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Equivalent ElImore Delay foRLC Trees

Yehea |. Ismail, Eby G. Friedmakellow, IEEE and José L. Neves

Abstract—Closed-form solutions for the 50% delay, rise time, An interconnect line in a VLSI circuit is in general a tree
overshoots, and settling time of signals in anRLC tree are rather than a single line. Thus, the process of characterizing
presented. These solutions have the same accuracy characterlstlc%ignaﬂ waveforms in tree structured interconnect is of primary

of the Elmore delay for RC trees and preserves the simplicity . t o fh lar del del d withi
and recursive characteristics of the Elmore delay. Specifically, Importance. Une of the more popular delay models used within

the complexity of calculating the time domain responses at all industry forRC trees is the EImore delay model [15], [16]. De-
the nodes of anRLC tree is linearly proportional to the number  spite not being highly accurate, the EImore delay is widely used
of branches in the tree and the solutions are always stable. The py industry for fast delay estimation. With IC’s composed of
closed-form expressions introduced here consider all damping ans of millions of gates it is often impractical to use highly ac-
conditions of an RLC circuit including the underdamped re- te. ti . thods t luate the del ¢ h
sponse, which is not considered by the Elmore delay due to the curay e_’ ime c_:ons_umlng methods 1o evalua e_ € aelay at eac
nonmonotone nature of the response. The continuous analytical Node in the circuit. The Elmore delay model is therefore used
nature of the solutions makes these expressions suitable for designto quickly estimate the relative delays of different paths in the
methodologies and optimization techniