therefore be fabricated

physically above the CMOS transistors. The size of a typical

memristive device is relatively small, since the fabrication

process is similar to processing a via between metal layers (a

typical area size for a RRAM cell can be less than 4 F
2
, where

F is the feature size). Hence, memristive-based circuits may be

more dense than transistor-only CMOS circuits. Memristive

devices therefore exhibit high density and good scalability.

The read and write time for these devices can be as fast as 100

picosecond [8], although currently typical values are more than

a nanosecond. Currently, except for STT-MRAM, memristive

devices suffer from endurance limitations, where the number

of allowed writes per cell is approximately 10
10

 [9]. It is

believed however that this limit will increase to at least 10
15

[10]. In this paper, it is therefore assumed that endurance is not

a critical limitation.

With deeply scaled CMOS, logic circuits suffer from

problems such as leakage current, requiring novel logic

structures. The use of memristors as logic circuits can save

physical area, increasing logical density, thereby opening

opportunities for novel functionality. Although the concept of

memristive devices as logic gates is at an early stage of

development, several approaches have been proposed, mainly

for logic gates within a crossbar array [11], [12], [16].

Memristive-based logic families within a crossbar cannot be

easily integrated with standard CMOS logic since a resistance,

rather than a voltage, represents the logical state. To integrate

these logic families with standard voltage based CMOS logic,

a conversion mechanism is required. This added circuitry

reduces the efficiency of integrating CMOS and memristive-

based logic families within a memory. Furthermore, the

operation of these memristor-based logic families requires a

sequence of several time phases. These requirements limit the

speed of the logic operation.

III. MEMRISTOR RATIOED LOGIC (MRL) FAMILY

In this section, the MRL (Memristor Ratioed Logic) family

is presented. In MRL, the programmable resistance of the

memristive devices is used to compute Boolean AND/OR

functions. The memristive devices are used solely as

computational elements and not as memory elements. In this

proposed logic family, the logical value is represented by a

voltage, consistent with CMOS, enabling the integration of this

hybrid logic family with standard CMOS logic. Since OR and

AND functions are non-inverting, a complete logic structure

can be achieved by adding a standard CMOS inverter.

The MRL family is different from other hybrid CMOS-

memristor circuits, where the memristors act as configurable

switches. In previous hybrid CMOS-memristor circuits, the

resistance of the memristive devices is programmed prior to

operation, and does not change during execution (see e.g., [7],

[13], [14]).

A. Memristor-based logic gates

Two-input OR and AND logic gates consist of two

memristive devices connected at opposite polarities, as shown

in Figures 2a and 2b. The output node is the common node of

the memristive devices, while the signal on the other terminal

of each memristive device is an input to the logic gate.

Due to the polarity of the memristive devices, in an OR

logic gate, when current flows into the logic gate through one

of the inputs, the resistance of the memristive device

decreases. Similarly, in an AND logic gate, the opposite

polarity is used, and the resistance of the memristive device

increases when current flows into the device.

For identical inputs, the voltage drop between the inputs is

zero; hence no current flows within the circuit. The output

voltage is therefore equal to the input voltage. For the case

where both inputs are logical zero (one), the ground (supply)

(1a)

(1b)

(1c)

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. XXX, NO. XXX, XXX 2013

3

Figure 2. Schematic and behavior of MRL gates. (a) The schematic of

an OR logic gate, and (b) an AND logic gate. Both logic gates consist

of two memristive devices where the polarity of the memristive devices

is the only structural difference. The behavior of (c) an OR logic gate,

and (d) an AND logic gate when VIN1 = '1' and VIN2 = '0'. The current

flows from VIN1 to VIN2 and the resistance of the memristive devices

changes for the (e) OR, and (f) AND logic gates. The continuous and

dashed lines are, respectively, the resistance of R1 and R2.

voltage is at the inputs, the output voltage is ground (supply),

and the logical state of the output is logical zero (one).

For the case where the inputs are different, i.e., one input is

logical one and the other input is logical zero, current flows

from the high voltage (the terminal of the memristive device

where the input is logical one) to the low voltage (the terminal

of the memristive device where the input is logical zero),

thereby changing the resistance of both memristive devices.

An OR logic gate is illustrated in Figure 2c. The resistance of

the memristive device connected to the logical one input R1

becomes lower, and the resistance of the memristive device R2

becomes higher, as shown in Figure 2e. At the end of the

computational process, the resistance of both memristive

devices is approximately RON and ROFF, respectively, the

minimum and maximum resistance of the device. Assuming

ROFF >> RON, the output voltage of the logic gate is determined

by the voltage divider across the memristive devices,

, .

off

out OR high high

off on

R
V V V

R R
 


 (1)

In the AND logic gate, the opposite polarity as compared to

the OR logic gate is used. The behavior is illustrated in Figures

2d and 2f. The output voltage of the AND logic gate in this

case is

, 0.on

out AND high

off on

R
V V

R R
 


 (2)

Note that the initial resistance of both memristive devices

has no effect on the result of the computation. The only effect

of the initial resistance on the behavior of the logic gate is the

delay of the execution for the case where the inputs are

different, i.e., the time required to change the resistance of

both memristive devices to either the maximum or minimum

resistance. The delay is also dependent on the voltage level of

the input signal. A relatively low voltage level increases the

delay. It is possible that the memristive devices do not fully

switch and achieve the maximum and minimum resistance

since the input voltages are not applied for a sufficiently long

time or the input voltage is too low. In this case, it would be

difficult to distinguish between the different output levels. The

MRL family is inspired by Diode Logic and shares some

characteristics, as both logic families are non-inverting and

non-restoring. The number of inputs for both MRL gates can

be extended in a similar way as diode logic, as shown in

Figure 3a and 3b. MRL gates can also be cascaded as shown in

Figure 3e.

B. Adding CMOS-based inversion

To provide a complete logic family, an inverter is needed in

addition to the OR and AND logic gates. Furthermore,

memristive devices are passive elements and therefore cannot

amplify signals. The MRL OR and AND logic gates lack

signal restoration, i.e., the output voltage levels degrade, as

expressed by (1) and (2). These logic gates cannot be cascaded

for too many stages before signal amplification is required.

Since the logical state of the input and output in MRL logic

gates is represented as a voltage, these logic gates can operate

with standard CMOS inverters. The addition of a CMOS

inverter to the MRL family solves both problems. A schematic

of a two input MRL NAND and NOR is shown in Figures 3c

and 3d.

C. Dynamic behavior and speed of a single logic gate

In the design process of an MRL gate, several issues need to

be considered. These characteristics include the delay of the

logic gate, power dissipation, and output signal degradation.

The speed of the logic gate is determined by the time

required to achieve the desired resistance when the inputs are

different (logical one and zero). The delay needs to be

determined for the case where both memristors have an initial

resistance of ROFF and the initial current is therefore minimal.

In this case, the delay is the time required to change the

resistance of one of the memristors to RON. This time depends

on the supply voltage and the specific behavior of the

memristors. The delay as a function of supply voltage is shown

in Figure 4a. The delay can be approximately determined from

'
,OFF

high

kQ R
T

V
 (3)

where Q' is the charge required to switch the resistance and

Vhigh is the logical one voltage. k is a constant that depends

upon the memristor model. For the binary resistance model

[12], k equals 2, and for the linear ion drift model [6], k equals

1.5. Note that a lower ROFF or a higher voltage decreases the

delay.

 The switching process may also produce dynamic hazards.

When the input changes from one input case to another input

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. XXX, NO. XXX, XXX 2013

4

Figure 3. Schematic of an (a) N-input MRL OR, (b) N-input MRL

AND, (c) two-input MRL NAND, (d) two-input MRL NOR, and (e) a

two-stages MRL gates, where the first stage consists of OR gates and

the second stage is an AND gate.

Figure 4. Delay of an MRL gate as a function of supply voltage. (a)

Delay for different memristor characteristics as listed in Table 1 and

(b) the delay for linear ion drift memristor [6]. The difference in the

delay of an MRL gate with and without a load capacitance of 10 fF is

relatively small (maximum difference of 4%). The difference between

the theoretical and simulated delay increases with the supply voltage

(varies from 1% to 40%). The parameters for the linear ion drift

model are µV = 10-5 m2s-1V-1, ROFF = 100 kΩ, RON = 1 kΩ, D = 10 nm

(Q' = 10-14 C).

case, i.e., changing the inputs from (0,1) to (1,0) and vice

versa, the output produces a dynamic hazard until the

switching process is completed. The dynamic behavior of the

OR and AND logic gates for different input cases is illustrated

in Figures 5a and 5b. During the switching process, the output

value is erroneous, although this behavior occurs for a shorter

period than the delay of the logic gate.

D. Power consumption of a single logic gate

 When both inputs are identical, no current flows in the

circuit and the power is zero. If the inputs are different, current

flows and power is consumed. The power to switch the

memristive devices depends upon the resistance of both

memristive devices and changes during the computational

process. Gener ally, the power consumption of an MRL gate

for these input cases is

2

1 2

() ,
() ()

highV
P t

R t R t



 (4)

where Vhigh is the voltage of logical one (supply voltage) and is

assumed to be constant, and R1(t) and R2(t) are the resistance

of the memristive devices, which changes during the

computational process. The value of R1(t) and R2(t) depends

upon the initial states and the value of Vhigh. For the case of

different inputs, a constant current flows from one input to the

other input after the resistance of the memristive devices

reaches the desired magnitude and the output becomes stable

as illustrated in Figure 5c. The static power consumed in these

cases is approximately

2

.
high

static

on off

V
P

R R



 (5)

 The static power is a disadvantage as compared to CMOS

logic. To lower the static power, the input signals need to be

removed once the output state becomes stable. There is a need

to activate the circuit only for the time required to execute the

computation (i.e., the delay of the logic gates) and store the

result. It is desired therefore to pipeline the execution.

E. Concatenating MRL gates

The output voltage is dependent on the voltage divider

across the two memristive devices. This voltage divider

degrades the output signal. For memristors with a current

threshold [6], the tolerable degradation is limited by this

threshold. Greater degradation can cause incorrect operation.

Although the degradation for a single MRL gate is relatively

small when ROFF >> RON, for cascaded logic gates, this

degradation accumulates and may become significant.

The degradation as a function of the number of logical

stages and the ROFF/RON ratio is shown in Figure 6. The

behavior of an MRL XOR logic gate is depicted in Figure 7 to

illustrate the signal degradation. Note that these signal

degradation issues are circuit dependent, i.e., the degree of

signal degradation is dependent on the structure of the logic

circuit as well as the specific parameters of the memristive

devices.

The degradation phenomenon can be avoided by

occasionally amplifying the signal by CMOS inverters or

buffers. Integrating a CMOS inverter into an MRL OR or

AND logic gate however adds capacitance to the circuit. The

delay of the logic gates is therefore also dependent on the

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. XXX, NO. XXX, XXX 2013

5

Figure 5. Dynamic behavior of MRL gates. Waveforms of (a) an

OR logic gate, and (b) an AND logic gate. The output voltage is

shown for different input states. Dynamic hazards occur when the

input changes to ('0', '1') or ('1', '0'), which is marked by an oval. (c)

The power consumption for both logic gates is identical. For the

cases where the input states are different ('0', '1') or ('1', '0'), static

power is consumed after the output is stable.

Figure 6. Output degradation. (a) Output degradation as a function

of the number of logical stages. ROFF/RON = 100. The maximum

degradation for five and ten logical stages is, respectively, 12.4% and

30.25%. (b) Output degradation as a function of the ROFF/RON ratio

for ten logical stages. The maximum degradation for a ratio of 100,

500, and 4000 is, respectively, 30.25%, 9.5%, and 1.4%. The

simulations are based on linear memristors (model 1 in Table 1).

Figure 7. Two-input MRL XOR. (a) A schematic of MRL XOR,

consisting of one memristor-based OR, two memristor-based AND,

and two CMOS inverters, and (b) dynamic behavior of an MRL

XOR logic gate. The high voltage is 4 volts. The output voltage

degrades by approximately 15% for the input cases of ('1', '0') and

('0', '1').

CMOS gate capacitance which increases the delay. The actual

delay is higher than the delay determined by (3) and shown in

Figure 4b, although this difference is relatively small (0.1% to

4%). The degradation of each logic gate can be determined

from (1) and (2).

MRL logic gates can be inserted into a standard cell library

as in standard CMOS logic. These standard cell libraries can

consist of NOR and NAND logic gates, where memristive-

based OR (AND) and a CMOS inverter produces the

functionality of a NOR (NAND) logic gate. Using NOR and

NAND as standard cells overcomes the degradation issue since

no current flows from the output node during steady state as

the output node of the AND (OR) logic gate is connected to a

CMOS gate. In this approach, each standard cell requires two

connections between the CMOS and memristive layers. This

approach is robust and relatively simple to design, albeit less

efficient in terms of power consumption and area as compared

to a circuit, where the CMOS inverter is only applied when

signal restoration is needed or when the logic function requires

signal inversion (an optimized approach).

IV. EIGHT-BIT FULL ADDER CASE STUDY

To investigate the MRL family, an eight-bit full adder is

considered as a case study. Five different parameter sets of

memristive devices are chosen to evaluate a variety of

memristive characteristics. The primary parameters are the

linearity coefficient and the current threshold (αon, αoff, ion, and

ioff in the TEAM model [6]) varying from a linear memristor

with no threshold, i.e., the change in the resistance is linearly

dependent on the current, to a nonlinear memristor with a

current threshold. All of the other parameters are chosen to

exhibit hysteretic behavior and cannot be therefore

numerically compared to CMOS-only logic. The parameters

for the memristive devices are listed in Table 1. In this case

study, the standard cell approach and the optimized approach

are designed with 0.12 µm CMOS and simulated in SPICE.

Schematics of the one-bit full adders used in this case study for

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. XXX, NO. XXX, XXX 2013

6

Figure 8. Schematic of an MRL one bit full adder used in the case

study (S = XOR[A, B, CIN], COUT = A∙B + CIN∙XOR[A, B]); (a) for the

standard cell approach and (b) the optimized approach. The standard

cell approach requires 18 memristors, 18 CMOS transistors, and 18

vias. The optimized approach, however, requires 18 memristors and

only eight CMOS transistors and six vias.

TABLE 1. DIFFERENT PARAMETERS OF THE MEMRISTIVE DEVICES USED

IN THE CASE STUDY

 Device

Parameter

Linear

with no

current

thresh-

old

Linear

with

current

thresh-

old

Low

non-

linearity

Non-

linear

Highly

non-

linear

Parameter

set number

1 2 3 4 5

αoff = αon 1 1 3 5 10

ioff = -ion 100 fA 20 μA 5 μA 5 μA 10 μA

koff = -kon 5∙ 10-8 10 0.1 0.01 0.001

Ron 1 kΩ

Roff 100 kΩ

TABLE 2. SUMMARY OF CASE STUDY

Parameter

set

Supply

voltage

[Volt]

Number of

memristors

Number of

CMOS

transistors

Number

of vias

CMOS – based 1 - 288 -

Standard cell 1 144 144 144

1 1 144 160 80

2 6.5 144 228 96

3 3 144 128 80

4 4 144 160 80

5 6.5 144 256 96

TABLE 3. POWER CONSUMPTION AND ENERGY FOR CASE STUDY

Parameter set Average power

[normalized]

Total energy

[normalized]

Standard cell approach

(for parameter set 1)

1 1

1 0.72 5.02

2 4.683 5342.1

3 5582 96781

4 60.8 311.2

5 423812 533382

both approaches are shown in Figure 8. The optimized

approach saves CMOS transistors (eight instead of 18 per one-

bit full adder) and vias (six instead of 18 per one-bit full

adder).

The eight-bit full adder in this case study is achieved using

eight cascaded one-bit full adders. A tradeoff between signal

integrity and minimizing the number of vias is the primary

design issue. To produce a distinct value for the output of the

eight-bit full adder (Si for i = 1, …, 8 and COUT), a set of

CMOS buffers is added to the circuit to amplify the output

signal. For the intermediate signals (COUT → CIN), no

constraint is placed on the signal other than to maintain the

correct logical polarity.

For parameter sets 1, 3 and 4 (memristive devices with a

relatively low current threshold), the one-bit full adder shown

in Figure 8 exhibits correct logical functionality, which

requires amplifying the signal between different bit levels.

Parameter sets 2 and 5 demonstrate a high current threshold

and are therefore more sensitive to signal degradation due to

partial switching. For these parameter sets, the circuit fails for

all CMOS compatible voltages. Hence, for parameter sets 2

and 5, buffers have been added to each one-bit full adder to

ensure correct logical behavior. The required voltage levels

and number of components for each parameter set are listed in

Table 2. The normalized power consumption
1
 for each

parameter set is listed in Table 3.

Note from the data listed in Tables 2 and 3 that unlike most

digital applications [12], a linear memristive device with no

threshold (as in parameter set 1) is preferable. Linear

memristive devices minimize the number of connections

between the CMOS and memristive layers and reduce power.

Furthermore, the delay time of the MRL gates with linear

memristive devices is relatively small, as shown in Figure 4a.

Using nonlinear memristive devices requires a higher voltage,

slower clock, and greater area due to the additional CMOS

buffers and vias. The high voltage significantly increases the

power consumption.

The optimized approach minimizes the delay and the

number of vias, and consumes less dynamic power as

1 The power is normalized since the parameter set of the memristive

devices is not correlated to a specific CMOS process.

compared to a standard cell library. This approach consumes,

however, more total energy since the static power is non-zero.

V. CONCLUSIONS

The advantages of combining memristors and CMOS

transistors are shown in this paper. Memristor Ratioed Logic

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. XXX, NO. XXX, XXX 2013

7

(MRL), a hybrid CMOS-memristive logic family, is described.

The compatibility of memristors and CMOS is exploited to

increase logic density. A design example is also described

saving approximately 50% in area as compared to CMOS

logic.

A linear memristive device with no current threshold is

shown to be preferable for the MRL logic family, unlike other

digital applications, where a threshold and nonlinearity are

desirable. MRL gates based on linear memristive devices are

faster, smaller, and consume less power as compared to

nonlinear memristive devices.

The Memristor Ratioed Logic family opens opportunities

for additional hybrid memristive/CMOS integrated circuit

structures to increase logic density. Although standalone

CMOS logic is preferable in terms of performance as

compared to MRL, a hybrid approach can further extend

CMOS technology and enhance computational abilities for

next generation digital integrated circuits.

REFERENCES

[1] S. E. Thompson and S. Parthasarathy, “Moore's Law: the Future of Si

Microelectronics,” Materials Today, Vol. 9, No. 6, June 2006.

[2] V. F. Pavlidis and E. G. Friedman, Three-Dimensional Integrated

Circuit Design, Morgan Kaufmann, 2009.

[3] L. O. Chua, “Memristor – the Missing Circuit Element,” IEEE

Transactions on Circuit Theory, Vol. 18, No. 5, pp. 507-519,

September 1971.

[4] L. O. Chua and S. M. Kang, “Memristive Devices and Systems,”

Proceedings of the IEEE, Vol. 64, No. 2, pp. 209-223, February 1976.

[5] P. Vontobel, W. Robinett, J. Straznicky, P. J. Kuekes, and R. S.

Williams, “Writing to and Reading from a Nano-Scale Crossbar

Memory Based on Memristors,” Nanotechnology, Vol. 20, No. 42, pp.

1-21, October 2009.

[6] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "TEAM -

ThrEshold Adaptive Memristor Model," IEEE Transactions on Circuits

and Systems I: Regular Papers, Vol. 60, No. 1, pp. 211-221, January

2013.

[7] J. Borghetti, Z. Li, J. Strasnicky, X. Li, D. A. A. Ohlberg, W. Wu, D. R.

Stewart, and R. S. Williams, "A Hybrid Nanomemristor/Transistor

Logic Circuit Capable of Self-Programming," Proceedings of the

National Academy of Sciences, Vol. 106, No. 6, pp. 1699-1703,

February, 2009.

[8] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams,

"Sub-Nanosecond Switching of a Tantalum Oxide Memristor,"

Nanotechnology, Vol. 22, No. 48, pp. 1-7, November 2011.

[9] J. J. Yang et al, "High Switching Endurance in TaOx Memristive

Devices," Applied Physics Letters, Vol. 97, No. 23, pp. 1-3, December

2010.

[10] J. Nickel, "Memristor Materials Engineering: From Flash Replacement

Towards a Universal Memory," Proceedings of the IEEE IEDM

Advanced Memory Technology Workshop, December 2011.

[11] G. Snider, "Computing with Hysteretic Resistor Crossbars," Applied

Physics A, Vol. 80, No. 6, pp. 1165-1172, March 2005.

[12] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser,

"Memristor-based IMPLY Logic Design Procedure," Proceedings of

the IEEE International Conference on Computer Design, pp. 142-147,

October 2011.

[13] Q. Xia et al., "Memristor-CMOS Hybrid Integrated Circuits for

Reconfigurable Logic," Nano Letters, Vol. 9, No. 10, pp. 3640-3645,

August 2009.

[14] J. Rajendran, H. Manem, R. Karri, and G. S. Rose, "An Energy-

Efficient Memristive Threshold Logic Circuit," IEEE Transactions on

Computers, Vol. 61, No. 4, pp.474-487, April 2012.

[15] L. O. Chua, "Resistance Switching Memories are Memristors," Applied

Physics A: Materials Science & Processing, Vol. 102, No. 4, pp. 765-

783, March 2011.

[16] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U.

C. Weiser, "Memristor-based Material Implication (IMPLY) Logic:

Design Principles and Methodologies," IEEE Transactions on Very

Large Scale Integration (VLSI), (in press).

http://pubs.acs.org/doi/abs/10.1021/nl901874j
http://pubs.acs.org/doi/abs/10.1021/nl901874j
http://www.springerlink.com/content/0947-8396/
http://www.springerlink.com/content/0947-8396/
http://www.springerlink.com/content/0947-8396/102/4/

Abstract – In-memory computation is one of the most promising features of

memristive memory arrays. In this paper, we propose an array architecture that

supports in-memory computation based on a logic array first proposed in 1972

by Sheldon Akers. The Akers logic array satisfies this objective since this array

can realize any Boolean function, including bit sorting. We present a hardware

version of a modified Akers logic array, where the values stored within the array

serve as primary inputs. The proposed logic array uses memristors, which are

nonvolatile memory devices with noteworthy properties. An Akers logic array

with memristors combines memory and logic operations, where the same array

stores data and performs computation. This combination opens opportunities for

novel non-von Neumann computer architectures, while reducing power and

enhancing memory bandwidth.

Keywords: memristor, memristive systems, logic array, memory array, von

Neumann architecture, Akers logic array.

I. INTRODUCTION

Conventional computers are based on a von Neumann architecture, where separate

units process and store data. A different approach is to process data within the same

unit that stores the data (i.e., process data within memory). An illustration of both

architectures is shown in Figure 1. In this paper, a hardware version of processing

Logic Operations in Memory Using a

Memristive Akers Array

Yifat Levy
*
, Jehoshua Bruck

**
, Yuval Cassuto

*
, Eby G. Friedman

, Avinoam Kolodny

*
,

Eitan Yaakobi
**

, and Shahar Kvatinsky
*

* Department of Electrical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel,

e-mail:{yifatl@tx, ycassuto@ee, kolodny@.ee, skva@tx}.technion.ac.il

** Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, e-mail: {bruck,

yaakobi}@caltech.edu

*** Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY

14627 USA. e-mail: friedman@ece.rochester.edu

mailto:bruck,%20yaakobi%7d@caltech.edu
mailto:bruck,%20yaakobi%7d@caltech.edu
mailto:friedman@ece.rochester.edu

within memory is proposed. The proposed circuit is based on a study of rectangular

logic arrays, first proposed in 1972 by Sheldon Akers [1].

In an Akers logic array (or, in short, an Akers array), the execution of any Boolean

function is performed by flowing data across an array of primitive logic cells. The

data are transferred from each primitive logic cell to neighboring cells, as shown in

Figure 2a. The operation of an Akers array is similar to systolic array [2] and cellular

automata [19]. The primitive logic cell has three inputs and two outputs, as shown in

Figure 2b. The inputs of the primitive logic cell include two control inputs x and y and

a variable input z, which is replaced in our circuit by an internal state (i.e., the stored

data). The primitive logic cell performs a predefined logical operation f(x, y, z), which

is described below. The output of each primitive logic cell is used as control inputs x

and y of, respectively, the bottom and right neighboring primitive logic cells.

To execute any Boolean function within an Akers array, specific input values are

inserted as control inputs into the left-most column and the upper-most row. The

control input y of the left-most column is set to 1 for all rows, and the control input x

of the upper-most row is set to 0 for all columns, as shown in Figure 2a. These control

inputs along with the array structure and the function f(x, y, z) determine the Boolean

function computed by the array. The inputs to this Boolean function are the bits stored

within the array cells. The output of the Boolean function computed by the Akers

array is the output of the primitive logic cell at the bottom right of the array. It is also

possible to define multiple Boolean functions (or, alternatively, a multi-bit output) on

the same Akers array, in which case additional primitive cell outputs are used as

external functional outputs. To date, an Akers array has been treated as a

mathematical concept since the benefit of an Akers logic array with conventional

semiconductor technology (i.e., CMOS technology) is limited, as described in Section

II.

The emergence of memristive technologies [3] enables the integration of

computation and memory, including logic within memory [5-6, 20-26]. The high

density of memristors and compatibility with CMOS makes an Akers array with

memristors practical. In this paper, a memristive Akers array is proposed, where the

variables z are stored within the memristive cells, and the control inputs x and y are

voltages. The proposed memristive Akers array serves as a practical example of in-

memory computation.

The design of the proposed memristive Akers array is demonstrated here by a small

example of a four by four array, producing a variety of array operations, including a

bit sorting algorithm as a case study. The rest of the paper is organized as follows. In

Section II, background describing both the Akers array and memristors is provided.

The proposed memristive Akers array is described and evaluated in, respectively,

Sections III and IV, followed by a discussion of design considerations for larger

arrays in Section V. A small example of different array operations is described in

Section VI, followed by some concluding remarks in Section VII.

II. BACKGROUND

In this section, the theory of the original Akers logic arrays is described and the

basic principles of memristive devices are reviewed, including the model used in this

paper for evaluating the proposed memristive Akers array.

A. Akers Logic Array

An Akers logic array is a two-dimensional array of identical primitive logic cells

connected in a rectangular grid, as shown in Figure 2a. The primitive logic cell in the

array is a three input logic gate that executes the logical operation,

Note that in the original Akers array [1], four alternative logical operations that

generate the correct behavior of the array are proposed. In this paper, only (1) is used

due to the easy implementation with memristors.

The output of each primitive logic cell is transferred to the two neighboring

primitive logic cells in the array – one below and one to the right of the array. The

transferred data are the x and y control inputs of, respectively, the vertical and

horizontal neighbors, as shown in Figure 2a. The control input y of the left-most

column is set to 1 for all rows, and the control input x of the upper-most row is set to

0 for all columns.

The execution of a Boolean function is performed by organizing the contents of the

array cells according to the particular specification, and reading the functional output

from the output of the lower-right cell (or from multiple cell outputs in the case of a

Boolean function with a multiple bit output or, alternatively, multiple Boolean

functions simultaneously computed within the same array). Hence, the same array can

be used for different Boolean functions, each specifying a different organization of

inputs. Examples of several Boolean functions are illustrated in Figure 3.

 Sorting of four bits is shown in Figure 3a. The binary sorting

function on inputs is defined as the Boolean functions , where

 if the number of "1" inputs among is greater than

(i.e., is the maximum value and is the minimum of the output). For the sorting

function, each input variable of the sorting Boolean function is replicated a number of

times up to the number of inputs [1]. For example, is replicated four times, while

 is replicated two times. The number of primitive logic cells is therefore

 where n is the number of inputs to the sorting Boolean function. The

output bits of the sorting Boolean function are placed along the diagonal of the array,

as shown in Figure 3a.

Another example for a Boolean function within an Akers array is a four-bit XOR

[1], as shown in Figure 3b. The variable inputs of the primitive logic cells are

arranged similarly to the sorting array, where the complementary value of the XOR

inputs are also stored as input variables of the primitive logic cells. The output of the

XOR operation is the output of the bottom right primitive logic cell. The number of

primitive logic cells for an n-bit XOR is .

Since the inputs of the Boolean function must be replicated within an array, the

number of primitive logic cells increases quadratically with the number of inputs of

the Boolean function. A CMOS Akers logic array therefore requires significant area,

making an Akers array impractical with standard CMOS. In contrast, the density and

circuit architecture of memristive devices make the Akers array natural for memories.

A memristive Akers array within memory can be denser than standard SRAM

(without computation capabilities), as listed in Table 1.

B. Memristors

Memristors and memristive devices [3, 7] are two-port passive elements with

varying resistance. The change in the resistance of these devices depends on the

current flowing through the device (or, alternatively, the voltage across the device), as

shown in Figure 4. While in theory the change in the resistance of a memristor

depends directly on the current (or voltage), for memristive devices the dependence

can be more complicated and described by internal state variables [7]. In this paper,

the term memristor is used to describe both memristors and memristive devices.

Since 2008, numerous emerging nonvolatile memory technologies have been

connected to the theory of memristors [8-12]. These technologies are nonvolatile, fast,

dense, CMOS compatible, low power, and have high write endurance. The

compatibility of memristors with CMOS enables the use of memristors not only as

memory, but also as logic circuits [4-6, 13, 20-26].

Several models have been proposed to describe the behavior of memristors. In this

paper, the TEAM model is used [14]. The TEAM model is general and can fit

memristors from different technologies. In the TEAM model, it is assumed that a

memristor has current thresholds, ioff and ion, and an internal state variable x. When the

current flowing through the memristor is above the current thresholds, the memristor

changes state either from to or from to depending upon the

original state and direction of the current. The voltage-current relationship and the

change in state variable are described by

 (2)

where RON and ROFF are, respectively, the minimum and maximum resistance of the

memristor, xon and xoff are, respectively the minimum and maximum value of the state

variable x, fon(x) and foff(x) are window functions (the TEAM window function is used

in this paper), and koff, kon, αoff, and αon are fitting parameters. An example of an I-V

curve of the TEAM model is shown in Figure 5.

III. PROPOSED MEMRISTIVE AKERS LOGIC ARRAY

As previously mentioned, an Akers array with conventional CMOS technology is

impractical due to the significant area requirements. The use of memristors, which are

dense and fabricated physically above the CMOS transistors, significantly reduces the

area.

The proposed memristive Akers primitive logic cell is based on the structure of

complementary memristors (or complementary resistive switches, CRS) [15, 16]. In

the proposed memristive realization of an Akers array, the input variable z is the

stored internal state of a memristor. The inputs of the executed Boolean function are

therefore treated as stored data within a memristive memory array. In this section, the

structure of the primitive logic cell is described as well as the operation of the array.

A. Primitive logic cell structure

The proposed primitive logic cell realizes the logical connectivity described by (1).

The primitive cell consists of two anti-serial memristors (connected with opposite

polarity), as shown in Figure 6a. The control inputs of the primitive logic cell x and y

are voltages (logical one and zero are, respectively, a positive voltage Vr and ground).

The variable input z is the stored logical state of memristor , which is represented

by the resistance of the device (low and high resistances are considered, respectively,

as logical one and zero). The memristor has the complementary logical state of

 . The stored logical state of and are written during a write operation prior

to execution.

Ideally, the memristors can be modeled as switches, where a high resistance is an

open circuit and a low resistance is a short circuit, as shown in Figure 6b. In an ideal

model, one switch is open and the other switch is closed. If z is logical one, the switch

of z is closed and the logical value of y is transferred to the output. If z is logical zero,

the switch is open and the complementary switch is closed, transferring x to the

output.

The precise output of the primitive logic cell is the result of a voltage divider

between and . The output voltage Vf is

where and are, respectively, the resistance of memristors and , varying

from to and are the input voltages x and y. The output voltage Vf for

different input conditions is listed in Table 2, demonstrating that, as required, the

primitive logic cell indeed executes the Boolean function (1).

B. Logic array operation

The Akers logic array is an array of primitive logic cells that can also be used as a

memory array, as shown in Figure 7. Unlike regular memory arrays, the memristive

Akers logic array can compute different Boolean functions in addition to storing data.

The computation of Boolean functions within the logic array is divided into two

stages. The initial stage is a "write" operation to the memristors. In this stage, the

initial logical state of memristors and is simultaneously written. This stage can

be part of a regular write operation of the memory or, alternatively, an explicit

initialization prior to computing the Boolean function. In this paper, initialization of a

single primitive logic cell is evaluated. Writing to the array (e.g., addressing the

specific primitive cells within the array and parallelizing the writes) is only briefly

discussed since this process is similar in any CRS-based memory (e.g., see [16]).

Relevant adjustments (e.g., adding CMOS selectors to achieve isolation between the

primitive cells and maintain regular read and write operations), however, need to be

performed to achieve a memory integrated with an Akers logic array, as shown in

Figure 7c.

The second stage executes the Boolean function. In this stage, a low voltage is used

to ensure that the resistance of the memristors in the array does not change.

1) Stage 1 – initialization of the primitive logic cells (write)

Initialization of the logical states of and is simultaneously achieved due to

the anti-serial connection of both memristors. In the complementary structure,

applying a sufficiently high voltage to both memristors switches both memristors to

different resistances, where one memristor achieves a high resistance and the other

memristor achieves a low resistance. The write procedure in a complementary pair of

memristors is shown in Figure 8.

To write a logical one to , the resistances and are required to be,

respectively, a low and high resistance. The write procedure therefore applies a

sufficiently positive voltage Vw to y while grounding x. To write a logical zero to ,

the write procedure applies Vw to x while grounding y, or alternatively, apply –Vw to y

and grounding x. At the end of the write operation, the resistance of and are

RON and ROFF, where the resistance of one memristor is RON and the resistance of the

other memristor is ROFF.

2) Stage 2 – execution of the Boolean function (read)

The structure of the memristive logic array is shown in Figure 2a. The array is

similar to the structure of the original Akers logic array. In a memristive Akers logic

array, each primitive logic cell consists of complementary memristors. The x and y

control inputs are voltages, and, as in the original Akers array, the input y of the left-

most column is set to logical one (execution voltage), and the input x of the upper

row is set to logical zero (ground) for all columns. Since the output of the memristive

primitive logic cell is a voltage, the result of the logical operation for each primitive

logic cell is transferred to the neighboring cells.

To maintain correct operation of the memristive Akers logic array, the resistance of

the memristors in the array must not change during execution. The current flowing

through the memristors Ir is therefore maintained lower than the threshold current of

the memristors. The current is

IV. EVALUATION OF PRIMITIVE LOGIC CELLS

In this section, the proposed memristive primitive logic cell is evaluated with 0.18

µm CMOS and simulated in SPICE. A Verilog-A TEAM model [17] is used to

simulate the behavior of the memristors.

The primitive logic cell is based on a complementary resistive switch structure. The

CRS behaves as a linear resistor with a resistance of RON + ROFF below a certain

voltage. Above this voltage, hysteresis exists in the current-voltage curve of the CRS

[15, 16]. The current-voltage curve of the primitive logic cell is shown in Figure 9.

The primitive logic cell is evaluated with and without CMOS selectors connected to

the control inputs, x and y. The primitive logic cell drives a load capacitor of 10 fF.

The parameters used for the memristors are listed in Table 3. A schematic of the

simulated primitive logic cell is shown in Figure 10a. The results of the initializing

stage are shown in Figure 10b. The write latency of the primitive cell depends upon

the switching time of the memristor, assumed as 1.1 ns. The primitive logic cell

exhibits a write latency of 6.6 ns (six times more than the switching time of a single

memristor).

The results of the execution stage are shown in Figures 10c and 10d. The primitive

logic cell executes the correct logical behavior with degradation in the output signal.

The degradation depends upon the ratio between ROFF and RON. The output

degradation is 0.1% without selectors (ROFF/RON = 1000) and 4% with CMOS

selectors (for a 0.18 µm CMOS process). The output degradation is discussed in the

following section.

V. OUTPUT DEGRADATION

Since memristors are passive elements, signal degradation occurs at the output of

each primitive logic cell. The degradation depends primarily on the ratio between

ROFF and RON, where a higher ratio reduces the degradation. The degradation limits

the size of the Akers array.

The degradation of the output signal as a function of array size is shown in Figure

11a for Akers arrays with and without CMOS selectors. The use of CMOS selectors

makes the output degradation worse since the CMOS element adds a resistance in

series. For larger arrays, the degradation is more significant and limits the size of the

sub-arrays of the memory. The degradation for different ratios of ROFF and RON is

shown in Figure 11b. For an array composed of 128 by 128 primitive logic cells, the

minimal degradation of the output reaches 10% for ROFF/RON = 1000. For arrays with

CMOS selector with a resistance of 1 kΩ, the actual output degradation is 15%. Using

larger CMOS transistors lowers the degradation. A higher ROFF/RON ratio enables a

larger array, where a ratio of 10,000 enables arrays of more than a million logic

primitive cells with an output degradation of 10%.

VI. TEST CASE – MEMRISTOR-BASED LOGIC WITHIN MEMORY ARRAY

To evaluate a memristive Akers array, several Boolean functions are investigated

within the array. In this section, simulation results of a two-input XOR and sorting of

four bits are presented as simple test examples.

A. Two-input XOR

The schematic and array structure of a are shown in Figure 12. The

memristive Akers array is a two by two array, consisting of eight memristors.

Initializing the array (writing the inputs to the memristors) is achieved prior to

execution. The execution is evaluated with the same parameters listed in Table 3,

exhibiting the correct output. The average and maximum output degradation are,

respectively, 20% and 31% for a two-input XOR with 0.18 µm CMOS selectors (3%

without selectors). The relatively high degradation is due to the minimal size of the

CMOS selectors and the use of high voltage transistors, which have a relatively high

resistance. As previously mentioned, increasing the width of the transistors

significantly lowers the signal degradation.

The average power of the array during execution is, respectively, 6.2 µW and 33.6

µW without and with CMOS selectors. The results for different input conditions are

shown in Figure 13. For small arrays, adding CMOS selectors does not affect the

speed of the circuit. For an array with CMOS selectors, execution is slower due to the

capacitance of the selectors.

B. Sorting of bits

To evaluate sorting of bits, a four-bit sorting Boolean function is executed within the

memristive Akers array. The memristive Akers array consists of ten primitive logic

cells (see Figure 3a) and 20 memristors. The execution is evaluated with the same

parameters listed in Table 3, showing correct output and an average output

degradation of 0.3% without CMOS selectors. The average power of the array during

execution is 1.6 µW. Results for different input conditions are shown in Figure 14.

VII. CONCLUSIONS

The proposed memristive Akers array contains a pair of complementary memristors

in each cell. The array can therefore be used as a memristive memory, where a single

bit is stored within a memristor pair rather than a single memristor [15, 16]. Each cell

also performs a primitive Boolean operation, which enables the logic functionality of

the array, as initially shown by Akers. The combination of an Akers array and

memory is promising and may lead to additional uses, as described in [18]. For

example, an Akers logic array naturally performs bit sorting which may lead to

efficient sorting of words and other data structures.

The integration of memristive memory with a logic array that executes any Boolean

function can lead to a variety of novel non-von Neumann architectures. The Akers

array architecture eliminates the memory bottleneck, reducing power and bandwidth.

Memristive Akers logic arrays may also be beneficial for image processing

applications and error correcting operations within memory.

 Acknowledgements

The authors thank Ravi Patel of the University of Rochester for his useful comments.

REFERENCES

[1] S. B. Akers, Jr., "A Rectangular Logic Array," IEEE Transactions on Computers, Vol. C-21, No.

8, pp. 848-857, August 1972.

[2] H. T. Kung, "Why Systolic Architectures?" IEEE Computers, Vol. 15, No. 1, pp. 37-46, January

1982.

[3] L. O. Chua, “Memristor – The Missing Circuit Element,” IEEE Transactions on Circuit Theory,

Vol. 18, No. 5, pp. 507-519, September 1971.

[4] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U. C. Weiser, "MRL –

Memristor Ratioed Logic," Proceedings of the International Cellular Nanoscale Networks and

their Applications, pp. 1-6, August 2012.

[5] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U. C. Weiser, "Memristor-

based Material Implication (IMPLY) Logic: Design Principles and Methodologies," IEEE

Transactions on Very Large Scale Integration (VLSI) (in press).

[6] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "Memristor-Based IMPLY Logic

Design Procedure," Proceedings of the IEEE International Conference on Computer Design,

pp.142-147, October 2011.

[7] L. O. Chua and S. M. Kang, “Memristive Devices and Systems,” Proceedings of the IEEE, Vol.

64, No. 2, pp. 209- 223, February 1976.

[8] D. B. Strukov, G. S.Snider, D. R. Stewart, and R. S. Williams, "The Missing Memristor Found,”

Nature, Vol. 453, pp. 80-83, May 2008.

[9] X. Wang, Y. Chen, H. Xi, and D. Dimitrov, “Spintronic Memristor through Spin-Torque-Induced

Magnetization Motion,” IEEE Electron Device Letters, Vol. 30, No. 3, pp. 294-297, March 2009.

[10] L. O. Chua, "Resistance Switching Memories are Memristors," Applied Physics A: Materials

Science & Processing, Vol. 102, No. 4, pp. 765-783, March 2011.

[11] R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories –

Nanoionic Mechanisms, Prospects, and Challenges," Advanced Materials, Vol. 21, Issue 25-26,

pp. 2632-2663, July 2009.

[12] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive Devices for Computing,” Nature

Nanotechnology, Vol. 8, pp. 13-24, January 2013.

http://www.springerlink.com/content/0947-8396/
http://www.springerlink.com/content/0947-8396/
http://www.springerlink.com/content/0947-8396/102/4/
http://onlinelibrary.wiley.com/doi/10.1002/adma.200900375/abstract
http://onlinelibrary.wiley.com/doi/10.1002/adma.200900375/abstract

[13] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U. C. Weiser, "MRL –

Memristor Ratioed Logic for Hybrid CMOS-Memristor Circuits," IEEE Transactions on

Nanotechnology (in review).

[14] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "TEAM - ThrEshold Adaptive

Memristor Model," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 60, No. 1,

pp. 211-221, January 2013.

[15] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, "Complementary Resistive Switches for Passive

Nanocrossbar Memories," Nature Materials, Vol. 9, No. 5, pp. 403–406, April 2010.

[16] O. Kavehei, S. Al-Sarawi, S., K.-R. Cho, K. Eshraghian, and D. Abbott, "An Analytical Approach

for Memristive Nanoarchitectures," IEEE Transactions on Nanotechnology, Vol. 11, No. 2, pp.

374-385, March 2012.

[17] S. Kvatinsky, K. Talisveyberg, D. Fliter, E. G. Friedman, A. Kolodny, and U. C. Weiser, "Models

of Memristors for SPICE Simulations," Proceedings of the IEEE Convention of Electrical and

Electronics Engineers in Israel, pp. 1-5, November 2012.

[18] E. Yaakobi, A. Jiang, and J. Bruck, "In-Memory Computing of Akers Logic Array," Proceedings

of the IEEE International Symposium on Information Theory, pp. 2369-2373, July 2013.

[19] S. Wolfram, “Universality and Complexity in Cellular Automata,” Physica D: Nonlinear

Phenomena, Vol. 10, No. 1-2, pp. 1-35, January 1984.

[20] E. Gale, B. de Lacy Costello, and A. Adamatzky, “Boolean Logic Gates from a Single Memristor

via Low-Level Sequential Logic,” Proceedings of the International Conference on Unconventional

Computation and Natural Computation, pp. 78-89, July 2013.

[21] E. Gale, B. de Lacy Costello, and A. Adamatzky, "Is Spiking Logic the Route to Memristor-Based

Computers?" Proceedings of the International Conference on Electronics, Circuits and Systems,

pp. 297-300, December 2013.

[22] M. D. Pickett and R S. Williams, “Phase Transitions Enable Computational Universality in

Neuristor-Based Cellular Automata,” Nanotechnology, Vol. 24, No. 38, pp. 1-7, September 2013.

[23] S. Shin, K. Kim, and S.-M. Kang, “Memristive XOR for resistive multiplier,” Electronics Letters,

Vol. 48, No. 2, pp. 78-80, January 2012.

[24] E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, and R. Waser, "Beyond von Neumann - Logic

Operations in Passive Crossbar Arrays Alongside Memory Operations," Nanotechnology, Vol. 23,

No. 305205, August 2012.

[25] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams, "Memristive

Switches Enable 'Stateful' Logic Operations via Material Implication," Nature, Vol. 464, pp. 873-

876, April 2010.

[26] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.

Weiser, "MAGIC – Memristor Aided LoGIC," IEEE Transactions on Circuits and Systems II:

Express Briefs (in review).

Figure 1. Different computer architectures. (a) von Neumann architecture –

separate memory and an ALU. (b) Processing within memory architecture

(e.g., memristive Akers array). The memory can also process data. The size of

the ALU is therefore smaller and the required memory bandwidth lower

(schematically represented by the thickness of the arrow between the

memory and the ALU).

Arithmetic Logical

Unit

Arithmetic Logical

Memory

Input Output

Arithmetic Logical

Unit

Memory

Input Output

 𝐚 Von Neumann Architecture 𝐛 In-Memory Logic Architecture

Figure 2. Akers logic array. (a) An example of a three by three Akers array

structure. (b) A primitive logic cell with three inputs x, y, z and two identical

outputs f(x, y, z).

Figure 3. Four-bit input structure for an Akers arrays for Boolean functions

(a) Sort , and (b) .

 0

 2 1

 1

 3 2

 3

 3

 3

(a) Array for sorting

 2

𝐶

𝐷 𝐶

𝐷

𝐷

𝐶

𝐶

𝐷

(b) Array for 𝑿𝑶𝑹 𝑨,𝑩, 𝑪, 𝑫

 0

 1

 2

 3

 𝑢

′ ′

′ ′

′ ′

′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

′ ′

′ ′

′ ′

′ ′

Figure 4. Memristor symbol. The polarity of the memristor is represented by

the thick black line. When current flows into the device, the resistance of the

device increases. When current flows out of the device, the resistance of the

device decreases.

Out In

Resistance decreases

Resistance increases

Figure 5. Current-voltage characteristics of a memristor based on the TEAM

model [14] for a sinusoidal current input with an amplitude of 17 µA and

frequency of 100 kHz. The memristor parameters are listed in Table 3.

Figure 6. Primitive logic cell. (a) The proposed primitive logic cell using

memristors. (b) A behavioral model of the basic logic cell, where the

memristors are modeled as ideal switches.

 𝑍

 𝑍

 𝑍

 𝑍

Figure 7. Memristive memories (exemplified by a three by three array). (a)

Single memristor within a crossbar, (b) standard complementary memristive

cells within a crossbar, and (c) Akers logic array within a memristive

memory. The basic memory cell for the Akers logic array consists of two

memristors and four CMOS transistors (as selectors).

Figure 8. Write operation of logical one to memristor . Due to the

complementary structure of the circuit, writing to and is achieved

simultaneously in both memristors by applying a single voltage VW. After the

write procedure, the resistance of and is, respectively, RON and ROFF.

 =

 = 𝐺 𝑢

 𝑍

 𝑍

Figure 9. Current-voltage characteristic of the primitive logic cell for a

sinusoidal current input with an amplitude of 17 µA and frequency of 100

kHz. The circuit parameters are listed in Table 2. For a current lower than

the current thresholds ion and ioff (10 µA), the resistance of both memristors is

constant. For a current higher than the current thresholds, the resistance of

both memristors changes.

TABLE 1. AREA OF MEMORY TECHNOLOGIES

F – feature size, T – transistor, C – capacitor, and R – resistive device (memristor)

Technology
Memory

Cell
Area per Cell

[F2]

Computing
Capabilities

Sequential

SRAM 6 T 140 No ---

DRAM 1T 1C 6-12 No ---

Flash 1 T 4 No ---

RRAM (memristive
memory, single
device per cell)

1 R 4
Yes

[5-6, 25-26]
Yes

Complementary
Resistive Switches 2 R 4-8 Yes [24] Yes

Akers Array within
Memory 2 R 4 T 20-90 Yes No

TABLE 2. OUTPUT VOLTAGE OF PRIMITIVE LOGIC CELL FROM (4)

x y z RZ
Vf – derived from

(4)
f(x, y, z)

0 0 0 ROFF 0

0 0 1 RON 0

0 1 0 ROFF
𝑹𝑶

𝑹𝑶 𝑹𝑶
 0

0 1 1 RON
𝑹𝑶

𝑹𝑶 𝑹𝑶
 1

1 0 0 ROFF
𝑹𝑶

𝑹𝑶 𝑹𝑶
 1

1 0 1 RON
𝑹𝑶

𝑹𝑶 𝑹𝑶
 0

1 1 0 ROFF 1

1 1 1 RON 1

TABLE 3. MEMRISTOR PARAMETERS

kon -8 m/sec

koff 0.5 m/sec

ion -10 uA

ioff 10 uA

xon 0

xoff 3 nm

αon 1

αoff 4

RON 100 Ω

ROFF 100 kΩ

Vw 3 V

Vr 1 V

CMOS
Selectors

CMOS 0.18 µm process
W = 0.42 µm

Figure 10. Initialization and execution of primitive logic cell. (a) Schematic of

the simulated circuit, (b) simulation of memristive initialization operation. Vy

is the write voltage applied to the primitive logic cell (positive and negative

for, respectively, writing logical one and zero to Z), and simulation of

memristor execution operation (c) without selectors and (d) with selectors.

The simulation parameters are listed in Table 2.

Figure 11. Output signal degradation for an Akers array with (dashed line)

and without (solid line) CMOS selectors. (a) Signal degradation as a function

of rectangular array size for different ROFF/RON ratios (10
4
 in red, 10

3
 in blue,

and 10
2
 in green), and (b) signal degradation in rectangular array of 128 by

128 as a function of the resistance ratio ROFF/RON with CMOS selector. RON =

1 kΩ, the resistance of a CMOS selector is 1 kΩ.

Figure 12. Two-input XOR. (a) Schematic of a two by two memristive Akers

array, and (b) the array structure of the Boolean function XOR(A, B).

 0

 0

 𝑍

 01

 1

 𝑍

 1

 10

 𝑍

 𝑢

 𝑢

 𝑍

 𝑍

 ′1′

0
′1′

 𝑢

 𝐛 Array for 𝑿𝑶𝑹 𝑨,𝑩 𝐚 Array 2x2 model

′0′

′0′

 𝑍

 𝑍

 𝑍

Figure 13. Simulation results of a two-input XOR (a) without CMOS

selectors and (b) with CMOS selectors for different inputs A and B. The

average output degradation is 3% and 20%, respectively, without and with

CMOS selectors for a 0.18 µm CMOS process. The execution voltage Vr for

the XOR without selectors is 0.5 volts.

Figure 14. Simulation results of a four-bit set sort using a four by four

memristive Akers array without CMOS selectors. (a) Different output values

and (b) different inputs, all with a single logical one and three zeros. The

output is therefore the same for all input cases. The execution voltage Vr is

200 mV.

113

3.3 Multistate Registers and Continuous Flow

Multithreading

This secion contains the following papers:

 S. Kvatinsky, Y. H. Nacson, Y. Etsion, E. G. Friedman, A. Kolodny, and U. C.

Weiser, "Memristor-based Multithreading," IEEE Computer Architecture Letters,

2013 (in press).

 R. Patel, S. Kvatinsky, E. G. Friedman, and A. Kolodny, "Multistate Register

Based on Resistive RAM," IEEE Transactions on Very Large Scale Integration

(VLSI), (in review).

 S. Kvatinsky, Y. H. Nacson, R. Patel, Y. Etsion, E. G. Friedman, A. Kolodny, and

U. C. Weiser, "On the In-Die 3D Integration of Memory in CMOS Metal Layers

and Its Implications on Processor Microarchitecture," submitted to the Annual

IEEE/ACM International Symposium on Microarchitecture.

	 	

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. XXX, NO. XXX, XXXX 2013 1

Memristor-Based Multithreading
Shahar Kvatinsky, Yuval H. Nacson, Yoav Etsion, Eby G. Friedman, Avinoam Kolodny,

and Uri C. Weiser

Abstract— Switch on Event Multithreading (SoE MT, also known as coarse-grained MT and block MT) processors run multiple
threads on a pipeline machine, while the pipeline switches threads on stall events (e.g., cache miss). The thread switch penalty
is determined by the number of stages in the pipeline that are flushed of in-flight instructions. In this paper, Continuous Flow
Multithreading (CFMT), a new architecture of SoE MT, is introduced. In CFMT, a multistate pipeline register (MPR) holds the
microarchitectural state of multiple different threads within the execution pipeline stages, where only one thread is active at a
time. The MPRs eliminate the need to flush in-flight instructions and therefore significantly improve performance. In recent
years, novel memory technologies such as Resistive RAM (RRAM) and Spin Torque Transfer Magnetoresistive RAM (STT-
MRAM), have been developed. All of these technologies are nonvolatile, store data as resistance, and can be described as
"memristors." Memristors are power efficient, dense, and fast as compared to standard memory technologies such as SRAM,
DRAM, and Flash. Memristors therefore provide the opportunity to place the MPRs physically within the pipeline stages. A
performance analysis of CFMT is compared to conventional SoE MT processors, demonstrating up to a 2X performance
improvement, while the operational mechanism, due to the use of memristors, is low power and low complexity as compared to
conventional SoE MT processors.

Index Terms — memristor; multithreaded processors; phase change memory; RRAM, STT-MRAM.

—————————— ——————————

1 INTRODUCTION
ultithreading in processors have been used to im-
prove performance in a single core for the past two
decades. One low power and low complexity mul-

tithreading technique is Switch on Event multithreading
(SoE MT, also known as coarse grain multithreading and
block multithreading) [1], [2], [3], [20], where a thread
runs inside the pipeline until an event occurs (e.g., a long
latency event like a cache miss) and triggers a thread
switch. The state of the replaced thread is maintained by
the processor, while the long latency event is handled in
the background. When a thread is switched, the in-flight
instructions are flushed. The time required to refill the
pipeline after a thread switch is referred to as the switch
penalty. The switch penalty is usually relatively high,
making SOE MT less popular than simultaneous multi-
threading (SMT) [18] and fine-grain multithreading (in-
terleaved multithreading) [4]. While fine-grain MT is
worthwhile only for a large number of threads, the per-
formance of SMT is constrained in practice since the
number of supported threads is limited (e.g., two for Intel
Sandy Bridge [5]).

In this paper, Continuous Flow Multithreading
(CFMT), a novel microarchitecture, is proposed. The pri-
mary concept of CFMT is to support SoE MT for a large

number of threads through the use of multistate pipeline
registers (MPRs). These MPRs store the intermediate state
of all instructions of inactive threads, eliminating the
need to flush the pipeline on thread switches. This new
machine is as simple as a regular SoE MT, and has higher
energy efficiency while improving the performance as
compared to regular SoE MT.

Hirst et al. extends the SoE MT to differential multi-
threading (dMT) [19], proposing up to four threads run-
ning simultaneously in a single scalar pipeline for low
cost microprocessors. CFMT takes a broader view of ad-
vanced SoE MT microarchitectures. CFMT extends SoE
MT by enabling the use of numerous threads using multi-
state pipeline registers in deep pipeline machines. CFMT
is applicable to any execution event that can cause a pipe-
line stall.

The development of new memory technologies, such
as RRAM (Resistive RAM) [6] and STT-MRAM (Spin-
Transfer Torque Magnetoresistive RAM) [7], enables
MPRs since these devices are located in metal layers
above the logic cells and are fast, dense, and power effi-
cient. These memory devices are referred to as
memristors [8], [9].

The remainder of this paper is structured as follows:
the microarchitecture of a conventional SOE MT is de-
scribed and CFMT is proposed in section 2, the MPR is
presented in section 3, emerging memory technologies
and the basic structure of a memristor-based MPR are
described in section 4, and a performance analysis for
SOE MT and CFMT is presented in section 5, showing 2X
theoretical performance improvements as compared to
conventional SOE MT. The paper is summarized in sec-
tion 6.

————————————————

S. Kvatinsky, Y. H. Mascon, A. Kolodny, and U. C. Weiser are with the
Electrical Engineering Department, Technion – Israel Institute of Technol-
ogy, Haifa, Israel 32000. E-mail: skva@ tx.technion.ac.il
Y. Etsion is with the Electrical Engineering and Computer Science De-
partments, Technion – Israel Institute of Technology, Haifa, Israel 32000.
E. G. Friedman is with the Department of Electrical and Computer Engi-
neering, University of Rochester, Rochester, NY 14627.

Manuscript received 27th November 2012, manuscript accepted 13rd February
2013, and final manuscript received 18th February 2013.

M

2 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. #, NO. #, MMMMMMMM 2013

2 CONTINUOUS FLOW MULTITHREADING (CFMT)
To reduce the thread switch penalty, a new thread

switching mechanism for SOE MT is proposed. In CFMT,
pipeline registers are replaced by MPRs, as shown in Fig-
ure 1. For each pipeline stage, an MPR stores the state of
the instructions from all threads. Thus, in the case of a
thread switch, there is no need to flush all subsequent
instructions. The processor saves the state of each instruc-
tion from the switched thread in the relevant MPR in each
pipeline stage, while handling the operation of the long
latency instruction in the background. Instructions from
the new active thread are inserted into the pipeline from
the MPR, creating a continuous flow of instructions with-
in the pipeline. When no thread switching is required, the
pipeline operates as a regular pipeline and each MPR op-
erates as a conventional pipeline register. When the long
latency instruction is completed, the result is written di-
rectly into the MPR in the background. In CFMT, the
thread switch penalty is determined by the time required
to change the active thread in the MPR, i.e., the time re-
quired to read the state of the new, previously inactive
thread from the MPR. For a fast MPR, the thread switch
penalty is significantly lower than in conventional SOE
MT and the performance therefore increases significantly.

3 MULTI-STATE PIPELINE REGISTER (MPR)
The logic structure of a multistate pipeline register

(MPR) is shown in Figure 2. Each MPR stores data for
multiple threads, one bit per thread. The total size of an
MPR is therefore n bits, where n is the maximal number
of threads. For each pipeline stage, the state of the instruc-
tion is stored in a set of MPRs with common control sig-
nals for thread management and switching. The MPR has
one active thread (the current thread) for which the data
can be read and written during operation of the proces-
sor, as in a regular pipeline register. During a thread
switch, the active thread changes while the data of the
previously active thread is maintained in the MPR. The
MPR can therefore store data for all threads running in
the machine. The time required to change the active
thread in the MPR depends on the specific circuit struc-
ture of the MPR. This time determines the thread switch

penalty of CFMT. A typical thread switch penalty in
CMFT is in the range of 1 to 3 clock cycles, a significant
improvement as compared to SOE MT (typically 8 to 15
clock cycles).

4 EMERGING MEMORY TECHNOLOGIES
Over the past decade, new technologies have been

considered as potential replacements for the traditional
SRAM/DRAM-based memory system to overcome scal-
ing issues, such as greater leakage current. These emerg-
ing technologies include PCM (Phase Change Memory)
[10], PMC (Programmable Metallization Cell, also known
as CBRAM) [11], FeRAM (Ferroelectric RAM) [12], RRAM
(Resistive RAM) [9], and STT-MRAM (Spin Transfer
Torque Magnetoresistive RAM) [13].

While the physical mechanisms for these emerging
memory technologies are different, all of these technolo-
gies are nonvolatile with varying resistance and can
therefore be considered as memristors [8]. These emerg-
ing memory technologies are fabricated by introducing a
special insulator layer between two layers of metal which
can be integrated into a CMOS process, stacked vertically
in multilayer metal structures physically above the active
silicon transistors. This fabrication technique provides a
high density of memory bits above a small area of active
silicon. Memristive memory cell sizes are approximately 1
to 4 F2 for RRAM and 8 to 45 F2 for STT-MRAM, as com-
pared to SRAM (60 to 175 F2) and DRAM (4 to 15 F2) [14],
where F is the minimum feature size of the technology.

RRAM and STT-MRAM are both relatively fast [15].
STT-MRAM does not exhibit any endurance issues, while
it is believed that the endurance issue of RRAM will be
overcome in the near future [16]. Since memristors are
dense, fast, and power efficient, these devices are attrac-
tive for use within the processor as an MPR. The basic
structure for a set of memristor-based MPRs is shown in
Figure 3.

For a memristor-based MPR, each thread has its own
memristor-based layer, while the bottom CMOS layer is
used for the active thread running within the pipeline.
The bottom layer consists of standard CMOS pipeline
registers, compatible with CMOS logic. During a thread

Fig. 1. Continuous Flow Multithreading (CFMT) pipeline structure.
A set of multistate pipeline registers (MPRs) is located between
pipeline stages. Each MPR maintains a single bit of the state of an
instruction from all threads. The number of MPRs is the number of
bits required to store the entire state of an instruction in the specific
pipeline stage.

Fig. 2. The logic structure of a multistate pipeline register (MPR).
An MPR maintains a single bit of the state of an instruction from all
threads (stores n bits of data), where only one thread is active at a
time. The MPR is synchronized by the processor clock and can
switch the active thread.

KVATINSKY ET AL.: MEMRISTOR-BASED MULTITHREADING 3

switch, data is copied from the CMOS layer to a specific
memristor-based layer that corresponds to the previously
active thread. The data from the new active thread is read
into the next pipeline stage that receives the state of the
new thread. When no thread switch occurs, only the bot-
tom CMOS layer is active and the memristor layers are in
standby mode. It is possible to completely disable the
memristor layers and save power due to the nonvolatility
of memristors.

To determine the thread switch penalty for a
memristor-based MPR, only sensing the memristor layer
of the new active thread is considered since the copy op-
eration of the bottom CMOS layer to a memristor layer
can be masked using buffers. This latency is determined
by the read time of a memristor (sensing the data in the
memristive layer). Due to the high density of memristors,
the area overhead can be neglected (less than 0.1% of the
pipeline area for 16 active threads [23]). This overhead is
primarily due to the write mechanism and can be further
optimized by separating the read and write mechanisms.

5 PERFORMANCE ANALYSIS
The performance (in CPI - cycles per instruction) of an

SoE processor depends upon whether the number of
threads is sufficient to overlap long latency events. Two
regions of operation exist in SoE processors, depending
upon the number of threads running in the machine. The
unsaturated region is the region where the number of
threads is smaller than the number required for conceal-
ing a long latency event. The behavior of the pipeline in
this region is illustrated in Figure 4a. The analytic model
assumes that the execution behavior in the pipeline is
periodic. The period is determined by the execution of
1/rm instructions from the same thread, where rm is the
average fraction of memory operations in the instruction
stream. One instruction is a long latency instruction (i.e.,

the instruction that triggers the thread switch; in this pa-
per, an L1 cache miss is assumed as the trigger, with a
miss penalty of Pm cycles) and the remaining instructions
are low latency instructions with an average CPI of
CPIideal. During execution of the long latency instruction,
other instructions from different threads run within the
machine. For these instructions, a periodic behavior is
again assumed which also triggers a thread switch. For
the unsaturated region, it is assumed that there is an in-
sufficient number of instructions to overlap the Pm cycles
required to execute the long latency instruction. The CPI
in the unsaturated region is

,ideal m m
unsat

CPI P r MR n

n
CPI (1)

where n is the number of threads running in the machine
and MR(n) is the miss rate of the L1 cache. Note that
CPIunsat is limited by CPIsat, as determined in (2).

When a sufficient number of threads run on the ma-
chine, the long latency instruction can be completely
overlapped, and a second region, named the saturation
region, is reached. In the saturation region, the thread
switch penalty (Ps clock cycles) influences the behavior,
which effectively limits the number of threads (above a
specific number of threads there is no change in perfor-
mance). The behavior of the pipeline in the saturation
region is illustrated in Figure 4b. Assume all of the
threads exhibit the same average behavior and Pm >>
CPIideal/rm (i.e., the miss penalty is significantly longer
than the execution time of the short latency instructions).
The CPI in the saturation region is

()sat ideal s mCPI CPI P r MR n (2)
In a conventional SOE MT, the switch penalty Ps is de-

termined by the number of instructions flushed during
each switch. In CFMT, however, the switch penalty is the
MPR read time Tm, i.e., the time required to read the state
from the MPR and transfer this state to the next pipeline
stage. In the case of a memristor-based MPR, the switch
penalty is the time required to read the data from the
memristor layer. From (2), if the value of Tm is lower than
Ps, the performance of the processor in the saturation re-
gion is significantly improved, where the speedup is

()1 .
()

m
sat s m

ideal m m

r MR nSpeedup P T
CPI T r MR n

 (3)

Note that in the unsaturated region, the exact CPI of the
CFMT is slightly better (lower) than a conventional SoE
MT processor due to the improved switch penalty. The

Fig. 3. Set of memristor-based multistate pipeline registers (MPRs).
Each thread has its own memristor-based layer, where every bit is
stored in a single memristor. The active thread is located in the bot-
tom CMOS layer. During regular operation of the pipeline, only the
CMOS layer is active (blue line) and all memristor-based layers are
disabled, exploiting the nonvolatility of the memristors to save power.
During a thread switch (red dashed line), the data from the CMOS
layer is written into the relevant memristor-based layer, while the
state of the new active thread is read and transferred to the next
pipeline stage.

Fig. 4. The executed instructions in the two regions: (a) the unsatu-
rated region, and (b) the saturation region. Each block is an instruc-
tion. The numbers indicate the thread number.

4 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. #, NO. #, MMMMMMMM 2013

IPC of the proposed machine as compared to a conven-
tional SoE machine is shown in Figure 5. The proposed
machine exhibits a 2X performance improvement for a
constant miss rate when operating in the saturation re-
gion. For varying miss rates (particularly with large Pm),
the behavior of the CPI is similar to the behavior reported
in [17]. Preliminary simulations have been performed on
GEM5 [21], exhibiting a saturation performance im-
provement of approximately 50% for the SPEC MCF
benchmark [22].

6 CONCLUSIONS
In this paper, a new architecture for a multithread

processor, Continuous Flow Multithreading (CFMT), is
proposed. This architecture is based on multi-state pipe-
line registers (MPR) to save the thread state in the case of
an event (e.g., an L1 cache miss). CFMT greatly reduces
the thread switch penalty and eliminates the wasted en-
ergy of repeating instructions.

An analytic model of the performance of a conven-
tional SoE MT and the CFMT is described. It is shown
that a CFMT processor can exhibit up to a 2X perfor-
mance improvement as compared to a conventional SoE
MT. CFMT has a simple control mechanism and can
therefore maintain more threads than modern SMT pro-
cessors. The performance of the CFMT architecture is
comparable to SMT processors with lower complexity
and power consumption.

Emerging memristive technologies enable low power
MPRs that can maintain a large number of threads in the
same area of the regular pipeline registers. The
memristor-based MPR demonstrates the attractiveness of
memristors as a means to overcome power and perfor-
mance deficiencies of existing system structures, and
opens opportunities for novel processor microarchitec-
tures.

ACKNOWLEDGMENTS

This work was supported by the Hasso Plattner Institute.
The authors thank Ravi Patel for his comments and area
overhead estimation and to Nimrod Wald and Guy Satat for
their help in evaluating the architecture.

REFERENCES
[1] R. Gabor, S. Weiss, and A. Mendelson, "Fairness Enforcement is Switch

On Event Multithreading," ACM Transactions on Architecture and Code
Optimization, Vol. 4, No. 3, Article 15, pp. 1-34, September 2007.

[2] J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and S. R. Kunkel, "A
Multithreaded PowerPC Processor for Commercial Servers," IBM Journal
of Research and Development, Vol. 44, No. 6, pp. 885-898, November 2000.

[3] C. McNairy and R. Bhatia, "Montecito - The Next Product in the Itanium
Processor Family," Hot Chips 16, August 2004.

[4] B. J. Smith, "Architecture and Applications of the HEP Multiprocessor
Computer System," Proceedings of SPIE Real Time Signal Processing IV, pp.
241-248, 1981.

[5] L. Gwennap, "Sandy Bridge Spans Generations," Microprocessor Report
(www.MPRonline.com), September 2010.

[6] R. Waser and M. Aono, "Nanoionics-Based Resistive Switching Memo-
ries," Nature Materials, Vol. 6, pp. 833-840, November 2007.

[7] Y. Huai, "Spin-Transfer Torque MRAM (STT-MRAM) Challenges and
Prospects," AAPPS Bulletin, Vol. 18, No. 6, pp. 33-40, December 2008.

[8] L. O. Chua, “Memristor – the Missing Circuit Element,” IEEE Transac-
tions on Circuit Theory, Vol. 18, No. 5, pp. 507-519, September 1971.

[9] R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive
Switching Memories – Nanoionic Mechanisms, Prospects, and Challeng-
es," Advanced Materials, Vol. 21, No. 25-26, pp. 2632-2663, July 2009.

[10] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, "Architecting Phase Change
Memory as a Scalable DRAM Alternative," Proceedings of the Annual In-
ternational Symposium on Computer Architecture, pp. 2-13, June 2009.

[11] M. N. Kozicki and W. C. West, "Programmable Metallization Cell Struc-
ture and Method of Making Same," U. S. Patent No. 5,761,115, June 1998.

[12] J. F. Scott and C. A. Paz de Araujo, "Ferroelectric Memories," Science, Vol.
246, No. 4936, pp. 1400-1405, December 1989.

[13] Z. Diao et al, "Spin-Transfer Torque Switching in Magnetic Tunnel Junc-
tions and Spin-Transfer Torque Random Access Memory," Journal Of
Physics: Condensed Matter, Vol. 19, No. 16, pp. 1-13, 165209, April 2007.

[14] International Technology Roadmap for Semiconductor (ITRS), 2009.
[15] A. C. Torrezan, J. P. Strachan, G. Medeiros-Riveiro, and R. S. Williams,

"Sub-Nanosecond Switching of a Tantalum Oxide Memristor," Nanotech-
nology, Vol. 22, No. 48, pp. 1-7, December 2011.

[16] J. Nickel, "Memristor Materials Engineering: From Flash Replacement
Towards a Universal Memory," Proceedings of the IEEE International Elec-
tron Devices Meeting, December 2011.

[17] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. C.
Weiser, "Many-Core vs. Many-Thread Machines: Stay Away From the
Valley," Computer Architecture Letters, Vol. 8, No. 1, pp. 25-28, May 2009.

[18] D. M. Tullsen, S. J. Eggers, and H. M. Levy, " Simultaneous Multithread-
ing: Maximizing On-Chip Parallelism," Proceedings of the Annual Interna-
tional Symposium on Computer Architecture, pp. 392-403, June 1995.

[19] J. W. Haskins, K. R. Hirst, and K. Skadron, " Inexpensive Throughput
Enhancement in Small-Scale Embedded Microprocessors with Block
Multithreading: Extensions, Characterization, and Tradeoffs," Proceedings
of the IEEE International Conference on Performance, Computing, and Com-
munications, pp. 319- 328, April 2001.

[20] M. K. Farrens and A. R. Pleszkun, "Strategies for Achieving Improved
Processor Throughput," Proceedings of the Annual International Symposium
on Computer Architecture, pp. 362-369, May 1991.

[21] http://www.m5sim.org/
[22] SPEC CPU2006 benchmark suite. http://www.spec.org/cpu2006/
[23] Private discussion with Ronny Ronen, Intel.

Fig. 5. The IPC of the Continuous Flow MT (CFMT) as compared to
a conventional SoE MT processor (solid line). The memristor read
time, which determines the thread switch penalty, is three clock
cycles or one clock cycle. The IPC of CFMT is two times greater
(2X improvement) than a conventional SOE MT for Tm = 1 cycle for
a constant miss rate, MR = 0.25, rm = 0.25, Ps = 20 cycles, and Pm =
200 cycles. Further reductions in Pm will linearly reduce the perfor-
mance improvement (e.g., for Pm = 50 cycles, the improvement in
saturation performance is approximately 25%).

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.



Abstract—In recent years, memristive technologies, such as

resistive RAM (RRAM), have emerged. These technologies are

usually considered as replacements to SRAM, DRAM, and Flash.

In this paper, a novel digital circuit, the multistate register, is

proposed. The multistate register is different than conventional

types of memory, and is used to store multiple data bits, where

only a single bit is active and the remaining data bits are idle.

The active bit is stored within a CMOS flip flop, while the idle

bits are stored in an RRAM crossbar co-located with the flip flop.

It is demonstrated that additional states require an area

overhead of 1.4% per state for a 64 state register. The use of

multistate registers as pipeline registers is demonstrated for a

novel multithreading architecture – continuous flow

multithreading (CFMT), where the total area overhead in the

CPU pipeline is only 2.5% for 16 threads as compared to a single

thread CMOS pipeline. The use of multistate registers in the

CFMT microarchitecture enables higher performance processors

(40% average performance improvement) with relatively low

energy (6.5% average energy reduction) and area overhead.

Keywords—RRAM; memristor; memristive device; flip flop;

multithreading

I. INTRODUCTION

emristive technologies [1-3] have been proposed to

augment existing state-of-the-art CMOS circuits. One

interesting memristive technology is resistive RAM

(RRAM) [4-8]. RRAM-based memories can be integrated

with existing digital circuits to increase functionality and

system throughput. RRAM is a two terminal device that

exhibits the properties of nonvolatility and high density.

Unlike charge-based memories, information in an RRAM is

stored by modulating the material state. An RRAM cell

dissipates no static power to store a state and provides

immunity to radiation and noise induced soft errors.

Fabrication of these devices generally requires deposition of a

Manuscript received 17th December 2013; revised 6th May 2014; accepted

xxx. This work was partially supported by Hasso Plattner Institute, by the

Advanced Circuit Research Center at the Technion, by the Binational Science

Foundation under Grant no. 2012139, by the National Science Foundation
under Grant no. CCF-1329314, and by grants from Qualcomm, Cisco

Systems, and Samsung.

R. Patel and E. G. Friedman are with the Department of Electrical
Engineering and Computer Engineering, University of Rochester, Rochester,

NY 14627, USA.

S. Kvatinsky and A. Kolodny are with the Department of Electrical
Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel.

(S. Kvatinsky corresponding author phone: 972-77887-1923; fax: 972-4829-

5757; e-mail: skva@tx.technion.ac.il).

thin film material. The integration of these devices with

CMOS is constrained primarily by lithographic patterning

limits. Thus memristors scale with existing CMOS

technologies.

The traditional approach of increasing CPU clock

frequency has abated due to constraints on power consumption

and density. To increase performance with each CMOS

generation, thread level parallelism is exploited with multi-

core processors [9]. This approach utilizes an increasing

number of CMOS transistors to support additional cores on the

same die, rather than increase the frequency of a single

processor. This larger number of cores, however, has

increased static power. Multithreading is an approach to

enhance performance of an individual core by increasing logic

utilization [10], without additional static power consumption.

Handling each thread, however, requires duplication of

resources (e.g., register files, flags, pipeline registers). This

added overhead increases the area, power, and complexity of

the processor, potentially increasing on-chip signal delays.

The thread count is therefore typically limited to two to four

threads per core in modern general purpose processors [11].

The high density, nonvolatility, and soft error immunity

exhibited by resistive random access memory (RRAM)

enables novel tradeoffs in digital circuit design, allowing new

mechanisms to increase thread count without changing the

static power. These tradeoffs support innovative memory

structures for novel microarchitectures. In this paper, a

memristive multi-state pipeline register (MPR) is proposed

that exploits these properties to enable higher throughput

computing. The MPR is compatible with existing digital

circuits while leveraging RRAM devices to store multiple

machine states within a single register. This behavior enables

an individual logic pipeline to be densely integrated with

memory while retaining state information for multiple

independent, on-going operations. The state information for

each operation can be stored within a local memory and

recalled at a later time, allowing computation to resume

without flushing the pipeline.

This functionality is useful in multithreaded processors to

store the state of different threads. This situation is

demonstrated in the case study of a novel microarchitecture –

continuous flow multithreading (CFMT) [12]. It is shown that

including an RRAM MPR within the CFMT microarchitecture

enhances the performance of a processor, on average, by 40%,

while reducing the energy, on average, by 6.5%. The proposed

Multistate Register Based on Resistive RAM

Ravi Patel, Student Member, IEEE, Shahar Kvatinsky, Student Member IEEE, Eby G. Friedman,

Fellow IEEE, and Avinoam Kolodny, Senior Member IEEE

M

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

MPR circuit can also be used as a multistate register for

applications other than pipeline registers.

Background of RRAM and crosspoint style memories is

reviewed in Section II. The operation of the multistate register

is presented in Section III. The simulation setup and circuit

evaluation process are described in Section IV. A case study

examining the multistate register as a pipeline register within a

CPU is presented in Section V, followed by some concluding

remarks in Section VI.

II. BACKGROUND

Memristors and memristor-based arrays behave differently

than standard CMOS SRAM memory arrays due to the

different properties of RRAM devices. The following section

outlines the basic operation of memristive devices and

describes memristor-based crosspoint structures.

A. Background of memristor and RRAM

Memristors [13] and memristive devices [14] behave as

resistors, where the resistance is modulated by an applied bias.

Positive and negative biases increase or decrease, respectively,

the resistance of the device. In general, a bias applied for a

longer duration produces a greater change in resistance. A

larger voltage will generally increase the speed of the

resistance change. The device may also exhibit a threshold

voltage or current, such that the resistance will change only if

the bias exceeds the threshold specific to the device

technology [15-17]. Once the bias is removed, the final

resistance of the memristor is retained without dissipating any

power.

One interesting memristive technology is RRAM, where

oxide-based materials (e.g., TaO, TiO, SiO) [18, 19] rely on

the migration of dopants to switch the resistance of a tunnel

barrier. Dopant chains form through the oxide and reduce the

thickness of the tunneling gap. An increase in the gap

thickness gives rise to an increase in the resistance of the

device while a decrease reduces the resistance. Currently,

RRAM is considered a good candidate to replace Flash

memory and is being widely investigated both in industry and

academia.

The exact behavior of RRAM devices varies for different

oxide materials. To simulate the behavior of memristive

circuits, a general device model is used – the TEAM model

[20]. In the TEAM model, the behavior of the resistive device

is represented by the following expressions,

where koff and kon are fitting parameters, αon and αoff are

adaptive nonlinearity parameters, ioff and ion are current

threshold parameters, fon(x) and foff(x) are window functions,

RON and ROFF are, respectively, the minimum and maximum

resistance of the memristor, and xon and xoff are, respectively,

the minimum and maximum allowed value of the internal state

variable x. The window function returns a value between zero

and one and describes the rate at which the change of the state

variable becomes nonlinear near the minimum and maximum

resistance of a memristor. A Joglekar window function is used

with a p-coefficient of two [21]. An I-V curve of a memristive

device based on the TEAM model is shown in Figure 2a,

exhibiting a pinched hysteresis loop.

B. Crosspoints and nonlinearity

RRAM has the greatest density when utilized in a

crosspoint configuration. In this structure, a thin film is

sandwiched between two sets of parallel interconnects. Each

set of interconnects is orthogonal, allowing any individual

memristive device to be selected by biasing one vertical and

one horizontal metal line. In this configuration, the circuit

density is only limited by the available metal pitch. The

structure of a crosspoint is shown in Figure 1a.

Crosspoint arrays have the inherant problem of sneak path

currents where currents propagate between the two selected

lines through unselected memristors. The sneak path

phenomenon is illustrated in Figure 1b. The nonlinear I-V

characteristic of certain memristive devices lessens the sneak

path phenomenon [22]. This nonlinearity can be achieved by

Figure 1. RRAM crosspoint (a) structure, and (b) an example of a

parasitic sneak path within a 2 x 2 crosspoint array.

In

O
u
t Sneak

path

Selected cell

b)

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

Figure 2. I-V characteristic of a memristor for (a) a ThrEshold

Adaptive Memristor (TEAM) model with a 0.2 volt sinusoidal

input operating at a frequency of 2 GHz, and (b) resistive devices

with and without ideal cross-coupled diodes. The parameters of

the TEAM models are listed in Table II. VON is the on-voltage of

the diode, and RON and ROFF are, respectively, the minimum and

maximum resistance of the memristor.

depositing additional materials above or below the memristive

thin film. Depending on the material system used for RRAM,

the nonlinearity can result from an insulator to metal transition

or a negative differential resistance [22]. From a circuits

perspective, the combined device can be modeled as a pair of

cross coupled diodes in series with a memristor, as shown in

the inset of Figure 2b. Since the rectifying structure requires

an additional thin film layer, there is no effect on the area of

the crosspoint structure.

 An I-V curve of a memristive device with cross coupled

diodes is shown in Figure 2b. The high resistance of the

unselected devices reduces sneak currents and ensures that the

leakage power of the array is relatively small. Reducing sneak

currents ensures that the leakage power of the array is

relatively small. A DC analysis of the crosspoint on and off

currents is listed in Table I, where a 4 x 4 crosspoint array

with RRAM devices is DC biased at 0.8 volts. These RRAM

devices exhibit an on/off current ratio of 30. In an unrectified

crosspoint, the observed current ratio drops to less than two.

The rectified crosspoint displays a current ratio of 28.5, only

5% less than the ideal ratio of an RRAM device. Furthermore,

the total power consumption is reduced by almost an order of

magnitude.

III. RRAM MULTISTATE REGISTER

The multistate register is a novel circuit used to store

multiple bits within a single logic gate. The multistate register

is "drop-in" compatible with existing CMOS based flip flops.

The element utilizes a clocked CMOS register augmented by

additional sense circuitry (SA) and global memristor select

(MS) lines. The symbol and topology of the multistate register

are shown in Figure 3. Multistate registers can be used as

pipeline registers within a processor pipeline, as shown in

Figure 4 and further explained in Section V.

The MS lines select individual RRAM devices within the

crosspoint memory co-located with the CMOS register. A

schematic of the proposed RRAM multistate register is shown

in Figure 5a. The signals Wen and Ren are global control

signals that, respectively, write and read within the local

crosspoint memory. Signal A sets the CMOS register into an

intermediate state that facilitates writes and reads from the

crosspoint. An individual RRAM device is selected using a set

of global MS lines. Local writes to the RRAM crosspoint are

controlled by the master stage within the register. The gates

within the slave stage of the CMOS register are reconfigured

to provide a built-in sense amplifier to read the RRAM

crosspoint array [23]. The overhead of the additional circuitry

(shown in Figure 3) is relatively small (see Section IV.B).

TABLE I. COMPARISON OF DC ON/OFF CURRENT FOR 4 X 4 CROSSPOINT

ARRAY

 Ion [mA] Ioff [mA] Ratio
Average Active

Power [mW]

Unrectified 2.3 0.132 1.7 1.45

Rectified 0.486 0.017 28.5 0.201

Figure 3. Multistate register element. (a) Symbol of the

multistate register, and (b) block diagram with control signal

timing. The symbol is similar to a standard CMOS D flip flop

with the addition of a crosspoint array symbol.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

The multistate register primarily operates as a CMOS

register. In this mode, the structure behaves as a standard D

flip flop, where a single bit is stored and is active while the

idle states are stored within the RRAM crosspoint array. When

global control circuitry triggers a change of the pipeline state

(e.g., for a pipeline stall or context switch), the circuit stores

the current bit of the register and reads out the value of the

next active bit from the internal RRAM-based storage.

Switching between active bits consists of two phases. In the

first half of the cycle, an RRAM write operation stores the

current state of the register. During a write operation, the

transmission gate A disconnects the first stage from the

following stage, isolating the structure into two latches. The

input latch stores the currently evaluated state, while the

output latch stores the data of the previous state. Once Wen

goes high, the input latch drives a pair of multiplexors that

write the currently stored state into the RRAM cell selected by

the global MS lines. The active devices during the write phase

are shown in Figure 5b. The write phase may require more

than half a cycle depending upon the switching time of the

RRAM technology. During the second half of the clock cycle,

the new active bit is selected within the resistive crosspoint

array and sensed by the output stage of the CMOS D flip flop.

During a read operation, the globally selected row is grounded

through the common node Nin. The voltage on the common

line Nout is set by the state of the RRAM cell. To bias the

RRAM cell, the common line is connected through a PMOS

transistor to the supply voltage VDD. The voltage is sensed at

the output of M1. If Ren is set high, M1 to M5 reconfigure the

last inverter stage as a single ended sense amplifier [12], and

the crosspoint array is read. The active devices during the read

phase are shown in Figure 5c.

The physical design of the multistate register can be

achieved by two approaches. RRAM devices can be integrated

between the first two metals, as illustrated in Figure 6a, or the

RRAM can be integrated on the middle level metal layers, as

shown in Figure 6b. The middle metal layer approach allows

the RRAM to be integrated above the CMOS circuitry, saving

area. A standard cell floorplan is shown in Figure 7b, where a

dedicated track is provided for the RRAM interface circuitry.

This dedicated track runs parallel to the CMOS track. The

addition of this track wastes area in those cases where

multistate registers are sparsely located among the CMOS

gates. Additional routing overhead increases the area required

to pass signals around the crosspoint array.

 The approach illustrated in Figure 7a, where the RRAM is

integrated on the lower metal layers, requires slightly more

area but is compatible with standard cell CMOS layout rules.

Fabrication on the lower levels maintains standard routing

conventions, where the lower metal layers are dedicated to

routing within the gates, and the middle metal layers are used

to route among the gates.

IV. SIMULATION SETUP AND CIRCUIT EVALUATION

The multistate register has been evaluated for use within a

high performance microprocessor pipeline. The latency,

energy, and area of the register are described in this section as

well as the sensitivity to process variations.

A. Latency and energy

The latency and energy of an MPR are dependent on the

parameters of an RRAM device and the CMOS sensing

circuitry built into the MPR. The RRAM device is modeled

using the TEAM model [20] based on the parameters listed in

Table II. The parameters of the resistive device are chosen to

Figure 4. Multistate pipeline register (MPR) based pipeline and logic diagram of active and stored pipeline states. The MPR replaces a

conventional pipeline register and time multiplexes the stored states.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

Figure 5. Proposed RRAM multistate pipeline register. (a) The complete circuit consists of a RRAM-based crosspoint array above a CMOS-

based flip flop, where the second stage (the slave) also behaves as a sense amplifier. The (b) write and (c) read operations of the proposed

circuit.

incorporate device nonlinearity into the I-V characteristic, as

shown in Figure 2b and described in Section IIA. The

multistate register is evaluated across a range of internal cross

point sizes (e.g., different number of states per register). The

resistance of the device is extracted from [22]. The transistor

and cell track sizing information is from the FREEPDK45

Standard Cell Library [24] and scaled to a 22 nm technology.

Circuit simulations utilize the 22 nm PTM CMOS transistor

model [25]. The RRAM and diode device parameters are

listed in Table II. Standard CMOS timing information for the

register is listed in Table III. The read operation requires 28.6

ps, equivalent to a 16 GHz clock frequency (the read operation

is less than half a clock cycle). The register operates primarily

as a CMOS register and only accesses the RRAM crosspoint

array to switch between idle and active pipelines states. Note

that the eight row by eight column crosspoint array is small as

compared to large scale memory crosspoint arrays, and

therefore places a small electrical load on the sensing

circuitry. Hence, the read operation is relatively fast and does

not limit the operation of the multistate register.

The performance of the multistate register is limited by the

switching characteristics of the RRAM device. To maintain

high performance, the desired RRAM devices must be

relatively fast [29]. These characteristics are chosen to achieve

a target write latency of a 3 GHz CPU. As mentioned in

Section II, the RRAM write operation occurs sequentially

prior to the read operation. Due to the sequential nature of the

multistate register access to the RRAM array, a half cycle is

devoted to the read operation.

The energy of the multistate register depends upon the

RRAM switching latency, as listed in Table IV. ELow-High and

EHigh-Low are the energy required to switch, respectively, to Roff

and Ron for a single device write to the multistate register

crosspoint array. Since the switching time of the memristor

dominates the delay of a write to the multistate register, ELow-

High and EHigh-Low increase linearly as the switching time

increases. Note that the read energy only depends on RON and

ROFF and is therefore constant for different switching times.

The read energy, however, depends on the size of the

crosspoint (i.e., the number of RRAM devices), as listed in

Table V.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

B. Layout and physical area

The energy and latency of an MPR are dependent on both

the parameters of an RRAM device and on the CMOS sensing

circuitry built into the MPR. An individual crosspoint RRAM

cell is 0.001934 µm
2
 (4F

2
, where F is the feature size). The

layout of the proposed RRAM multistate register is shown in

Figure 8. The layout of the multistate register is based on 45

nm design rules and scaled to the target technology of 22 nm.

The number of RRAM devices within a crosspoint array is

scaled from four devices to 64 devices. The MPR is evaluated

for both the middle metal and lower metal approaches, as

described in Section III. The physical area is listed in Table

VI.

The transistors required to access the crosspoint, as shown

in Figure 8, dominate the area overhead of both the lower

metal and middle metal multistate register. Due to the

relatively small on-resistance of the RRAM devices, the

access transistor needs to be sufficiently large to facilitate a

write operation. Additionally, CMOS transmission gates are

used to ensure that there is no threshold drop across the pass

transistors. As a result, the area of the crosspoint memory is

only a small fraction of the area overhead of the multistate

register. Note that alternative RRAM technologies with a

higher Ron supports smaller transistors and reduced area.

Under these constraints, the most area efficient structure is a

64 bit array, as the overhead per state is, respectively, 0.08

µm
2
 for the lower metal approach and 3.75 µm

2
 for the middle

metal approach.

As shown, the middle metal register requires less area

than a lower metal multistate register. As described in Section

III and depicted in Figure 8b, the middle metal register

requires an additional track dedicated to the control transistors

within the crosspoint array. Positioning the crosspoint array

over the register also adds complexity as the upper metal

layers can no longer be used to route signals above the

multistate register.

C. Sensitivity and device variations

The built-in sense amplifier circuit senses the RRAM

based on a threshold voltage. Any voltage above the threshold

of the registers produces a logical zero at the output, and any

voltage below the threshold produces a logical one. Similar to

digital CMOS circuits, the structure is tolerant to variability in

the RRAM resistance. To evaluate the sensitivity of the circuit

TABLE II. MEMRISTOR AND DIODE PARAMETERS

Ron [kΩ] 0.5

Roff [kΩ] 30

kon -0.021-0.07

koff 0.0021-0.007

αon.off 3

ion [µA] -1

ioff [µA] 1

VON (diode) [V] 0.5

Rout (diode) [Ω] 1

TABLE III. ACCESS LATENCY OF A 16 BIT MPR

Clock to Q [ps] 11.2

Setup Time [ps] 13.2

RRAM Read [ps] 28.6

TABLE IV. WRITE LATENCY AND ENERGY OF A 16-BIT MULTISTATE

REGISTER

Write Time

[cycles @ 3 GHz]
0.5 1.5 2.5 3.5 4.5

ELow-High [fJ] 2.24 5.26 8.3 10.49 13.23

EHigh-Low [fJ] 3.78 10.33 16.89 23.5 30.08

TABLE V. READ ACCESS ENERGY OF RRAM

States per Mutistate Register 4 States 16 States 64 States

Eread,Off [fJ] 1.6 2.2 3.5

Eread,On [fJ] 0.33 0.41 0.71

Figure 6. Vertical layout of RRAM in MPR circuit for a) lower

level, and b) mid-layer crosspoint RRAM array.

Figure 7. Planar floorplan of MPR with lower metal and upper

metal RRAM layers. The RRAM array is not marked in this

figure since it is located above the CMOS layer and has a smaller

area footprint.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

to variations, the nominal Ron is varied from 0.35 to 0.65 kΩ.

This range produces a maximum and minimum change of

mV in the voltage input of the sense amplifier. For 21 kΩ >

Roff < 39 kΩ, a voltage ranging from -40 mV to +26 mV is

produced. Both ranges represent a 30% variation in the device

resistance of Ron and Roff. In these cases, the correct output

state is read out, indicating a high degree of tolerance to

variations in the RRAM resistance.

The RRAM circuit can tolerate an Ron of up to 12 kΩ

before the circuit produces an incorrect output. In a 64 bit

multistate register; this behavior corresponds to an increase in

the RRAM read delay from 78 ps to 476 ps. With increasing

Ron, the sense amplifier no longer generates a full range signal

at the output, dissipating static energy. Much of this increased

delay is due to the device operating near the switching

threshold of the sense amplifier.

As Roff varies from 30 kΩ to 300 MΩ, the performance of

the circuit improves due to two effects. As the resistance

increases, the voltage at the sense amplifier input also

increases, placing the transistor into a higher bias state, which

lowers the delay of the sense amplifier. Additionally, the large

resistance of the sensed RRAM device prevents the sense line

within the crosspoint array from dissipating charge,

maintaining a high voltage at the input of the sense amplifier.

Counterintuitively, this effect lowers the delay when Roff is

greater than 30 MΩ. Due to the interplay of Ron and Roff, a

Figure 8. Physical layout of 64 state MPR within the crosspoint

array on (a) lower metal layers (M1 and M2), and (b) upper metal

layers (M2 and M3) above the D flip flop.

TABLE VI. MPR AREA

Area

[µm2]

Overhead

[%]

Overhead

per State

[%]

CMOS Register

(1 state)
2.8 - -

L
o

w
er

M
et

al
 MPR 4 states 5.5 96.2% 24%

MPR 16 states 6.3 126.5% 8%

MPR 64 states 8.1 192.5% 3%

M
id

d
le

M
et

al
 MPR 4 states 3.9 39.3% 9.8%

MPR 16 states 4.3 53.6% 3.3%

MPR 64 states 5.2 85.7% 1.3%

TABLE VII. SOE MT AND CFMT PROCESSOR CONFIGURATIONS

Switch on

Event

RRAM-based

CFMT

Number of pipeline stages 10

CMOS process 22 nm

Clock frequency [GHz] 3

Switch penalty [cycles] 7 1 to 5

L1 read/write latency [cycles] 0

L1 miss penalty [cycles] 200

Data L1 cache configuration 32 kB, 4 way set associative

Instruction L1 cache

configuration
32 kB, 4 way set associative

Branch predictor Tournament , lshare 18kB/gshare 8kB

TABLE VIII. PERFORMANCE SPEEDUP FOR DIFFERENT MPR WRITE

LATENCIES AS COMPARED TO SWITCH-ON-EVENT MULTITHREADING

PROCESSOR FOR CPU SPEC 2006

Benchmark

MPR Write Latency [clock cycles]

1 2 3 4 5

libquantum 1.35 1.28 1.21 1.15 1.09

bwaves 1.22 1.15 1.08 1.04 1

milc 1.47 1.26 1.18 1.11 1.06

zeusmp 1.85 1.59 1.40 1.29 1.21

gromacs 1.53 1.32 1.21 1.17 1.14

leslie3d 1.67 1.48 1.33 1.22 1.15

namd 1.40 1.24 1.15 1.08 1.04

soplex.pds-50 1.35 1.28 1.21 1.16 1.1

lbm 1.5 1.31 1.2 1.12 1.08

bzip2.combined 1.13 1.1 1.08 1.05 1.03

gcc.166 1.35 1.28 1.21 1.15 1.09

gobmk.trevorc 1.3 1.24 1.19 1.14 1.09

h264ref.foreman_baseline 1.06 1.02 1 1 1

GemsFDTD 1.45 1.3 1.18 1.08 1.04

hmmer.nph3 1.18 1.14 1.11 1.07 1.04

soplex.ref 1.7 1.42 1.29 1.19 1.1

gcc.c-typeck 1.33 1.26 1.21 1.15 1.1

gobmk.trevord 1.29 1.23 1.18 1.13 1.08

Average 1.40 1.27 1.19 1.13 1.08

TABLE IX. ENERGY AND AREA EVALUATION FOR CFMT TEST CASE

Switch on

Event
RRAM-based CFMT Difference

Thread
switch

energy [pJ]

109.9

9,1 @ 1 cycle penalty -91.7%

19.1 @ 2 cycle penalty -82.6%

29.2 @ 3 cycle penalty -73.4%

38.4 @ 4 cycle penalty -65.1%

48.2 @ 5 cycle penalty -56.1%

Processor

area
[mm^2]

123.276 126.426 2.55%

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

TABLE X. ENERGY PER INSTRUCTION FOR VARIOUS CPU SPEC 2006 BENCHMARK APPLICATIONS

Benchmark
SoE MT

[pJ/inst.]

CFMT

RRAM MPR – various thread switch latencies

1 cycle

[pJ/inst.]

2 cycles

[pJ/inst.]

3 cycles

[pJ/inst.]

4 cycles

[pJ/inst.]

5 cycles

[pJ/inst.]

libquantum 15.17 14.12 14.29 14.46 14.63 14.80

bwaves 19.63 18.83 19.03 19.25 19.42 19.42

milc 24.51 22.61 23.23 23.47 23.74 24.11

zeusmp 21.10 18.04 18.62 19.19 19.18 19.95

gromacs 30.16 27.94 28.62 29.05 29.23 29.34

leslie3d 27.27 24.72 25.20 25.68 26.08 26.39

namd 22.90 21.42 21.91 22.21 22.50 22.65

soplex.pds-50 17.62 16.52 16.71 16.88 17.03 17.20

lbm 22.54 20.29 20.90 21.36 21.76 21.94

bzip2.combined 21.86 21.44 21.51 21.65 21.65 21.72

gcc.166 19.37 18.32 18.49 18.66 18.83 19.01

gobmk.trevorc 23.05 22.15 22.28 22.71 22.56 22.71

h264ref.foreman_baseline 25.95 25.27 25.35 25.50 25.69 25.76

GemsFDTD 23.89 21.88 22.43 22.99 23.36 23.49

hmmer.nph3 24.27 23.65 23.75 23.84 23.84 24.04

soplex.ref 21.92 19.47 20.04 20.44 20.80 21.17

gcc.c-typeck 19.94 19.16 19.12 19.27 19.43 19.58

gobmk.trevord 22.73 21.71 21.87 22.40 22.25 22.40

Average 22.44 20.97 21.30 21.61 21.78 21.98

delay tradeoff therefore exists between the average resistance

of the RRAM technology and the resistive ratio of the device.

The gain and offset of the sense amplifier have a small

effect on the circuit performance. A higher sense amplifier

gain improves the tolerance of the sense circuit to variations of

the RRAM device. An offset voltage shifts the reference

threshold voltage, but must be comparable to the supply

voltage (0.3VDD or more) before the circuit performance is

affected.

V. MULTISTATE REGISTERS AS MULTISTATE PIPELINE

REGISTER FOR MULTITHREAD PROCESSORS – A TEST CASE

Replacing CMOS memory (e.g., register file and caches)

with non-volatile memristors significantly reduces power

consumption. Multithreaded machines can exploit the high

density and CMOS compatibility of memristors to store the

state of the in-flight instructions within a CPU with fine

granularity. Hence, using memristive technology can

dramatically increase the number of threads running within a

single core. This approach is demonstrated in this test case,

where RRAM multistate registers store the state of multiple

threads within a CPU pipeline.

In continuous flow multithreading [12], the multistate

registers are used as MPRs to store the state of multiple

threads. A single thread is active within the pipeline and the

instructions from the other threads are stored within the

MPRs. The MPRs therefore eliminate the need to flush

instructions within the pipeline, significantly improving the

performance of the processor, as illustrated in Figure 9.

To exemplify this behavior, the performance and energy of

a CFMT processor with the proposed RRAM-based MPRs

have been evaluated [26]. To evaluate the performance, the

GEM5 simulator [27] is extended to support CFMT. The

energy has been evaluated by the McPAT simulator [28]. The

simulated processor is a ten stage single scalar ARM

processor, where the execution stage operates at the eighth

stage. The performance and energy of the CFMT processor are

compared to a switch-on-event (SoE) multithreading processor

[30], where a thread switch occurs for each long latency

instruction (e.g., L1 cache miss, floating point instructions),

causing the pipeline to flush. The characteristics of the

evaluated processors are listed in Table VII. The energy is

compared to a 16 thread processor (i.e., with an MPR storing

16 states) which is a sufficient number of threads to achieve

the maximum performance for most benchmark applications.

The performance of the processors is measured by the

average number of instructions per clock cycle (IPC), as listed

in Table VIII. The average speedup in performance is 40%. A

comparison of the thread switch energy is listed in Table IX.

The average energy per instruction for various CPU SPEC

2006 benchmarks is listed in Table X, where the average

reduction in energy is 6.5%. The area overhead for a 16 thread

CFMT as compared to an SoE is approximately 2.5%, as listed

in Table IX.

For the CFMT configuration described herein, the

simulations show that 16 threads are sufficient to achieve the

maximum performance for the vast majority of SPEC CPU

2006 benchmarks. Alternate configurations with many long

latency events or different machines may benefit from

additional states.

Physically, a linear increase in the number of rows and

columns within the crosspoint array generates a quadratically

increasing number of states and physical area, increasing the

efficiency of the crosspoint array. A small increase in the

number of rows and columns supports many more threads.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

However, as previously mentioned, 64 states is sufficient for

most applications.

For the MPR to enhance performance, the cost of a thread

switch must be smaller than the latency of a cache miss or

other long latency events. This situation is typical for all

practical thread switching events.

VI. CONCLUSIONS

Emerging memory technologies, such as RRAM, are

more than just a drop-in replacement to existing memory

technologies. In this paper, a RRAM based multistate register

is proposed using an embedded array of memristive memory

cells within a single flip flop. The multistate register can be

used to store additional data that is not conventionally

contained within the computational pipeline.

The proposed multistate register is relatively fast due to

the physical closeness of the CMOS and RRAM devices. A 16

state multistate register requires only 54% additional area as

compared to a single state standard register. The multistate

register is also relatively low power due to the non-volatility

of the resistive devices.

As an example, the proposed multistate register has been

applied to a continuous flow multithreading processor,

exhibiting a significant performance improvement of 40%

with low energy as compared to a conventional switch-on-

event processor. An RRAM-based MPR therefore enables

novel microarchitectures, such as the CFMT. The proposed

multistate register is shown to significantly improve

performance and reduce energy with a small area overhead.

ACKNOWLEDGMENTS

The authors thank Yoav Etsion, Yuval H. Nacson, and Uri

C. Weiser for their contributions.

REFERENCES

[1] D. B. Strukov, G. S.Snider, D. R. Stewart, and R. S. Williams, "The

Missing Memristor Found,” Nature, Vol. 453, pp. 80-83, May 2008.
[2] M. Hosomi et al., “A Novel Nonvolatile Memory with Spin Torque

Transfer Magnetization Switching: Spin-RAM,” Proceedings of the

IEEE International Electron Devices Meeting, pp. 459–462, December
2005.

[3] L. Chua, "Resistance Switching Memories are Memristors," Applied

Physics A, Vol. 102, No. 4, pp. 765-783, March 2011.
[4] H. S. Wong et al, “Metal–Oxide RRAM,” Proceedings of the IEEE,

Vol. 100, No. 6, pp. 1951-1970, June 2012.

[5] Y. Ho, G. M. Huang, and P. Li. "Nonvolatile Memristor Memory:
Device Characteristics and Design Implications," Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design, pp.

485-490, November 2009.
[6] D. R. Lamb and P. C. Rundle, "A Non-Filamentary Switching Action in

Thermally Grown Silicon Dioxide Films," British Journal of Applied

Physics, Vol. 18, No.1, pp. 29-32, January 1967.
[7] G. M. Ribeiro et al., “Designing Memristors: Physics, Materials Science

and Engineering,” Proceedings of the IEEE International Symposium on

Circuits and Systems, pp. 2513–2516, May 2012.
[8] J. J. Yang et al., “Memristive Switching Mechanism for

Metal/Oxide/Metal Nanodevices,” Nature Nanotechnology, Vol. 3, No.
7, pp. 429–433, June 2008.

[9] J. Li and J. F. Martinez, "Power-Performance Implications of Thread-

level Parallelism on Chip Multiprocessors," Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and

Software, pp.124-134, March 2005.

[10] D. M. Tullsen, S. J. Eggers, and H. M. Levy. “Simultaneous
Multithreading: Maximizing On-Chip Parallelism,” Proceedings of the

IEEE/ACM International Symposium on Computer Architecture, pp.

392-403, May 1995.
[11] Intel Ivy Bridge Specifications (two threads per core)

http://ark.intel.com/

Figure 9. Illustration of different multithreading techniques with four threads (marked by the number). All processors run the same four

threads as shown in (e). The latency of the 'white' and 'shaded' instructions is, respectively, a single clock cycle and ten clock cycles. For a

(a) switch-on-event multithreaded processor, the long latency instruction that triggers a thread switch is the shaded instruction and the

thread switch penalty is five clock cycles due to the pipeline flush. For continuous flow multithreading, the thread switch penalty depends

upon the read and write times of the multistate register, and is lower than traditional switch-on-event processors. The different thread

switch penalties illustrated in this example are (b) zero for an ideal multistate register, (c) one clock cycle, and (d) two clock cycles. The

performance (measured by the instructions per cycles) in this example is (a) 7/12, (b) 1 (71% improvement as compared to switch-on-

event), (c) 0.83 (43% improvement), and (d) 0.67 (14% improvement) [12].

http://ark.intel.com/

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XXX, NO. XXX, XXX

201X

Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

[12] S. Kvatinsky, Y. H. Nacson, Y. Etsion, E. G. Friedman, A. Kolodny, and

U. C. Weiser, "Memristor-based Multithreading," IEEE Computer

Architecture Letters, 2013 (in press).
[13] L. O. Chua, “Memristor – The Missing Circuit Element,” IEEE

Transactions on Circuit Theory, Vol. 18, No. 5, pp. 507-519, September

1971.
[14] L. O. Chua and S. M. Kang, “Memristive Devices and Systems,”

Proceedings of the IEEE, Vol. 64, No. 2, pp. 209- 223, February 1976.

[15] T. Prodromakis, K. Michelakisy, and C. Toumazou. "Fabrication and
Electrical Characteristics of Memristors with TiO2/TiO2+x Active

Layers," Proceedings of IEEE International Symposium on Circuits and

Systems, pp.1520-1522, May 2010.
[16] Z. Biolek, D. Biolek, and V. Biolkova., "SPICE Model of Memristor

with Nonlinear Dopant Drift," Radioengineering, Vol. 18, No .2, pp.

210-214, June 2009.
[17] G. M. Ribeiro et al., “Designing Memristors: Physics, Materials Science

and Engineering,” Proceedings of the IEEE International Symposium on

Circuits and Systems, pp. 2513–2516, May 2012.

[18] H.Y. Lee et al., "Low Power and High Speed Bipolar Switching with a

Thin Reactive Ti Buffer Layer in Robust HfO2 Based

RRAM," Proceedings of the IEEE International Electron Devices
Meeting, pp.1–4, December 2008.

[19] Y. F. Chang et al., “Study of SiOx-Based Complementary Resistive

Switching Memristor,” Proceedings of the Annual Device Research
Conference, pp. 49–50, June 2012.

[20] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, “TEAM:

ThrEshold Adaptive Memristor Model,” IEEE Transactions on Circuits
and Systems I: Regular Papers, Vol. 60, No. 1, pp. 211–221, January

2013.

[21] Y. N. Joglekar, and S. J. Wolf, “The Elusive Memristor: Properties of

Basic Electrical Circuits,” European Journal of Physics, Vol. 30, No. 4,

pp. 661–675, July 2009.
[22] J. J. Yang et al., “Engineering Nonlinearity into Memristors for Passive

Crossbar Applications,” Applied Physics Letters, Vol. 100, No. 11, pp.

113501–113501, March 2012.
[23] K. Pagiamtzis and A. Sheikholeslami, “Content-Addressable Memory

(CAM) Circuits and Architectures: A Tutorial and Survey,” IEEE

Journal of Solid-State Circuits, Vol. 41, No. 3, pp. 712–727, March
2006.

[24] FreePDK45 User Guide, April 2011,

http://www.eda.ncsu.edu/wiki/FreePDK45.
[25] W. Zhao and Y. Cao, “New Generation of Predictive Technology Model

for Sub-45 nm Early Design Exploration,” IEEE Transactions on

Electron Devices, Vol. 53, No. 11, pp. 2816–2823, January 2006.
[26] S. Kvatinsky, Y. H. Nacson, R. Patel, Y. Etsion, E. G. Friedman, A.

Kolodny, and U. C. Weiser, "Multithreading with Emerging

Technologies – Dense Integration of Memory within Logic," (in

submission).

[27] The gem5 Simulator System, May 2012, http://www.m5sim.org/ .

[28] S. Li et al., "McPAT: an Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures," Proceedings of

the IEEE/ACM International Symposium on Microarchitecture, pp. 469-

480, December 2009.
[29] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "The

Desired Memristor for Circuit Designers," IEEE Circuits and Systems

Magazine, Vol. 13, No. 2, pp. 17-22, Second quarter 2013.
[30] M. K. Farrens and A. R. Pleszkun, "Strategies for Achieving Improved

Processor Throughput," Proceedings of the Annual International

Symposium on Computer Architecture, pp. 362-369, May 1991.

http://www.eda.ncsu.edu/wiki/FreePDK45
http://www.m5sim.org/
http://www.m5sim.org/

MICRO Submission #XXX – Confidential Draft – Do Not Distribute!

1

On the In-Die 3D Integration of Memory in CMOS Metal Layers and
Its Implications on Processor Microarchitecture

Abstract

Over the recent years, new memory technologies such as
RRAM and STT-MRAM have emerged. These non-volatile
technologies have primarily been studied as replacement
for flash, DRAM, and SRAM.
In this paper, we take a different approach and explore the
tight integration of CMOS logic with emerging memory
technologies inside the CMOS die. The physical properties
of these emerging technologies allows them to be inte-
grated into the metal layers of a CMOS die without requir-
ing precious real-estate on the die's single transistor layer.
As current CMOS technology offers about a dozen metal
layers on top of a single transistor layer, such tight integra-
tion provides logic with extremely fast access to abundant
memory resources. We refer to the tight integration of
memory and logic as memory-intensive architecture.
We present the multi-state register as a building block for
memory-intensive architectures stores multiple shadowed
values for a single register in the metal layers of the die.
Finally, we examine the implications of memory-
intensive architecture on processor microarchitecture. We
construct an in-order pipeline using the proposed multi-
state register as pipeline registers and demonstrate how the
use of multistate pipeline registers in this microarchitecture
eliminates the need to flush the pipeline upon a thread
switch in Switch-on-Event (SoE) multi-threading machines.
We show that the resulting continuous flow multi-threading
(CFMT) microarchitecture outperforms a traditional SoE
design by 32% while consuming 8.5% less energy, thereby
significantly increasing the performance to energy ratio.

Keywords Memristor, memristive device, STT-MRAM,
PCM, RRAM, multithreading, CFMT, Memory Intensive
Computing

1. Introduction

Emerging of nonvolatile memory technologies, such as
RRAM [1-2] and STT-MRAM [3], offer high speed, high
density, and low power memories, whose endurance is
expected to reach that of SRAM and DRAM [4-5]. These
technologies represent logical state as resistance on a con-
ductor (variadic resistance for RRAM; switchable on/off
modes for STT-MRAM) and, despite their use of different
materials and physical properties, can be collectively refer
to as memristive devices, or memristors1 [6-9].

1
 Although the use of the term memristor for these emerging

memory elements is still under debate [9], we use it in this paper

One interesting shared characteristic of these emerging
memory technologies is that they are fabricated between
two layers of metal. Existing CMOS-based dies are com-
posed of a single layer of CMOS transistors with multiple
metal layers stacked on top. The metal layers are etched to
compose the wires that route the connections between the
transistors on the CMOS layers, and modern processors
may include up to a dozen metal layers [10]. Nevertheless,
the metal layers are not fully utilized in many areas of the
die.

In this paper, we propose in-die stacking of memory on
top of logic by fabricating memristors in the metal layers of
the die. The integrated memory-intensive architecture pro-
vides tight integration of logic with dense memory
(memristors can be stacked on several layers to further
increase density). This integration presents logic with fast
access to abundant memory resources.

To make efficient use of memory-intensive architecture,
we present the multi-state register. The multistate register
extends a CMOS register with multiple shadow values
stored in the memristor layers above. While logic can oper-
ate regularly on the active value stored in the CMOS layer,
the active value can be switched with any of the shadow
values within a single cycle. This building block thus pro-
vides a promptly switchable, multi-context state element.
We have designed RRAM-based multistate registers using
SPICE, including its physical layout, and present its per-
formance, area, and energy characteristics.

Finally, we explore the implications of memory-
intensive architecture on processor microarchitecture by
replacing the pipeline registers in an in-order, switch-on-
event (SoE), multi-threaded pipeline with multistate regis-
ters. The resulting continuous flow multi-threading
(CFMT) pipeline can store multiple in-flight pipeline con-
texts. On a thread switch, the CFMT pipeline simply
switches contexts in all multistate pipeline registers, there-
by eliminating the need to flush the pipeline on every
thread switch. We have implemented the CFMT pipeline
using a modified gem5 simulator and show that it achieves
high performance, while keeping the complexity and ener-
gy low as conventional SoE. Specifically, CFMT improves
performance to energy ratio by an average of 44% (up to a
116% for floating point benchmarks) over an SoE pipeline.

to refer to any device that is nonvolatile, dense, and resistance-
based.

2

Figure 1: Physical structure of memory cells (memristors)

on top of CMOS transistors. The memristors are located

between metal layers 3 and 4, and 4 and 5.

In summary, this paper makes the following contribu-

tions:

 Introduces the tight integration of logic with memristive

memories by embedding memristors in the metal layer.

 Presents the multistate register as a building block for

memory-intensive architecture.

 Explores the implications of memory-intensive architec-

ture on processor microarchitecture through the evalua-

tion of the continuous flow multithreading pipeline.
The rest of the paper is organized as follows: emerging

memory technologies and the concept of memory intensive
architecture are described in section 2. The multistate regis-
ter is presented in section 3, following a case study of its
integration in multithreaded processors in section 4. The
performance and energy of CFMT are evaluated, respec-
tively, in sections 5 and 6, following concluding remarks in
section 7.

2. Stacking Memory Inside the Die

Emerging memory technologies are fabricated in the
metal layers and can be integrated into a CMOS process,
above the active silicon transistors, as shown in figure 1. In
this section, we present how the integration into CMOS
enables memory intensive architectures. This section then
surveys the most promising emerging memory technologies
and confronts their current status with the underlying
assumptions regarding nonvolatility, relatively fast write
and read (similar speed as an SRAM), practically unlimited
write endurance, low energy, high density (stacked above
the silicon transistors), good scalability, and compatibility
with standard CMOS processes.

2.1 In-Die Integration

All emerging memory technologies are located on top of
the silicon layer and can therefore be integrated with
CMOS transistors right above them. This concept is illus-
trated in figure 1, where the emerging memory technolo-
gies (marked as 'memristors' in the figure) stacked in two
layers as oxides sandwiched between two layers of metal.
In this illustration, the memory devices are located between
metal 3 and 4, and between metal 4 and 5. The memory
devices can be located between any other metal layers as
shown in section 3. The size of each of each memory de-
vice depends on the width of the metal wires, and is usually
the minimal feature size of the technology. Emerging
memory devices are therefore the smallest possible devices
in each technology (usually the area of a single device is
considered to be 4F

2
, where F is the feature size) allowing

dense memories.
There are several memory cell structures. RRAM can be

implemented as a crossbar structure, achieving a high den-
sity since the memory cell consists of only a single resistor.
Using several stacked layers can further increase the densi-
ty. Crossbars, however, suffer from the sneak path phe-
nomenon [11], which increases power consumption and
complicates the read process. To reduce the sneak path,
nonlinearity is added by depositing additional materials
above or below the memristive thin film, with no change in
the density [12]. Alternatively, a transistor can be added to
the memory cell as a selector, reducing the density of the
memory array since transistors are usually larger in their
area as compared to the emerging memory devices.

2.2 Memory Intensive Architectures

A straightforward way is to use emerging memory tech-
nologies as improved replacements for existing memory
technologies, and benefit from the improved characteristics,
e.g., higher density, no leakage, and high endurance. Using
these technologies as SRAM replacements greatly increases
on-die memory.

Standardization of emerging memory technologies has,
however, implications for processor microarchitecture
beyond conventional memory hierarchy. Emerging memory
technologies can be used to enhance performance and de-
crease energy in memory intensive architectures [13],
where processors are abundant with nonvolatile, fast
memory, located on-top of the logic.

The additional memory increases the capacity of other
elements within the processor, such as branch predictors,
instruction queues, prefetching structures, reorder buffers,
and other buffers. Additional memory elements can also be
used to store data, which currently is not stored due to the
limitations of conventional technologies. For example, the
results of previously executed instructions can be stored for
instruction reuse, to provide hardware memoization [14].
The states of different instructions for multiple threads can
also be stored to enhance the performance of multithreaded
processor as the case study presented in this paper.

2.3 Background on Emerging Memory Technologies

2.3.1 RRAM

Resistive Random Access Memory (ReRAM or
RRAM) is based on dielectric materials - normally insula-
tors - which can increase the conductance through a fila-
ment or conduction path, when a sufficiently high voltage
is applied to the device for a sufficiently long time. This
phenomenon is called resistive switching [1]. There are
numerous types of materials that exhibit resistive switch-
ing, including binary transition metal oxides (e.g., TiO2,
NiO), chalcogenides (e.g., Ge2Sb2Te5, AgInSbTe), and
solid-state electrolytes (e.g., GeS, GeSe). A physical sche-
matic of a TiO2 device is shown in Figure 2a.

Recently, Panasonic debuted a commercial RRAM
product [15] for microcontrollers. The first commercial
flash replacements are planned for 2015 [2]. Prototypes of
RRAM demonstrate superiority over flash memories [16-
17] and certain resistive switches exhibit comparable prop-

3

Figure 2: Different emerging memory devices. (a) A TiO2

resistive RAM (RRAM) device and (b) Spin-Transfer

Torque Magnetoresistive RAM (STT MRAM) cell.

 Emerging Commercialized

RRAM PCM STT-MRAM CBRAM FeRAM SRAM DRAM Flash HDD

Reciprocal Density [F2] < 4 4-16 20-60 6 6 140 6-12 4 2/3

Energy per bit [pJ] 0.1-3 2-25 0.1-2.5 2 2 0.0005 2 120 1-10·109

Read time [ns] 0.1-10 10-50 10-35 50 50 0.1-0.3 10 2.5·104 5-8·106

Write time [ns] 0.1-10 50-500 10-90 50 75 0.1-0.3 10 105 5-8·106

Retention Years Years Years Years Years As long as voltage applied 64 msec Years Years

Standby power Zero Zero Zero Zero Zero Cell leakage Refresh

power

Zero ~ 1W

Non-volatility Yes Yes Yes Yes Yes No No Yes Yes

Write endurance [cycles] 1012 109 1015 105 1015 >1016 >1016 103-104 104

Present density 32 Gb 8 Gb 64 Mb 16 Gb 128 Mb 2-8 MB 8 GB 256 GB >1TB

Multi-level Yes Yes No Yes No No No Yes No

Table 1: Comparison of different memory technologies. The data is from [15-26], [46-50].

erties to SRAM and DRAM [4, 18]. The properties of
RRAM devices vary for different materials. Some materials
are relatively fast. Tantalum oxide memristors, for exam-
ple, can switch in approximately 100 picoseconds [19].
Although the endurance of RRAM is limited, it is consider-
ably higher than flash (10

12
 as compared to 10

3
 to 10

6
 in

flash), and will improve substantially in the near future, as
required by caches and main memory [4]. The energy re-
quired to change the resistance of the device remains rela-
tively high as compared to other memory technologies [18]
but data retention does not consume static energy. As ex-
plained in section 2.1, the density of RRAM can be maxi-
mal for crossbars memories. Note that a single RRAM cell
can store more than one bit, which further increases densi-
ty.

2.3.2 STT-MRAM

Spin-Transfer Torque Magnetoresistive RAM (STT-
MRAM) is a device usually consisting of two ferromagnet-
ic metals with an oxide between the metal layers [3]. One
metal has a fixed magnetic field and the other metal has a
varying magnetic field, which changes according to the
direction of the electric current flowing through it. When
the two magnetic fields are parallel (in the same direction),
the resistance of the device is relatively small. When the
two magnetic fields are anti-parallel (in opposite direc-
tions), the resistance of the device is relatively high. Since
there are only two stable states (parallel and anti-parallel),
STT-MRAM behaves as a simple binary memory, and a

single device cannot store more than a single bit. A physi-
cal schematic of an STT-MRAM cell is shown in figure 2b.

STT-MRAM is relatively fast (around 1 nsec write
time) and has unlimited write endurance [5]. STT-MRAM
suffers, however, from a low ratio between the high and
low resistance, making it difficult to sense the data with
process variations. The read and write energy of STT-
MRAM is similar to the energy of RRAM. STT-MRAM
cells require a transistor as a selector and their size is there-
fore characterized by the size of the CMOS transistor. Re-
cently, Everspin Technologies, a spinoff of Freescale, an-
nounced the first commercial STT-MRAM memory. For
this product, the read and write times are 35 nsec, with
unlimited write endurance and capacity of 64 Mb [20].

2.3.3 Shared Properties of Practical Emerging
Memory Technologies

There are several additional emerging memory technol-
ogies that share similar properties as the aforementioned
technologies [21], such as Phase Change Memory (PCM)
[22-24], Ferroelectric RAM (FeRAM or FRAM) [25] and
Programmable Metallization Cell (PMC or CBRAM, some-
times considered as a specific type of RRAM) [26]. The
properties of the emerging memory technologies described
in this paper as well as conventional memory technologies
are listed in Table 1.

Emerging memory technologies are still relatively slow
as compared to SRAM. RRAM and STT-MRAM devices,
however, have been demonstrated to exhibit relatively low
write latencies, similar to SRAM. The write endurance of
STT-MRAM and FeRAM is practically unlimited as de-
sired for SRAM and DRAM replacement. Although the
write endurance of RRAM is relatively high, it is still not
sufficient to replace SRAM and DRAM. It is, however,
expected that the write endurance reach that of SRAM [4].

Due to their nonvolatility, there is no leakage in emerg-
ing memory technologies. The dynamic energy per bit for
emerging memory devices is, however, considerably higher
than the energy per bit for SRAM. Since leakage power
dominates in an SRAM cache, the total power dissipation
for RRAM and STT-MRAM is lower than for SRAM. For
example, STT-MRAM cache dissipates 60% less power
than an SRAM cache with similar area [27].

RRAM and STT-MRAM are therefore candidates for
SRAM replacements and are attractive technologies for use
within a processor and fulfill the aforementioned require-
ments. Other technologies could also be used within a pro-
cessor if speed, energy, endurance, and scaling issues are
improved.

4

Figure 3: The logic structure of a multistate register. The

size of each set is m bits, while n states are stored. The

multistate register is synchronized by a clock and can

switch the active set.

Register Area

[µm2]

Area

Overhead

CMOS Register (1 state) 2.8 -

RRAM

4 states 3.9 39.3 %

16 states 4.3 53.6%

64 states 5.2 85.7%

SRAM

4 states 29.7 959.4%

16 states 110.25 3837.6%

64 states 432.61 15450.4%

Table 2: Area of a single bit Resistive RAM and SRAM

for multistate registers based on a 22 nm CMOS process.

The area of an RRAM-based multistate register is extract-

ed by Cadence Virtuoso [28] and the area of an SRAM-

based multistate register is extracted by NVSim [44].

3. Memristor-Based Multistate Register

The introduction of massive amount of memory ele-
ments above the CMOS logic creates an opportunity to
store data created at the CMOS level. The multistate regis-
ter is a novel memory structure, used to store multiple bits
within a single element. One set of bits is an active set,
while the other sets are idle and stored for future use. The
multistate register is a synchronous storage element, and
the procedure to change the active set is therefore synchro-
nized by a clock. The basic logical structure of a multistate
register is shown in Figure 3.

 An RRAM-based multistate register is shown in Figure
4 [28]. The multistate register primarily operates as a
CMOS register. In this mode, the structure behaves as a
standard D flip-flop, where a single bit is stored and is
active while the idle states are stored within the RRAM
crossbar array. Since the active state is stored within a
CMOS register, the multistate register is compatible with
any digital circuit. When global control circuitry triggers a
change of the active set, the circuit stores the current bit of
the register and reads out the value of the next active set
from the internal RRAM-based storage. Switching between
active bits therefore occurs in two phases, ideally taking
one half-clock cycle per phase. While the delay of the read
phase is limited by the CMOS register and is much lower
than half a cycle, the write phase may require more than
half a cycle, depending upon the switching time of the
RRAM technology.

The RRAM-based multistate register utilizes a clocked
CMOS register augmented by additional sense circuitry and
global memristor select (MS) lines. The MS lines select
individual RRAM devices within the crossbar memory co-
located with the CMOS register. Local writes to the RRAM
crossbar are controlled by the master stage within the
CMOS register. The gates within the slave stage of the
CMOS register are reconfigured to provide a built-in sense
amplifier to read the RRAM crossbar array. The overhead
of the additional circuitry is therefore relatively small, as
shown in Figure 5a and 5bc for RRAM-based multistate
registers with two physical design approaches – integrating
RRAM devices between the first two metals or, alternative-
ly, on the middle level metal layers. Using the lower metal
layers approach is compatible with standard cell CMOS
rules, but requires slightly more area than the middle level
metal approach.

Although it is possible to design a CMOS SRAM-based
multistate register (or any other conventional memory
technology), emerging memory technologies enable high
capacity multistate registers due to the high density and low
leakage, as listed in Table 2 based on a 22 nm CMOS pro-
cess. SRAM-based multistate register has large area, while
the equivalent RRAM-based multistate register requires a
relatively small area overhead. For example, a 64 state
multistate register of SRAM that is based on a 22 nm
CMOS process is 83 times larger than an RRAM-based
multistate register.

A multistate register can be used for different purposes.
In this paper, the application of multistate registers in the
pipeline is described and demonstrated. In pipeline regis-
ters, the state of the instruction from the preceding pipeline
stage is stored and transferred to the next pipeline stage. In
a multistate pipeline register, additional instructions are
also stored within the multistate register in background.
The basic functionality of the pipeline is therefore un-
changed. In the next section, we describe and evaluate

Continuous Flow Multithreading (CFMT) [29], a novel
microarchitecture that employs memristive multistate regis-
ters. In CFMT, a multistate register stores multiple machine
states of different threads, where a single thread is active at
a time, enabling higher throughput computing.

3.1 Multistate Register Evaluation

To evaluate the area, power, and performance of an
RRAM-based multistate register, we used SPICE simula-
tions along with cell layout. The RRAM device is modeled
using the TEAM model [41]. The parameters of the resis-
tive device are chosen to incorporate device nonlinearity
into the current-voltage characteristic to reduce sneak
paths. The multistate register is evaluated across a range of
internal crossbar sizes (i.e., different numbers of states per
register). The transistor and cell track sizing information is
from the FREEPDK45 Standard Cell Library [42] and
scaled to a 22 nm technology. Circuit simulations utilize
the 22 nm PTM CMOS transistor model [43].

The read operation of the multistate register requires
28.6 ps, equivalent to a 16 GHz clock frequency (the read
operation is less than half a clock cycle). The latency of the
write operation is assumed to vary from half a clock cycle
to 4.5 clock cycles to fit different RRAM technologies,
resulting different thread switch penalties that vary from a
single clock cycle to five clock cycles.

To evaluate area, we assume that the area of a single
memristor is 0.001934 µm2 (4F

2
, where F is the feature size)

[18]. The area of an SRAM-based multistate register is
extracted from NVSim [44] based on a 22 nm CMOS pro-
cess. The use of SRAM-based multistate register in CFMT

5

Figure 4: Complete circuit of a 16 state RRAM-based single bit multistate register consists of an RRAM-based crossbar array

above a CMOS-based flip-flop, where the second stage (the slave) also behaves as a sense amplifier.

Figure 5: RRAM-based single bit multistate register. (a) Vertical layout of RRAM in multistate register, where the RRAM is

within the lower metal layers (left) and middle metal layers (right), and physical layout of 64 state multistate register, where the

RRAM is within (b) the lower metal layers (M1 and M2) and (c) middle metal levels (M2 and M3).

does not make sense due to its large area as listed in Table
2 and is not evaluated in this paper.

4. Test Case: Continuous Flow Multi-
Threading (CFMT)

The availability of abundant state affects the design of
processor microarchitectures. In this section we illustrate
the potential benefit of memory intensive architecture
through a microarchitecture case study. We demonstrate
these benefits by replacing pipeline registers of an in-order
Switch-on-Event multithreaded (SoE MT) processor with
multistate registers. The resulting Continuous Flow
Multithreading (CFMT) microarchitecture offers faster
thread switch and higher performance, while saving power
and maintaining the control as simple as SoE MT
processors and. Unlike previous microarchitectures, which
store the states of multiple threads (especially for GPUs)

[30], CFMT stores intermediate (internal) states of each
instruction within the pipeline.

4.1 Overview of Switch-on-Event Multithreading

Switch-on-Event Multithreading (SoE MT) is a multi-
threading technique in which a processor hides the latency
of long multi-cycle events (MCE), e.g., an L1 cache miss,
by executing instructions from different threads. When a
sufficiently long MCE occurs, a thread switch is triggered
and the MCE is executed in background. Otherwise (i.e.,
when short latency instructions are executed), instructions
from the same thread are fetched. During a thread switch,
all of the sequential instructions from the thread that was
switched are flushed and instructions from a different
thread are fetched. The penalty of a thread switch is the
time required to refill the pipeline.

A longer thread switch penalty reduces the performance.
Hence, the number of pipeline stages is limited and, as a
result, the frequency of the processor is restricted. Addi-

6

Figure 6: Timelines for different multithreading tech-

niques with four threads (marked by the number). All

processors run the same four threads as shown in (f). The

latencies of the 'white' and 'shaded' instructions are, re-

spectively, a single clock cycle and ten clock cycles. For an

(a) SoE MT processor, the event that triggers a thread

switch is the shaded instruction and the thread switch

penalty is five clock cycles. (b) Static and (c) dynamic fine-

grained multithreading achieves higher utility, while (d)

SMT is optimized to achieve the maximum performance.

(e) CFMT achieves high performance with simple switch-

ing and control mechanisms.

Figure 7: Continuous Flow Multithreading structure. A

multistate pipeline register (MPR) is located between

every two pipeline stages instead of a conventional pipeline

register. The MPR stores the state of instructions from all

supported threads within the machine when only a single

thread is active at a time.

tionally, the effectiveness of a thread switch depends upon
the ratio of the MCE latency and the switch penalty. For an
MCE with latencies smaller than the switch penalty, it is
preferable to stall the pipeline rather than switch to a new
thread. For example, assume that MCEs are identified at
the eighth pipeline stage (i.e., seven clock cycles are re-
quired to refill the pipeline), the L1 cache miss penalty is
20 cycles, and the latency of an integer multiplication is
three cycles, without pipelining the operation. For a cache
miss MCE, a thread switch is worthwhile, but it is not
worthwhile for an integer multiplication MCE. In this ex-
ample, the latency of an L1 cache miss is hidden by the
multithreading technique and does not influence the per-
formance. Integer multiplication degrades the performance
of the processor.

The performance of an SoE MT processor also depends
upon the number of threads running within the processor.
For a sufficient number of threads, instructions from other
threads hide the latency of the MCE. In this case, the per-
formance approximately saturates. For an insufficient num-
ber of threads, increasing the number of threads linearly
improves performance.

Although an SoE MT is a simple technique that requires
minimal control, it suffers from low performance and rela-
tively high energy consumption due to repeated pipeline
flushing. Other multithreading techniques, such as fine-
grained multithreading [31] and simultaneous multithread-
ing (SMT) [32], overcome the limitations of SoE MT. The
complexity of these techniques, however, is greater. Fur-
thermore, to achieve effective fine-grained multithreading,
a large number of threads is required. An SMT processor,
on the other hand, presents an opportunity to increase per-
formance. Nevertheless, the complexity required to control
a processor is significant, and the area and power consump-
tion limit the processor to relatively few threads (e.g., In-
tel's Ivy Bridge processor has only two threads per core
[33]). SoE MT, fine-grained multithreading, and SMT are
illustrated in Figure 6.

4.2 Introducing CFMT

Using multistate registers as pipeline registers in multi-
threaded processors can enhance performance by minimiz-
ing the switch penalty. In conventional pipelines, the pipe-
line registers are located between pipeline stages to store
the state of the predecessor instructions before moving the
state to the next pipeline stage. Conventional pipeline regis-
ters are replaced by multistate registers, as shown in Figure
7. The use of multistate registers instead of regular registers
saves the state of the stalled threads in addition to the state
of the active thread. The mechanism of thread switching is
therefore different from a conventional SoE MT. Rather
than flushing the pipeline, the states of the consecutive
instructions are stored within the multistate registers in the
memristive layer, locally near the relevant pipeline stage.
On a thread switch rather than refilling the pipeline, in-
structions from the new active thread are read from the
multistate registers, significantly reducing the thread switch
penalty to the time required to read data from an multistate
register. The conceptual behavior of CFMT is similar to the
behavior of an SoE MT (see Figure 6a) with fewer bubbles,
as shown in Figure 6e. Additionally, the novel switching
mechanism helps conserve energy since reading and writ-
ing to the multistate registers consume less energy than
refilling the entire pipeline and replaying the flushed in-
structions.

Lowering the thread switch penalty also allows new
events to trigger a thread switch. With a conventional SoE
MT, it is worthwhile to switch threads on events, when the
latency is longer than the time required to refill the pipe-
line. With CFMT, the condition changes and it is effective
to switch threads on events when the latency is longer than
the time to switch an active thread within a multistate regis-
ter. This condition allows having MCEs that would stall the
pipeline in a conventional SoE MT. This improvement
further increases the performance of the processor such as
floating point operations and long latency integer opera-
tions. The analysis and evaluation of performance and
power are presented in Sections 5 and 6.

In CFMT, the controller acts similar to a simple conven-
tional SoE MT. The simplicity of CFMT is due to the use
of an in-order pipeline, with only a single active thread at
any given time. While the control mechanism is simple and
the energy is low, CFMT offers substantially higher utiliza-
tion and performance.

7

Pipeline depth 13 stages

Execution stage 9th stage

L1 cache 32kB, 4-ways, 2 cycles latency

L2 Cache 1MB, 8 ways, 20 cycles latency

Memory latency 200 cycles

Branch predictor 8kB gshare

Table 3: Parameters of the simulated processor.

Execution Unit
No. of

Units

Latency

[Cycles]
Pipelined?

Int ALU 1 1 NA

Int multiply 1 3 V

FP ALU 1 4 V

FP multiply 1 5 V

FP multiply double precision 1 6 V

FP div 4 15 X

FP div double precision 4 25 X

FP sqrt 4 17 X

FP sqrt double precision 4 32 X

Table 4: Execution units of the simulated processor. The

latencies are taken from [37].

Pipeline stage energy Estage 15.7 pJ

instructions per flush k 7

of bits per instruction state m 300 bits

RRAM-based 16 threads

MPR - write energy @ X

clock cycles thread switch

penalty

EMPR,write 3 fJ @ 1 cycle

7.8 fJ @ 2 cycle

12.6 fJ @ 3 cycle

17 fJ @ 4 cycle

21.7 fJ @ 5 cycle

RRAM-based 16 threads

MPR - read energy

EMPR,read 1.3 fJ

Table 5: Energy evaluation. Extracted from McPAT and

SPICE simulations for CMOS 22 nm process with a clock

frequency of 3 GHz.

5. Methodology

5.1 Architecture

We have validated the required control mechanism and
size of instruction state of a CFMT processor using an RTL
implementation written in Verilog and simulated by
ModelSim. To evaluate the performance of CFMT and
compare it to SoE, the Gem5 simulator [35] has extended
to support CFMT. The simulated processor has 13 pipeline
stages and two levels of cache. All thread switching occurs
in a unified execution and memory stage, located in the
ninth pipeline stage. The parameters of the processor struc-
ture are listed in Table 3. The structure of the pipeline is
similar to the ARM cortex-A8 processor [36] while the
timing parameters of the execution units are extracted from
the ARM cortex-A9 processor [37]. While ARM cortex-A8
is an in-order processor, the execution units of the out-of-
order ARM cortex-A9 are faster and demonstrate the bene-
fits from CFMT with shorter MCEs as well. The execution
units are listed in Table 4. The hybrid branch predictor is
chosen based on the ALPHA 21264 microprocessor [38] to
achieve a high branch prediction rate. We simulate up to 32
threads per processor. Each workload is executed until the
first thread completes 60 million instructions. We use AL-
PHA compiled SPEC CPU 2006 [39] benchmarks, generat-
ed by a Gem5 simulator. We use SPEC CPU 2006 for the
performance evaluation since multi-programmed SPEC
benchmarks have no resource sharing and are therefore
more demanding for the cache and other resources.

In the CFMT processor, the pipeline registers and the
register file are modeled as RRAM multistate registers. It is
possible to also use memristive technologies for the caches,
branch predictor, TLB, and other structures [40], but we
consider these extensions beyond the scope of this paper.
Nevertheless, these structures with memristive technologies
will further reduce the energy without undue influence on
performance.

5.2 Processor Implementation

Pipelining of the execution stage allows for more than a
single instruction within the execution stage. Hence, a
dependency check is performed prior to execution and
independent sequential instructions enter the execution
stage without a thread switch. When an instruction depends
on a previous long latency instruction that is currently be-
ing executed, a thread switch is triggered. Exiting from the
execution stage, however, is limited to a single instruction
per clock cycle and is accomplished in-order. In the case of
a conflict between instructions from different threads, the
active thread is preferred. This does not starve the previous
thread, since executed instructions from previous threads
can exit the execution stage during thread switches. Addi-
tionally, instructions that trigger a thread switch and finish
the execution continue to propagate within the pipeline
after executing.

For CFMT, two switching policies are considered: an L1
cache miss as the only switching trigger and any instruction
with latency longer than the thread switch penalty (includ-
ing an L1 cache miss). Furthermore, different thread switch
penalties have been evaluated for CFMT, varying from a
single clock cycle to five clock cycles, to demonstrate dif-
ferent RRAM technologies. To maintain fairness, a thread
switch is triggered every 500 cycles. In practice, this fair-
ness mechanism is not required since thread switches are
more frequent.

In CFMT, a branch misprediction is the only trigger for
a pipeline flush. Although switching threads when identify-
ing a branch instruction can eliminate the pipeline flush, it
significantly increases the complexity of the CFMT control
mechanism since more than a single thread is active within
the pipeline. To maintain the simplicity of the control
mechanism, we flush the pipeline on a branch
misprediction and use a branch predictor.

The number of execution units (as listed in Table 4) is
chosen to eliminate structural hazards due to the lack of an
available execution unit for different threads. If the number
of execution units is low, resource sharing limits the per-
formance and the processor may stall until an execution
unit becomes available.

Multistate registers for superscalar processors store
more instructions for each thread (the number of instruc-
tions is the pipeline width). Although more instructions run
through the pipeline and are stored within the multistate
registers, the control mechanism remains the same and the
complexity is therefore unchanged. The performance in-
creases although the in-order execution mechanism has a
greater number of dependencies.

5.3 Energy Methodology

To evaluate the energy of the processor for both SoE
MT and CFMT, the McPAT modeling framework [45] is
used for a CMOS 22 nm process with a clock frequency of
3 GHz. Since McPAT does not consider thread switching in
its energy evaluation, the energy consumed by these
operations is extracted from (2) and (3), as explained in
section 6.2.1. The number of thread switches is evaluated
by the performance simulator and the relevant parameters
are extracted from SPICE simulations and McPAT. The

8

CPIideal Ideal CPI of the machine

n Number of threads

MR(n) Miss rate as a function of n

ri Frequency of mce instruction i

rm Frequency of memory accesses

Pi Penalty of mce instruction i

Pm Memory access penalty

Ps Switch penalty

Nsat Number of threads that distinct between the unsaturated and

saturated regions

Table 6: Parameters for the analytic model of SoE MT

and CFMT described by (1).

Figure 8: IPC (instruction per cycles) of Switch-on-Event

Multithreading and Continuous Flow Multithreading as

modeled in (1). The parameters are 30% memory instruc-

tions (rm = 0.3) with an L1 cache miss rate of 50% and

memory access time of 200 cycles (Pm = 200 cycles), r1 =

20%, r2 = 17%, P1 = 3 cycles, and P2 = 6 cycles.

parameters used to evaluate the thread switch energy are
listed in Table 5.

6. Evaluation

6.1 Performance

6.1.1 Analytic Evaluation

The performance of both SoE and CFMT depends upon
the number of threads within the processor. Adding more
threads, allows long latency instructions (MCE) to be hid-
den. Each additional thread increases the performance. In
this case, the machine is unsaturated. Once the processor
has a sufficient number of threads to completely hide the
long latency instructions, the performance is almost con-
stant and the pipeline is full at this point to capacity. Add-
ing more threads to the machine does not increase perfor-
mance. In this case, the machine is saturated. It is possible,
however, that additional threads affect the cache behavior,
increasing the cache miss rate, thereby lowering perfor-
mance [34].

Our analytic analysis assumes a processor with different

MCEs whose latencies are Pi. In that case, the performance

(in cycles per instruction) for n running threads with similar

periodic average behaviors is

 
 

 
, ,

,
, (1)

,

ideal i i m m

i mce
sat

ideal i i i s sat

i unhidden mce i hidden mce

CPI r P r MR n P

unsaturated n N
CPI n

CPI r P r P saturated n N



 

     
 

 
     




 

where the parameters are those listed in Table 6. Note that
the impact on CPI due to the memory instructions depends
on both the memory access time and miss rate and therefore
on the number of threads.

The performance of SoE and CFMT is shown in Figure
8, and is approximately the same when both processors
operate in the unsaturated region. The CPIsat of CFMT is
lower than SoE for two reasons: more MCEs are consid-
ered as triggers for a thread switch, and the thread switch
penalty is lower than in SoE.

6.1.2 Simulations

The performance of three selected benchmarks that
demonstrate three different possible behaviors is shown in
Figure 9. The instruction mix of soplex.ref (Figure 9a) is
15% floating point instructions, 29% memory instructions,
and 56% integer instructions. In the saturation region, the
L1 cache miss rate is approximately 11% to 24% and the
influence of both floating point and memory events is rela-
tively similar. Hence, the IPC is improved as more switch-
ing triggers are considered. The IPC in the saturation re-
gions for SoE MT is 0.39, while the IPC of CFMT when
only a cache miss triggers a thread switch, and CFMT with
both cache miss and floating point triggers are, respective-
ly, 0.45, and 0.59, showing a performance improvement of
47% and 15% for, respectively, CFMT with and without
floating point triggers. Note that the maximum performance
is limited by the thread switch penalty (a single clock cy-
cle), instruction dependencies of a single cycle, and branch
mispredictions.

The libquantum benchmark (Figure 9b) does not include
floating point instructions (20% memory instructions and
80% integer instructions). The performance of both switch-
ing policies for CFMT is therefore identical. Due to the
relatively high L1 miss rate of approximately 15% in the

saturation region, CFMT improves the performance by
18% as compared to SoE MT.

For gromacs (Figure 9c) although memory instructions
are frequent (42% of the total instructions), L1 cache miss-
es are rare (an approximate L1 miss rate of 2% in the satu-
ration region). Hence, the performance is influenced pri-
marily by floating point operations (44%). CFMT with only
L1 miss as a switching trigger performs similarly to SoE
MT. CFMT with floating point as a switching trigger
achieves a 55% performance improvement.

A comparison between the analytic model as presented
in (1) to simulations is shown in Figure 10. The analytic
model shows sufficient accuracy as compared to simulation
results. The average difference between simulations and the
analytic model is 2.6% for the entire IPC evaluation and
0.95% for the saturation region.

The speedup of the IPC in the saturation region as com-
pared to SoE MT for numerous SPEC CPU 2006 bench-
marks is shown in Figure 11 for an ideal multistate register
(no thread switch penalty). The average performance
speedup of CFMT (with MCE) as compared to SoE MT
with RRAM multistate register (with thread switch penalty
of a single clock cycle) is 32%. Floating point benchmarks,
as marked in Figure 11, achieve an average performance
improvement of 55% and 45% with, respectively, ideal and
RRAM multistate registers. The maximum performance
improvement is achieved for zeusmp (99% and 75% im-
provement, respectively, for ideal and RRAM multistate
registers), where 33% of the instructions are floating point
instructions, 25% are memory instructions, and the L1
cache miss rate in saturation is 17%.

The IPC for various thread switch penalties in CFMT is
shown in Figure 12 for selected benchmarks. As expected,
for CFMT the speedup decreases as the thread switch pen-
alty increases [41]. The average speedup for various values
of the thread switch penalty is listed in Table 7. Mixes of

9

Figure 9: IPC vs. number of threads for different SPEC CPU 2006 benchmarks. (a) soplex.ref, where memory and floating

point MCE both influence the performance, (b) libquantum, a benchmark of only integer and memory instructions (no other

MCE), and (c) gromacs, a benchmark with a dominant floating point MCE over memory events. CFMT thread switch penalty

is a single clock cycle. The other simulation parameters are as listed in Tables 4 and 5.

Figure 10: Comparison between the analytic model in (1) and simulation results for (a) soplex.ref, (b) libquantum, and (c)

gromacs. The simulation results and analytic model are represented, respectively, by discrete dots and a straight line, exhibiting

an average 4.2% difference.

Figure 11: Speedup in the saturation region (number of threads is 16) for different SPEC CPU 2006 as compared to SoE MT

with an ideal MPR (zero thread switch time).

different benchmarks have been tested, showing similar
results. The IPCsat is approximately an average of the re-
sults of the pure mix, as shown in Figure 13.

Increasing the cache size decreases the L1 cache miss
rate, reducing the frequencies of the thread switches. The
IPC for various L1 cache sizes, when only L1 cache miss is
a switching trigger, is shown in Figure 14. Adding an L2
cache (the reference system in Figure 14) does not change
the maximum performance, only the power consumption.

6.2 Energy

While CFMT significantly improves the performance as
compared to SoE MT, it also dissipates less power. The
total energy of the processor can be further decreased with
emerging memory technologies. Since the control mecha-
nism of both SoE MT and CFMT is similar, the main dif-
ference in energy is due to the thread switch mechanism.
Additionally, the improved performance effectively lowers
the leakage energy, further decreasing the energy.

10

Figure 12: IPC vs. number of threads for various CFMT thread switch penalties. (a) soplex.ref, (b) libquantum, and (c) gromacs.

Benchmark CFMT without MCE CFMT with MCE

Thread switch penalty [cycles] 1 2 3 4 5 1 2 3 4 5

libquantum 1.15 1.13 1.11 1.08 1.06 1.15 1.13 1.11 1.08 1.06

bwaves 1.01 1.01 1.01 1.01 1.00 1.35 1.24 1.07 1.04 1.01

milc 1.09 1.07 1.06 1.05 1.04 1.23 1.15 1.10 1.08 1.06

zeusmp 1.12 1.10 1.08 1.06 1.05 1.75 1.55 1.38 1.29 1.21

gromacs 1.02 1.02 1.01 1.01 1.01 1.43 1.33 1.24 1.16 1.11

leslie3d 1.17 1.15 1.12 1.10 1.07 1.51 1.38 1.27 1.20 1.14

namd 1.09 1.08 1.06 1.05 1.04 1.32 1.21 1.12 1.07 1.04

soplex.pds-50 1.17 1.14 1.12 1.09 1.07 1.22 1.18 1.13 1.11 1.08

lbm 1.19 1.16 1.13 1.10 1.07 1.54 1.30 1.21 1.15 1.10

bzip2.combined 1.09 1.07 1.06 1.05 1.04 1.09 1.07 1.06 1.05 1.04

gcc.166 1.14 1.12 1.10 1.08 1.06 1.14 1.12 1.10 1.08 1.06

gobmk.trevorc 1.15 1.12 1.10 1.08 1.06 1.15 1.13 1.10 1.08 1.06

h264ref.foreman_baseline 1.09 1.08 1.06 1.05 1.04 1.10 1.08 1.07 1.05 1.04

GemsFDTD 1.30 1.25 1.20 1.15 1.11 1.68 1.49 1.30 1.17 1.10

hmmer.nph3 1.17 1.15 1.12 1.09 1.07 1.17 1.15 1.12 1.09 1.07

soplex.ref 1.15 1.12 1.10 1.08 1.06 1.40 1.28 1.21 1.15 1.10

gcc.c-typeck 1.13 1.11 1.09 1.07 1.05 1.15 1.13 1.11 1.09 1.07

Average 1.13 1.11 1.09 1.07 1.05 1.32 1.23 1.16 1.11 1.08

Table 7: Performance speedup for various CFMT thread switch penalties.

Figure 13: IPC in saturation for different benchmark

mixes (16 threads, four each) of SPEC CPU 2006, as listed

in Table 8. The speedup is approximately the average

speedup of the different benchmarks in the mix.

Mix No. Tested Benchmarks (16 Threads)

1 4 milc, 4 soplex.ref, 4 namd, 4 gcc.g23

2 4 libquantum, 4 gcc.166, 4 bzip2.program, 4 gobmk.nngs

3 8 lbm, 8 hmmer.nph3

4 4 lbm, 4 zeusmp, 8 libquantum

5 4 namd, 4 zeusmp, 4 GemsFDTD, 4 leslie3d

6 8 lbm, 4 GemsFDTD, 4 leslie3d

7 8 gromacs, 8 namd

8 8 libquantum, 4 namd, 4 bzip2.program

9 4 libquantum, 4 gcc.166, 4 bzip2.program, 4 gobmk.nngs

10 4 gcc.s04, 4 gobmk13x13, 4 sjeng, 4 zeusmp

11 4 hmmer.nph3, 4 libquantum, 4 lbm, 4 gromacs

Table 8: Different SPEC CPU 2006 mixes.

6.2.1 Analytic Evaluation

The energy of the thread switch in SoE MT is primarily
due to the instruction flush. The flushed instructions are
replayed when the thread is active again, going through the
same pipeline stages an additional time. The average thread
switch energy for SoE MT is therefore

 1
,

2
flush stage

k k
E E

 
   (2)

where stage is the average energy consumed in a single

pipeline stage within a single clock cycle, and k is the num-

ber of flushed instructions during each thread switch. The

energy of a thread switch in CFMT is the energy required

to both read the state of the new active thread and write the

state of the previous active thread. Formally, the average

thread switch energy for CFMT is

 , , ,CFMT MPR write MPR readE m E E    (3)

where m is the average number of bits required to represent
the state of an instruction within a pipeline, EMPR,write and
EMPRread are, respectively, the energy of a write and read in
a single-bit multistate pipeline register. For the RRAM-
based multistate register shown in Figure 4, the energy
depends on the CMOS flip flop energy, and the resistance
of the resistive switches and the switching energy of the
memory devices, which determine, respectively, the read
and write energy. Furthermore, the improved IPC of CFMT
reduces the run time of the processor workload and the
static energy due to leakage current.

11

Figure 14: IPC vs. number of threads for various L1 cache sizes (4 kB, 16 kB, and 32 kB) for CFMT without MCE and without

L2 cache, as compared to a reference machine with L2 cache as listed in Table 4. (a) soplex.ref, (b) libquantum, and (c) gromacs.

Benchmark SoE MT [pJ/inst.]

CFMT

RRAM MPR – various thread switch latencies

1 cycle

[pJ/inst.]

2 cycles

[pJ/inst.]

3 cycles

[pJ/inst.]

4 cycles

[pJ/inst.]

5 cycles

[pJ/inst.]

Libquantum 15.922 15.26 15.352 15.441 15.5315 15.621

bwaves 21.641 20 20.402 21.178 21.3581 21.568

milc 26.367 24.72 25.1 25.395 25.6783 25.744

zeusmp 22.651 19.04 19.642 20.312 20.7422 21.154

gromacs 32.871 30.07 30.558 31.052 31.5899 31.904

leslie3d 29.54 26.67 27.203 27.778 28.1692 28.547

namd 24.945 23.15 23.634 24.1 24.4246 24.608

soplex.pds-50 19.639 18.47 18.66 18.872 19.0249 19.166

lbm 24.308 21.34 22.306 22.832 23.1923 23.467

bzip2.combined 24.583 24.08 24.143 24.209 24.2771 24.344

gcc.166 20.064 19.38 19.477 19.568 19.6613 19.753

gobmk.trevorc 26.445 25.44 25.579 25.712 25.8522 25.984

h264ref.foreman_baseline 27.991 27.16 27.272 27.439 27.5789 27.645

GemsFDTD 28.574 23.35 24.332 25.715 27.3383 27.904

hmmer.nph3 28.353 26.02 26.153 26.284 26.4131 26.545

soplex.ref 23.78 21.51 21.782 22.137 22.4232 22.74

gcc.c-typeck 21.783 20.94 21.038 21.139 21.2413 21.347

Average 24.674 22.74 23.096 23.48 23.7939 24.002

Table 9: Energy per instruction for various SPEC CPU 2006 benchmarks in the saturation region.

Figure 15: Energy per instruction vs. number of threads for SoE MT and CFMT for selected benchmarks. (a) soplex.ref, (b)

libquantum, and (c) gromacs.

 6.2.2 Experimental Results

The energy per instruction for a varying number of
threads is shown in Figure 15, exhibiting a lower energy
per instruction when more threads are running within the
machine. The measured energy per instruction for various
SPEC CPU 2006 benchmarks is listed in Table 9. The en-
ergy per instruction is reduced on average by 8.5% for
CFMT with an RRAM-based multistate register as com-
pared to SoE MT and up to 19% for zeusmp. The energy
reduction is primarily due to the lower static energy.

7. Conclusions

The in-die integration of emerging memory technolo-
gies with CMOS paves the way for memory intensive ar-
chitectures. Memory intensive architectures use novel
memory elements to store data not stored in conventional

architectures to enhance performance, while reducing ener-
gy. Rather than using additional memory solely to increase
the capacity of the traditional memory hierarchy, the addi-
tional memory is used for novel architectural opportunities.

As an example of memory intensive computing, the
combination of a novel memory structure, multistate pipe-
line register (MPR), with a novel microarchitecture, Con-
tinuous Flow Multithreading (CFMT), exhibits a 32% per-
formance improvement with a reduction in energy. The
performance per energy support the use of CFMT in low
power machines.

CFMT is a single example of a memory intensive archi-
tecture. Numerous other applications of multistate register
and other memory elements based on emerging memory
technologies are possible. These novel architectures will
improve both performance and energy and extend CMOS
by adding to it complementary technology.

12

References

[1] R. Waser and M. Aono, "Nanoionics-based Resistive Switching

Memories," Nature Materials, Vol. 6, pp. 833-840, November 2007.

[2] K. Tsutsui, "Focus on Strengths and Weaknesses of ReRAM,"

Proceedings of the Flash Memory Summit, August 2013.

[3] Z. Diao, Z. Li, S. Wang, Y. Ding, A. Panchula, E. Chen, L.-C.
Wang, and Y. Huai, "Spin-Transfer Torque Switching in Magnetic
Tunnel Junctions and Spin-Transfer Torque Random Access
Memory," Journal Of Physics: Condensed Matter, Vol. 19, No. 16,
pp. 1-13, 165209, April 2007.

[4] J. Nickel, "Memristor Materials Engineering: From Flash Replace-

ment Towards a Universal Memory," Proceedings of the IEEE In-

ternational Electron Devices Meeting, December 2011.

[5] W. Zhao, E. Belhaire, C. Chappert, and P. Mazoyer, "Spin Transfer
Torque (STT) MRAM-based Runtime Reconfiguration FPGA Cir-
cuit," ACM Transactions on Embedded Computing Systems, Vol. 9,
No. 2, pp. 14:1-14:16, October 2009.

[6] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "The

Desired Memristor for Circuit Designers," IEEE Circuits and Sys-

tems Magazine, Vol. 13, No. 2, pp. 17-22, second quarter 2013.

[7] L. O. Chua, “Memristor – The Missing Circuit Element,” IEEE

Transactions on Circuit Theory, Vol. 18, No. 5, pp. 507-519, Sep-

tember 1971.

[8] L. O. Chua and S. M. Kang, “Memristive Devices and Systems,”

Proceedings of the IEEE, Vol. 64, No. 2, pp. 209- 223, February

1976.

[9] L. O. Chua, "Resistance Switching Memories are Memristors,"

Applied Physics A: Materials Science & Processing, Vol. 102, No.

4, pp. 765-783, March 2011.

[10] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor,

H. Jiang, M. Dixon, M. Derr, M. Hunsaker, R. Kumar, R. B. Os-

borne, R. Rajwar, R. Singhal, R. D'Sa, R. Chappel, S. Kaushik, S.

Chennupaty, S. Jourdan, S. Gunthar, T. Piazza, and T. Burton,

"Haswell: The Fourthe-Generation Intel Core Processor," IEEE Mi-
cro Magazine, Vol. 34, No. 2, pp. 6-20, March/April 2014.

[11] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, "Sneak-Path Constraints
in Memristor Crossbar Arrays," Proceedings of the IEEE Interna-
tional Symposium on Information Theory, pp. 156-160, July 2013.

[12] J. J. Yang, M.-X. Zhang, M. D. Pickett, F. Miao, J. P. Strachan, W.-
D. Li, W. Yi, D. A. A. Ohlberg, B. J. Choi, W. Wu, J. H. Nickel, G.
Medeiros-Riberio, and R. S. Williams, “Engineering Nonlinearity
into Memristors for Passive Crossbar Applications,” Applied Physics
Letters, Vol. 100, No. 11, pp. 113501–113501, March 2012.

[13] U. Weiser, "Memory Intensive Computing," ISCA Keynote, June
2013.

[14] E. Schnarr and J. R. Larus, "Fast Out-Of-Order Processor Simulation

Using Memoization," Proceedings of the International Conference
on Architectural Support of Programming Languages and

Operationg Systems, pp. 283-294, December 1998.
[15] http://panasonic.co.jp/

[16] "Elpida Memory Develops Resistance RAM Prototype," press

release: http://www.elpida.com/en/news/2012/01-24r.html

[17] T-Y. Liu, T. H. Yan, R. Scheuerlein, Y. Chen, J. K. Lee, G.

Balakrishnan, G. Yee, H. Zhang, A. Yap, J. Ouyang, T. Sasaki, S.

Addepalli, A. Al-Shamma, C.-Y. Chen; M. Gupta, G. Hilton, S.

Joshi, A. Kathuria, V. Lai, D. Masiwal, M. Matsumoto, A. Nigam,

A. Pai, J. Pakhale, C. H. Siau; X. Wu, R. Yin, L. Peng, J. Y. Kang,

S. Huynh, H. Wang, N. Nagel, Y. Tanaka, M. Higashitani, T.

Minvielle, C. Gorla, T. Tsukamoto, T. Yamaguchi, M. Okajima, T.

Okamura, S. Takase, T. Hara, H. Inoue, L. Fasoli, M. Mofidi, R.

Shrivastava, and K. Quader, K, "A 130.7 mm2 2-Layer 32 Gb

ReRAM Memory Device in 24 nm Technology," Proceedings of the

IEEE International Solid-State Circuits Conference, pp. 1-14, Feb-

ruary 2013.

[18] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive Devices

for Computing,” Nature Nanotechnology, Vol. 8, pp. 13-24, January

2013.

[19] C. Torrezan, J. P. Strachan, G. Medeiros-Riveiro, and R. S. Wil-

liams, "Sub-nanosecond Switching of a Tantalum Oxide

Memristor," Nanotechnology, Vol. 22, No. 48, pp. 1-7, December

2011.

[20] http://www.everspin.com
[21] M. H. Kryder and C. S. Kim, "After Hard Drives—What Comes

Next?," IEEE Transactions on Magnetics, Vol. 45, No. 10, pp. 3406-
3413, October 2009.

[22] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, "Architecting Phase
Change Memory as a Scalable DRAM Alternative," Proceedings of
the Annual International Symposium on Computer Architecture, pp.
2-13, June 2009.

[23] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, "Scalable High

Performance Main Memory System Using Phase-Change Memory

Technology," Proceedings of the Annual International Symposium

on Computer Architecture, pp. 24-33, June 2009.

[24] Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho, J. Kim,
Y. Oh, D. Kwon, J. Sunwoo, J. Shin, Y. Rho, C. Lee, M.-G. Kang, J.
Lee, Y. Kwon, S. Kim, J. Kim, Y.-J. Lee, Q. Wang, S. Cha, S. Ahn,
H. Horii, J. Lee, K. Kim, H. Joo, K. Lee, Y.-T. Lee, J. Yoo, and G.
Jeong, "A 20nm 1.8V 8Gb PRAM with 40MB/s program band-
width," Proceedings of the IEEE International Solid-State Circuits
Conference, pp.46-48, February 2012.

[25] J. F. Scott and C. A. Paz de Araujo, "Ferroelectric Memories,"
Science, Vol. 246, No. 4936, pp. 1400-1405, December 1989.

[26] M. N. Kozicki and W. C. West, "Programmable Metallization Cell
Structure and Method of Making Same," U. S. Patent No. 5,761,115,
June 1998.

[27] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, "A Novel Architecture
of the 3D Stacked MRAM L2 Cache for CMPs," Proceedings of the
IEEE International Symposium on High Performance Computer Ar-
chitecture, pp. 239-249, February 2009.

[28] R. Patel, E. G. Friedman, A. Kolodny, and S. Kvatinsky, "Multistate

Register Based on Resistive RAM (ReRAM) – A Novel Digital Cir-
cuit," IEEE Transactions on Very Large Scale Integration (VLSI),

(in press).

[29] S. Kvatinsky, Y. H. Nacson, Y. Etsion, E. G. Friedman, A.

Kolodny, and U. C. Weiser, "Memristor-based Multithreading,"

IEEE Computer Architecture Letters, 2013 (in press).

[30] W.-K. S. Yu, R. Huang, S. Q. Xu, S.-E. Wang, E. Kan, and G. E.
Suh, "SRAM-DRAM Hybrid Memory with Applications to Efficient
Register Files in Fine-Grained Multi-Threading," Proceedings of the
Annual International Symposium on Computer architecture, pp. 247-
258, June 2011.

[31] T. Ungerer, B. Robic, and J. Silic, "A Survey of Processors with

Explicit Multithreading," ACM Computing Surveys, Vol. 35, No. 1,

March 2003.

[32] D. M. Tullsen, S. J. Eggers, and H. M. Levy, " Simultaneous Multi-

threading: Maximizing On-Chip Parallelism," Proceedings of the

Annual International Symposium on Computer Architecture, pp.
392-403, May 1995.

[33] Intel's Ivy Bridge Specifications: http://ark.intel.com/

[34] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. C.
Weiser, "Many-Core vs. Many-Thread Machines: Stay Away From

the Valley," Computer Architecture Letters, Vol. 8, No. 1, pp. 25-28,

May 2009.
[35] http://www.m5sim.org/

[36] “Cortex™-A8 Specification Summary”, http://www.arm.com, 2011.

[37] “Cortex™-A9 Floating-Point Unit, Technical Reference Manual”,
http://www.arm.com, 2012.

[38] R. E. Kessler, E. J. McLellan, and D. A. Webb.,"The Alpha 21264

Microprocessor Architecture," Proceedings of the IEEE Internation-
al Conference on Computer Design, pp. 90-95, October 1998.

[39] SPEC CPU2006 benchmark suite. http://www.spec.org/cpu2006/

http://iopscience.iop.org/0953-8984/19/16/165209
http://iopscience.iop.org/0953-8984/19/16/165209
http://iopscience.iop.org/0953-8984/19/16/165209
http://www.springerlink.com/content/0947-8396/
http://www.springerlink.com/content/0947-8396/102/4/
http://www.springerlink.com/content/0947-8396/102/4/
http://panasonic.co.jp/
http://www.elpida.com/en/news/2012/01-24r.html
http://www.everspin.com/
http://portal.acm.org/citation.cfm?id=1555758
http://portal.acm.org/citation.cfm?id=1555758
http://ark.intel.com/
http://www.m5sim.org/
http://www.arm.com/
http://www.arm.com/
http://www.spec.org/cpu2006/

13

[40] X. Guo, E. Ipek, and T. Soyata, “Resistive Computation: Avoiding

the Power Wall with Low-Leakage STT-MRAM Based Computing,”

Proceedings of the International Symposium on Computer Architec-
ture, pp. 371-382, June 2010.

[41] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser,
"TEAM - ThrEshold Adaptive Memristor Model," IEEE Transac-
tions on Circuits and Systems I: Regular Papers, Vol. 60, No. 1, pp.
211-221, January 2013.

[42] FreePDK45 User Guide, April 2011,

http://www.eda.ncsu.edu/wiki/FreePDK45.

[43] W. Zhao and Y. Cao, “New Generation of Predictive Technology
Model for Sub-45 nm Early Design Exploration,” IEEE Transactions

on Electron Devices, Vol. 53, No. 11, pp. 2816–2823, January 2006.

[44] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, "NVSim: A Circuit-Level
Performance, Energy, and Area Model for Emerging Nonvolatile

Memory," IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, Vol. 31, No. 7, pp. 994-1007, July
2012.

[45] S. Li, J.-H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, "McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore architec-
tures," Proceedings of the Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pp.469-480, December 2009.

[46] The International Technology Roadmap for Semiconductor (ITRS):

2011 Edition, Semiconductor Industry Association, 2011.

[47] "Mobile 3rd Generation Intel® CoreTM Processor Family Datasheet,"

Intel, April 2012.
[48] http://www.samsung.com

[49] http://www.fujitsu.com

[50] X. Dong, Y. Xie, N. Muralimanohar, and N. Jouppi. “Hybrid Check-
pointing using Emerging Non-Volatile Memories for Future Exas-

cale Systems,” ACM Transactions on Architecture and Code Optimi-

zation (TACO), Vol.8, No. 2, Article 5, 29 pages, July 2011.

http://www.eda.ncsu.edu/wiki/FreePDK45
http://www.samsung.com/
http://www.fujitsu.com/

141

Chapter 4 Conclusions and Future Work

Memristors add new capabilities to CMOS technology and are projected to be

commercially available in the near future. In this thesis, we investigate these new

properties and the implications of the new capabilities of VLSI systems in the

memristor era. This combination of nonvolatile, dense, fast, and low power devices

that are used both in storage systems and embedded on-top of CMOS, are a disruptive

technology, changing the way computers are organized today.

In this thesis, different families to perform computation with memristors, both for

integration of memristors with CMOS and for logic within memory are presented.

The integration between CMOS and memristors is beneficial to increase the logic gate

count of the same area (increase logic density), even without shrinking CMOS

transistors. This approach is beneficial to extend Moore's law when CMOS scaling

becomes problematic or to go beyond Moore's law and increase the number of logic

gates by more than the traditionally factor of two.

A different approach, investigated in this research, is using memristive-only logic

for logic within the memory. This approach enables non-von Neumann architectures

of in-memory computing (also named process in-memory). Unlike previously

proposed in-memory computing architectures, using memristive memory does not

require additional circuitry or changing the memory cell or the structure of the

memory array. Logic within the memory based on memristors is therefore a pure in-

memory processing and not an integration of computing engines and memory cells. It

is still required to define the complete architecture for memristive computing in-

memory, including its instruction set, control, and investigate the appropriate

applications for it to be beneficial in terms of performance and energy. This research

is out of the scope of this thesis and discussed as a future work in Chapter 4.2.

Memristors can be used as enablers to other non-von Neumann architectures. For

example, memristors can be used in neuromorphic systems (hardware systems that try

to mimic the brain) and hardware neural networks. Memristors are primarily used to

implement synapses in these systems; it is also possible to use memristors as part of

the neuron circuit as well. Although the use of memristors as synapses is out of the

142

scope of this dissertation, we investigate these architectures as well, as described in

Chapter 4.1.

The use of memristors as enablers to novel architectures that integrate together

CMOS transistors and memristor technologies is named "Memory Intensive

Computing" and includes numerous possible architectures and microarchitectures. In

this dissertation, we present a novel memory structure, the multistate register, and use

it to enhance the performance of multithreaded processors (CFMT). CFMT is only a

single example of a memory intensive architecture. There are many other possible

applications for multistate registers, as further described in Chapter 4.2.

We believe that the proposed applications for memory intensive computing in this

research are only the tip of the iceberg, and in the near future many other exciting

novel applications will be proposed, changing the structure and architecture of

computers and VLSI systems.

4.1 Research that is not Part of This Thesis
As part of this research about memristors and their applications, other aspects that

are not part of this dissertation are also investigated. One aspect we explore is

memristive crossbar memories from information theory perspective. We analyze the

read and write operations in such memory arrays, defining the limitations of read and

write operations due to sneak paths, and investigating how the data stored within the

memristors influence the read and write operations. In [51] and [52], we investigate

the read operation of memristive crossbar memories.

Another aspect of memristive applications is neuromorphic systems. In [18], we

propose a novel synapse circuit, consists of a single memristor and two CMOS

transistors. The proposed synapse is suitable for gradient descent learning and can

therefore be used for the execution of numerous machine learning algorithms, e.g.,

back propagation.

143

4.2 Future Research Ideas

Memory Intensive Architectures

There are many possible memory intensive architectures that need to be

investigated, designed, and evaluated. For example, multistate registers can be used

for additional microarchitectures (in addition to CFMT that is shown in this thesis).

Using multistate registers as pipeline registers (MPR) is beneficial not only for SoE

MT, but also for simultaneous multithreading (SMT). MPR-based SMT will have

lower control complexity and the energy will therefore be lower, while the

performance remains the same. Multistate registers can be used for other applications

as well, such as register files, branch predictors, and transactional memories.

There are also other possible memory intensive architectures, including both von

Neumann machines and other machines. It is possible to use memristive memories for

data flow processors, associative processors, and for reconfigurable machines.

In-Memory Computing with Memristors

In this thesis, three different logic families for logic within a memristive memory are

described. Different Boolean functions are executed with these logic families. The

control of these logic families, however, is not discussed. It is required to develop a

complete architecture for in-memory computing, using the basic memristive logic

gates. Algorithms to execute any Boolean operation need to be develop, new

instruction set is required, a compiler needs to be designed, and the system structure

including the interface between the CPU to the memristive memory needs to be

defined.

Another relevant research direction is investigating the application space. The idea is

to investigate the dependency of performance of different applications in memory

accesses and the structure of the memory system. The target of this research direction

is to identify and classify applications where in-memory computing is beneficial both

in terms of energy and performance.

Design of Multistate Registers in Different Technologies

In this thesis, a multistate register with RRAM crossbar on top of a CMOS D flip

flop is presented. The implementation of multistate registers is, however, not limited

144

to this structure. Multistate registers can be used in different technologies, memristive

(e.g., STT MRAM, unipolar RRAM, PCM, etc.) and non-memristive (e.g., SRAM).

Each design has its own pros and cons (e.g., area, power, and speed).

Memristor Modeling

While the TEAM model is widely used and has its advantages, it is limited to

current-controlled bipolar memristors. Other models are also required to model the

behavior of other memristive devices (e.g., voltage-controlled, unipolar, and binary).

Additionally, numerous models have been proposed since the TEAM model was

published and it is worthwhile to compare them to the TEAM (a partial comparison of

the TEAM model to other models has been done by Ascoli et al. in [53]).

Memristor Memories

The design of memristive memories is usually investigated for flash or DRAM

replacements. There are, however, many other possibilities to design different

memory structure (the multistate register is an example to this approach).

Additionally, it is possible to design different structures for memory systems. For

example, designing a three dimensional structure of the cache organization.

Another relevant topic is developing design tools for memory designers. These tools

are used to evaluate the properties of the memristive memory, including its unique

behavior (i.e., sneak paths). There are different types of required tools, from high

level tools that roughly evaluate the power and area of the entire memory, to low level

simulators that considers the actual behavior of each memory cell.

145

References

[1] S. E. Thompson and S. Parthasarathy, “Moore's Law: the Future of Si
Microelectronics,” Materials Today, Vol. 9, No. 6, pp. 20-25, June 2006.

[2] W. A. Wulf and S. A. McKee, "Hitting the Memory Wall: Implications of the
Obvious," ACM SIGARCH Computer Architecture News, Vol. 23, No. 1, pp. 20-
24, March 1995.

[3] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, "Dark
Silicon and the End of Multicore Scaling," Proceedings of the Annual
International Symposium on Computer Architecture, pp. 365-376, June 2011.

[4] V. F. Pavlidis and E. G. Friedman, Three-Dimensional Integrated Circuit Design,
Morgan Kaufmann, 2009.

[5] J. Scaramuzzo, "The Flash Transformed Data Center," Proceedings of the
Nonvolatile Workshop, March 2014.

[6] J. Akerman, "Toward a Universal Memory," Science, Vol. 308, No. 5721, pp.
508-510, April 2005.

[7] L. O. Chua, “Memristor – the Missing Circuit Element,” IEEE Transactions on
Circuit Theory, Vol. 18, No. 5, pp. 507-519, September 1971.

[8] L. O. Chua and S. M. Kang, “Memristive Devices and Systems,” Proceedings of
the IEEE, Vol. 64, No. 2, pp. 209-223, February 1976.

[9] D. B. Strukov, G. S.Snider, D. R. Stewart, and R. S. Williams, "The Missing
Memristor Found,” Nature, Vol. 453, pp. 80-83, May 2008.

[10] D. Sacchetto, M. H. Ben-Jamaa, S. Carrara, G. DeMicheli, and Y. Leblebici,
"Memristive Devices Fabricated with Silicon Nanowire Schottky Barrier
Transistors," Proceedings of the IEEE International Symposium on Circuits and
Systems, pp. 9-12, May/June 2010.

[11] K. A. Campbell, A. Oblea, and A. Timilsina, "Compact Method for Modeling
and Simulation of Memristor Devices: Ion Conductor Chalcogenide-based
Memristor Devices," Proceedings of the IEEE/ACM International Symposium on
Nanoscale Architectures, pp. 1-4, June 2010.

[12] X. Wang, Y. Chen, H. Xi, and D. Dimitrov, “Spintronic Memristor through
Spin-Torque-Induced Magnetization Motion,” IEEE Electron Device Letters,
Vol. 30, No. 3, pp. 294-297, March 2009.

[13] R. Waser, "Resistive Non-Volatile Memory Devices," Microelectronic
Engineering, Vol. 86, No. 7-9, pp. 1925-1928, July-September 2009.

[14] L. O. Chua, "Resistance Switching Memories are Memristors," Applied
Physics A: Materials Science & Processing, Vol. 102, No. 4, pp. 765-783, March
2011.

[15] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, and B.
Linares-Barranco, "STDP and STDP Variations with Memristors for Spiking
Neuromorphic Learning Systems," Frontiers in Neuroscience, Vol. 7, No. 2, pp.
1-15, February 2013.

[16] A. Afifi, A. Ayatollahi, and F. Raissi, "Implementation of Biologically
Plausible Spiking Neural Network Models on the Memristor Crossbar-Based

146

CMOS/Nano Circuits," Proceedings of the European Conference on Circuit
Theory and Design, pp. 563-566, August 2009.

[17] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
"Nanoscale Memristor Device as Synapse in Neuromorphic Systems," Nano
Letters, Vol. 10, No. 4, pp. 1297-1301, March 2010.

[18] D. Soudry, D. Di Castro, A. Gal, A. Kolodny, and S. Kvatinsky, "Memristor-
Based Multilayer Neural Networks with Online Gradient Descent Training,"
IEEE Transactions on Neural Networks (in review).

[19] H.-K. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N.
Srinivasa, and W. Lu, "A Functional Hybrid Memristor Crossbar-Array/CMOS
Systems for Data Storage and Neuromorphic Applications," Nano Letters, Vol.
12, No. 1, pp. 389-395, December 2011.

[20] Y.V. Pershin and M. Di Ventra, "Practical Approach to Programmable
Analog Circuits with Memristors," IEEE Transactions on Circuits and Systems I:
Regular Papers, Vol. 57, No. 8, pp.1857-1864, August 2010.

[21] K. Tsutsui, "Focus on Strengths and Weaknesses of ReRAM," Proceedings of
the Flash Memory Summit, August 2013.

[22] Z. Guz, I. Keidar, A. Kolodny, and U. C. Weiser, "Utilizing Shared Data in
Chip Multiprocessors with the Nahalal Architecture," Proceedings of the Annual
ACM Symposium on Parallelism in Algorithms and Architectures, pp. 1-10, June
2008.

[23] E. Schnarr and J. R. Larus, "Fast Out-Of-Order Processor Simulation Using
Memoization," Proceedings of the International Conference on Architectural
Support of Programming Languages and Operationg Systems, pp. 283-294,
December 1998.

[24] D. B. Strukov and K. K. Likharev, "CMOL FPGA: a Reconfigurable
Architecture for Hybrid Digital Circuits with Two-Terminal Nanodevices,"
Nanotechnology, Vol. 16, No. 6, pp. 888-900, June 2005.

[25] Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinalli, J. J.
Yang, W. Wu, X. Li, W. M. Tong, D. B. Strukov, G. S. Snider, G. Mederios-
Riberio, and R. S. Williams, "Memristor-CMOS Hybrid Integrated Circuits for
Reconfigurable Logic", Nano Letters, Vol. 9, No. 10, pp. 3640-3645, September
2009.

[26] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U. C.
Weiser, "MRL – Memristor Ratioed Logic," Proceedings of the International
Cellular Nanoscale Networks and their Applications, pp. 1-6, August 2012.

[27] G. Snider, "Computing with Hysteretic Resistor Crossbars," Applied Physics
A: Materials Science and Processing, Vol. 80, No. 6, pp. 1165-1172, March
2005.

[28] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S.
Williams, "Memristive Switches Enable 'Stateful' Logic Operations via Material
Implication," Nature, Vol. 464, pp. 873-876, April 2010.

[29] S. Shin, K. Kim, and S.-M. Kang, "Reconfigurable Stateful NOR Gate for
Large-Scale Logic-Array Integrations," IEEE Transactions on Circuits and
Systems II: Express Briefs, Vol. 58, No. 7, pp. 442-446, July 2011.

147

[30] E.	 Lehtonen,	 J.	 H.	 Poikonen,	 and	 M.	 Laiho,	 "Memristive	 Statful	 Logic",	
Memristor	 Networks,	 A.	 Adamatzky	 and	 L.	 O.	 Chua	 ሺEd.ሻ,	 Springer	
International	Publishing,	Chapter	pp.	603‐623,	2014.

[31] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "The Desired
Memristor for Circuit Designers," IEEE Circuits and Systems Magazine, Vol. 13,
No. 2, pp. 17-22, second quarter 2013.

[32] P. Sheridan, K.-H. Kim, S. Gaba, T. Chang, L. Chen, and W. Lu, "Device and
SPICE Modeling of RRAM Devices," Nanoscale, Vol. 3, pp. 3833-3840, August
2011.

[33] D. B. Strukov and R. S. Williams, "Exponential Ionic Drift: Fast Switching
and Low Volatility of Thin-Film Memristors," Applied Physics A: Materials
Science and Processing, Vol. 94, No. 3, 515-519, March 2009.

[34] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider, D. R.
Stewart, and R. S. Williams, "Switching Dynamics in Titanium Dioxide
Memristive Devices," Journal of Applied Physics, Vol. 106, No. 7, pp. 1-6,
October 2009.

[35] W. Zhao, E. Belhaire, Q. Mistral, C. Chappert, V. Javerliac, B. Dieny, and E.
Nicolle, "Macro-Model of Spin-Transfer Torque Based Magnetic Tunnel Junction
Device for Hybrid Magnetic-CMOS Design," Proceedings of the IEEE
International Behavioral Modeling and Simulation Workshop, pp. 40-43,
September 2006.

[36] Z. Biolek, D. Biolek, and V. Biolkova, "SPICE Model of Memristor with
Nonlinear Dopant Drift," Radioengineering, Vol. 18, No. 2, Part 2, pp. 210-214,
June 2009.

[37] F. Corinto, and A. Ascoli, "A Boundary Condition-Based Approach to the
Modeling of Memristor Nanostructures," IEEE Transactions on Circuits and
Systems I: Regular Papers, Vol. 59, No. 11, pp. 2713-2726, November 2012.

[38] T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou, “A Versatile
Memristor Model with Non-linear Dopant Kinetics,” IEEE Transactions on
Electron Devices, Vol. 58, No. 9, pp. 3099-3105, September 2011.

[39] S. Shin, K. Kim, and S.-M. Kang, "Compact Models for Memristors Based on
Charge-Flux Constitutive Relationships," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 29, No. 4, pp. 590-598, April
2010.

[40] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "TEAM -
ThrEshold Adaptive Memristor Model," IEEE Transactions on Circuits and
Systems I: Regular Papers, Vol. 60, No. 1, pp. 211-221, January 2013.

[41] S. Kvatinsky, K. Talisveyberg, D. Fliter, E. G. Friedman, A. Kolodny, and U.
C. Weiser, "Models of Memristors for SPICE Simulations," Proceedings of the
IEEE Convention of Electrical and Electronics Engineers in Israel, pp. 1-5,
November 2012.

[42] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "Memristor-
based IMPLY Logic Design Flow," Proceedings of the IEEE International
Conference on Computer Design, pp.142-147, October 2011.

148

[43] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U. C.
Weiser, "Memristor-based Material Implication (IMPLY) Logic: Design
Principles and Methodologies," IEEE Transactions on Very Large Scale
Integration (VLSI) (in press).

[44] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A.
Kolodny, and U. C. Weiser, "MAGIC – Memristor Aided LoGIC," IEEE
Transactions on Circuits and Systems II: Express Briefs (in review).

[45] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U. C.
Weiser, "MRL – Memristor Ratioed Logic," Proceedings of the International
Cellular Nanoscale Networks and their Applications, pp. 1-6, August 2012.

[46] S. Kvatinsky, N. Wald, G. Satat, E. G. Friedman, A. Kolodny, and U. C.
Weiser, "MRL – Memristor Ratioed Logic for Hybrid CMOS-Memristor
Circuits," IEEE Transactions on Nanotechnology (in review).

[47] Y. Levy, J. Bruk, Y. Cassuto, E. G. Friedman, A. Kolodny, E. Yaacobi, and S.
Kvatinsky, "Logic Operation in Memory Using a Memristive Akers Array,"
Microelectronics Journal (in review).

[48] R. Patel, S. Kvatinsky, E. G. Friedman, and A. Kolodny, "Multistate Register
Based on Resistive RAM," IEEE Transactions on Very Large Scale Integration
(VLSI), (in review).

[49] S. Kvatinsky, Y. H. Nacson, Y. Etsion, E. G. Friedman, A. Kolodny, and U.
C. Weiser, "Memristor-based Multithreading," IEEE Computer Architecture
Letters, 2013 (in press).

[50] S. Kvatinsky, Y. H. Nacson, R. Patel, Y. Etsion, E. G. Friedman, A. Kolodny,
and U. C. Weiser, "On the In-Die 3D Integration of Memory in CMOS Metal
Layers and Its Implications on Processor Microarchitecture," submitted to the
Annual IEEE/ACM International Symposium on Microarchitecture.

[51] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, "Sneak-Path Constraints in
Memristor Crossbar Arrays," Proceedings of the IEEE International Symposium
on Information Theory, pp. 156-160, July 2013.

[52] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, "On the Channel Induced by
Sneak-Path Errors in Memristor Arrays," Proceedings of the International
Conference on Signal Processing and Communication, July 2014 (in press).

[53] A. Ascoli, F. Corinto, V. Senger, and R. Tetzlaff, "Memristor Model
Comparison," IEEE Circuits and Systems Magazine, Vol. 13, No. 2, pp. 89-105,
second quarter 2013.
	

מעגלים וארכיטקטורות
 מבוססי ממריסטור

 שחר קוטינסקי

מעגלים וארכיטקטורות
 מבוססי ממריסטור

 חיבור על מחקר

 לשם מילוי חלקי של הדרישות לקבלת תואר דוקטור לפילוסופיה

 שחר קוטינסקי

 מכון טכנולוגי לישראל –הוגש לסנט הטכניון

 2014 מאי חיפה ד"עתש סיוון

- אורי וייזר בפקולטה להנדסת' איבי פרידמן ופרופ' פרופ, אבינעם קולודני' המחקר נעשה בהנחיית פרופ
 .חשמל

י 'ולאנדרו וארנה פינצ, ייקובס'ואן ג'אירווין וג, Hasso Plattner Research Institute-אני מודה ל
 .ויטרבי על התמיכה הכספית הנדיבה בהשתלמותי

I

 תקציר

ון פון נוימן מודל למבנה המחשב בו יחידת החישוב והבקרה 'ג' הציע המתמטיקאי פרופ 1945בשנת

נפרדות זו מזו והעברת המידע נעשית באמצעות תקשורת) הזיכרון(ויחידת אחסון המידע) דהיינו המעבד(

למרות . וימןהמכונה מכונת פון נ, מחשבים נבנים על פי מודל זה, מאז ועד ימים אלו. בין הרכיבים השונים

הגורם המרכזי לשיפור . המשיכו ביצועי המחשב להשתפר, שמבנהו הבסיסי של המחשב לא השתנה

קשור בצורה חזקה למזעור הטרנזיסטורים בטכנולוגיית בחמישים השנים האחרונות יכולות המחשבים

CMOS ,ר גורדון "דידי -על 1965בשנת שגובש , לפי חוק מור. שמהם מורכבים רכיבי החישוב והאחסון

. על גבי שבב בודדכפיל מדי כשנתיים את מספרם ימזעור הטרנזיסטורים , אינטלייסדה של חברת מ ,מור

 .בו ולהגדיל את נפח אחסון המידעשל המחשב להאיץ את ביצועיו המספר הגדל של טרנזיסטורים מאפשר

ידע בין הרכיבים השונים בשנים האחרונות יכולת מזעור הטרנזיסטורים הואטה ואילו יכולת העברת המ

היות וצריכת , בנוסף. הפכה לצוואר בקבוק הן מבחינת ביצועי המערכת והן מבחינת צריכת ההספק

לא ניתן להמשיך ולנצל את יכולותיהם של כלל , ההספק הפכה לתכונה החשובה ביותר ביכולות המחשב

הגדיל את נפח האחסון של בשנים הקרובות לא ניתן יהיה להמשיך ול. הרכיבים במערכת בו זמנית

מחיר תוך שמירה על צריכת הספק ו) SRAM-ו DRAM, זיכרון הבזק(טכנולוגיות הזיכרון הקיימות

שהם על פי מרבית התחזיות , ננומטר 15של למימדים פיזיים הזיכרון הבזק כבר הגיעטכנולוגיית . נמוכים

 בודד כמות הכתיבות לתא זיכרון בעיקר בשל מגבלה על, קצה גבול יכולת המזעור לטכנולוגיה זו

)endurance(,אשר מחריפה ככל שהרכיב קטן יותר.

טכנולוגיות מוליכים למחצה המיועדות להחליף את לאחרונה מפותחות , כדי להתמודד עם בעיות המזעור

 Resistive RAM ,STT-MRAMבין הטכנולוגיות הללו ניתן לציין את . טכנולוגיות הזיכרון הקיימות

על שם רכיב תיאורטי שנחזה בשנת , בשם הכולל ממריסטור יכולות להיקראטכנולוגיות אלו . PCM-ו

. הדומים בפעולתם לנגד, ממריסטורים הם רכיבים בעלי שני הדקים .ואה'לאון צ' ידי פרופ-על 1971

אך כאשר לא זורם זרם ההתנגדות , התנגדותם של הממריסטורים משתנה כתלות בזרם הזורם דרכם

בדומה ,)דהיינו לא דורשים מתח כדי לשמור על מצבם(ת קבועה ולכן הם רכיבים לא נדיפים נשאר

ממריסטורים מיוצרים . ההתנגדות של הממריסטור מייצגת את המידע האגור ברכיב. לזכרונות הבזק

סטנדרטית ולכן הם בעלי CMOSהנמצאות בכל טכנולוגיית , בצפיפות גבוהה במיוחד בין שכבות מתכת

 ,יםיכולממריסטורים . נציאל גבוה למסחור ולשילוב במחשבים מודרניים כטכנולוגיות זיכרון חלופיותפוט

בשימושים שונים ובהם , שונים CMOSלשמש גם כמתג ולהשתלב במעגלי ,בנוסף לאחסון המידע

 . מעגלים אנלוגיים ורשתות נוירונים, מעגלים דיגיטליים

. סטיביות הוא ייחודי ושונה מרכיבים חשמליים אחריםתמהיל התכונות של הטכנולוגיות הממרי

לא נדיפים וצורכים , הם מהירים. המיוצרים מעל לטרנזיסטורים, קטנים וצפופים ממריסטורים הם רכיבים

II

תמהיל ייחודי זה מאפשר לממריסטורים להוסיף תכונות חדשות למעגלים חשמליים ופותח . הספק נמוך

 .ותרכיטקטורות מחשבים מגוונולאחדשים פתח למעגלים חשמליים

 .בהתבסס על ממריסטורים, חישוב במחשביםליחידות הזיכרון ביןמחקר זה הוא על השילוב הדגש ב

לבין טכנולוגיות ממריסטורים משפר משמעותית את המהירות וצריכת CMOSהשילוב בין טכנולוגיית

ית טכנולוגיל בין ממריסטוריםב שילו .ההספק של מחשבים בעידן שבו המזעור לפי חוק מור ייגמר

CMOS זיכרון כמות גדולה של מאפשר בניית ארכיטקטורות מחשבים חדשות המבוססות על שילוב

 .Memory Intensive Architecturesלארכיטקטורות אלו אנו קוראים .בתוך יחידות החישוב

החשמלי והן ברמת הן ברמת המעגל , במחקר זה פותחו מימושים שונים המבוססים על ממריסטורים

המעגל החשמלי ורמת רמת , רמת הרכיב הבודד – רבדים שוניםהמחקר כולל מספר . הארכיטקטורה

הרצויות מנקודת מבטו של הממריסטוריםאופיינו תכונות , במסגרת המחקר. כיטקטורת המחשביםרא

תכונותיו הממריסטור הרצוי שונה בהתנהגותו וב .מתכנן המעגלים החשמליים וארכיטקט המחשבים

ולפתח הקיימותהממריסטיביות הטכנולוגיות השונים ולכן קיים צורך לאפיין היטב את מגוון שימושיםל

פותח מודל מתמטי בשם ,במסגרת המחקר. מודלים אשר יאפשרו את הגמישות הרצוייה עבור הרכיב

TEAM דהיינו (סית מודל זה פשוט יח. המתאר את התנהגות הממריסטור למגוון רחב של טכנולוגיות

המודל מאפשר שימוש בזרם . ומדוייק) נדרש כוח חישוב נמוך יחסית כדי למדל אותו בסימולציות מחשב

ובנוסף ממדל התנהגויות לינאריות , שעבור זרמים הקטנים ממנו ההתנגדות של הרכיב לא משתנה, סף

תכן מעגלים שפות להמותאמת VerilogAמומש בשפת TEAM-מודל ה. ולא לינאריות של הרכיב

 .SPICEחשמליים כגון

כולל מתודולוגיות לתכנון יעיל , מגוון שערים לוגיים מבוססי ממריסטורים פותחו במסגרת המחקר

 כולל בחינת החלופות, פעולת המעגל הלוגי מתודולוגיות אלו כוללת שיטות לניתוח .שלהם ומדוייק

, IMPLY(שלוש משפחות לוגיות .שלהםהשונות ודרכים לבחירת הרכיבים במעגל והפרמטרים השונים

MAGIC ,Akers (קטורות מאפשרות ארכיטניתנות למימוש כחלק מזיכרון הבנוי מממריסטורים ולכן

 IMPLY. בהן חלק מהחישוב נעשה בתוך הזיכרון ולא ביחידת חישוב נפרדתהשונות ממכונת פון נוימן ו

). crossbar(המשמשת לזיכרון ניתנות למימוש בתוך רשת ממריסטורים סטנדרטית MAGIC-ו

וכתיבת הערך הלוגי material implicationהיא פונקציית IMPLY-הפונקציה הבסיסית לחישובים ב

היא רשת NOR .Akersהפונקצייה הבסיסית לחישובים היא פונקציית MAGIC-ואילו ב) אפס(0

שיטת . 1972אייקרס בשנת שלדון ' י פרופ"המבוססת על תאוריית חישוב לוגית שהוצעה ע, שונה

במחקר זה פותחה חומרה .כולל מיון סיביות, החישוב של אייקרס מאפשרת לחשב כל פונקצייה בוליאנית

 CMOSרשת אייקרס מבוססת ממריסטורים יכולה בשילוב עם טרנזיסטורי . Akersרשת המממשת

 .לשמש גם כזיכרון

שילוב עם שערים לוגיים בטכנולוגיית מאפשרת , MRL, משפחה לוגית נוספת שמוצעת במחקר זה

CMOS .ללא יכולת אגירת , ים כמתגים המסייעים לחישוב בלבדשעבור שיטה זו הממריסטורים משמ

III

ובתוספת עם מהפכים מבוססי OR-ו ANDהם שערי MRL-השערים הבסיסיים הממומשים ב. מידע

CMOS ים מיוצרים בין שכבות המתכת היות וממריסטור. כל פונקצייה בוליאניתבאמצעותם ניתן לחשב

ים ובכך להמשיך יניתן להגדיל את הצפיפות הכללית של השערים הלוג, CMOS-שמעל לטרנזיסטורי ה

 .גם ללא מזעור הטרנזיסטורים, ולשפר את יכולות החישוב של המחשב

עד מעגל זה לא נו. Multistate registerמעגל נוסף שפותח במסגרת המחקר הינו מעגל זיכרון בשם

אלא לשמש לצרכים חדשים ולשמירת , להחליף טכנולוגיית זיכרון קיימת בהיררכיית הזיכרון של המחשב

כאשר , מאוחסנים מספר רב של מצביםבמעגל זה . מידע שבארכיטקטורות מחשבים קלאסיות לא נשמר

גיל משמש המעגל כרגיסטר ר ,עבור המצב הפעיל. מצב אחד הינו פעיל ושאר המצבים נשמרים ברקע

ניתן להחליף בין המצבים ולהפוך את אחד המצבים ששמורים , בעת הצורך. CMOSבדומה לדלגלג

כאשר המצבים השמורים ברקע , מומש המעגל באמצעות ממריסטורים, במחקר זה. ברקע למצב הפעיל

הממוקם מתחת CMOSנשמרים בתוך זיכרון מבוסס ממריסטורים והמצב הפעיל מאוחסן בדלגלג

תוך אחסון מספר רב של , החלפה פשוטה ומהירה בין המצבים השונים מאפשרתכנון זה . ריםלממריסטו

כל מצב תופס , מצבים שונים 64 בממריסטורים עבור מעגל השומר, לדוגמה. מצבים שונים בשטח קטן

הצפיפות .)CMOSמדלגלג 75צפיפות גבוהה פי (CMOSמשטח מצב יחיד בדלגלג 1.3%-שטח של כ

 .מצביםמספר רב יותר של כל מצב משתפרת ככל ששומרים היחסית של

ארכיטקטורות מעבדים חדשות יוצר אפשרויות לבתוך מעבדים multistate registerהשילוב של מעגל

רק תהליכון אחד פעיל בכל רגע CFMT-ב). Continuous Flow Multithreading)CFMTכגון

. multistate register-סנים בממריסטורים של מעגלי הנתון ושאר התהליכונים הנתמכים במכונה מאוח

ההחלפה בין תהליכונים דורשת רק החלפת מצב פעיל במעגלי הזיכרון ולכן היא מהירה וחסכונית

במסגרת הערכת . הם מעבדים בעלי ביצועים גבוהים וצריכה אנרגטית נמוכה CFMTמעבדי .באנרגיה

התקבל שיפור ביצועים ממוצע SPEC CPU 2006ת של הביצועים והאנרגיה של המעבד בסדרת בדיקו

יחסית למעבד דומה בו התהליכונים מוחלפים 8.5%- תוך צריכה אנרגטית ממוצעת הנמוכה ב, 32%של

כולל מימושם , CFMTבמסגרת המחקר תוכננו מעבדי .Switch on Event Multithreadingבשיטת

 .FPGAעל בסיס CMOSבחומרה אמיתית בטכנולוגיית

דוגמה ראשונה בלבד לארכיטקטורה המשלבת זיכרון מעל ללוגיקה ההינ CFMTארכיטקטורת

)memory intensive architecture .(ניתן לתכנן ארכיטקטורות רבות נוספות בצורה דומה .

על או , על מעגלי הלוגיקה שפותחו, multistate registersהתבסס על ארכיטקטורות אלו יכולות ל

אנו מאמינים שהמחקר המוצג הוא רק קצה הקרחון וכי בעתיד הקרוב . יים אחריםביסטימעגלים ממר

ישנו את מבנה וארכיטקטורת המחשבים אשר , ארכיטקטורות רבות נוספות ומימושים חדשים יפותחו

 . המודרניים

IV

 :ות המרכזיות במחקר זה הינןרומוהת, לסיכום

 ים ולמערכות יוא מוסיף למעגלים חשמלתכונות החדשות שהניתוח התנהגות הממריסטור וה

 .מחשבים

 פיתוח מודל ה -TEAM ,המתאים לתוכנות תכן מעגלים חשמליים.

 פיתוח ומימוש מעגלי לוגיקה לחישוב בתוך הזיכרון ופיתוח מתודולוגיות תכנון עבורם

)IMPLY ,MAGIC ,Akers.(

 פיתוח ומימוש מעגלי לוגיקה המשולבים בטכנולוגייתCMOS תודולוגיות תכנון ופיתוח מ

).MRL(עבורם

 פיתוח ומימוש מעגל זיכרון משולב ממריסטור ו-CMOS , המשמש לאחסון מספר רב של מצבים

).multistate register(בשטח קטן

 של ביצועים לאנרגיה ם מרובי תהליכונים בעלת יחס גבוהפיתוח מיקרוארכיטקטורה למעבדי

)CFMT.(

	pp1-38
	team tcas1
	team SPICE IEEEI
	desired memristor CAS MAG
	pp 61
	IMPLY ICCD
	IMPLY TVLSI
	MAGIC submitted TCAS2
	MRL CNNA
	MRL_TNANO_submitted
	Akers array Microelectronics v8
	pp 128
	CFMT CAL
	MPR_TVLSI_revised_submission
	MICRO_v9
	pp156-174

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /Cmb10
 /CMBSY10
 /Cmbsy10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /Cmbx10
 /CMBX12
 /Cmbx12
 /CMBX5
 /Cmbx5
 /CMBX6
 /Cmbx6
 /CMBX7
 /Cmbx7
 /CMBX8
 /Cmbx8
 /CMBX9
 /Cmbx9
 /CMBXSL10
 /Cmbxsl10
 /CMBXTI10
 /Cmbxti10
 /CMCSC10
 /Cmcsc10
 /CMCSC8
 /Cmcsc8
 /CMCSC9
 /Cmcsc9
 /CMDUNH10
 /Cmdunh10
 /CMEX10
 /Cmex10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /Cmff10
 /CMFI10
 /Cmfi10
 /CMFIB8
 /Cmfib8
 /CMINCH
 /Cminch
 /CMITT10
 /Cmitt10
 /CMMI10
 /Cmmi10
 /CMMI12
 /Cmmi12
 /CMMI5
 /Cmmi5
 /CMMI6
 /Cmmi6
 /CMMI7
 /Cmmi7
 /CMMI8
 /Cmmi8
 /CMMI9
 /Cmmi9
 /CMMIB10
 /Cmmib10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /Cmr10
 /CMR12
 /Cmr12
 /CMR17
 /Cmr17
 /CMR5
 /Cmr5
 /CMR6
 /Cmr6
 /CMR7
 /Cmr7
 /CMR8
 /Cmr8
 /CMR9
 /Cmr9
 /CMSL10
 /Cmsl10
 /CMSL12
 /Cmsl12
 /CMSL8
 /Cmsl8
 /CMSL9
 /Cmsl9
 /CMSLTT10
 /Cmsltt10
 /CMSS10
 /Cmss10
 /CMSS12
 /Cmss12
 /CMSS17
 /Cmss17
 /CMSS8
 /Cmss8
 /CMSS9
 /Cmss9
 /CMSSBX10
 /Cmssbx10
 /CMSSDC10
 /Cmssdc10
 /CMSSI10
 /Cmssi10
 /CMSSI12
 /Cmssi12
 /CMSSI17
 /Cmssi17
 /CMSSI8
 /Cmssi8
 /CMSSI9
 /Cmssi9
 /CMSSQ8
 /Cmssq8
 /CMSSQI8
 /Cmssqi8
 /CMSY10
 /Cmsy10
 /CMSY5
 /Cmsy5
 /CMSY6
 /Cmsy6
 /CMSY7
 /Cmsy7
 /CMSY8
 /Cmsy8
 /CMSY9
 /Cmsy9
 /CMTCSC10
 /Cmtcsc10
 /CMTEX10
 /Cmtex10
 /CMTEX8
 /Cmtex8
 /CMTEX9
 /Cmtex9
 /CMTI10
 /Cmti10
 /CMTI12
 /Cmti12
 /CMTI7
 /Cmti7
 /CMTI8
 /Cmti8
 /CMTI9
 /Cmti9
 /CMTT10
 /Cmtt10
 /CMTT12
 /Cmtt12
 /CMTT8
 /Cmtt8
 /CMTT9
 /Cmtt9
 /CMU10
 /Cmu10
 /CMVTT10
 /Cmvtt10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomDGR-Bold
 /NimbusRomDGR-BoldItal
 /NimbusRomDGR-Regu
 /NimbusRomDGR-ReguItal
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

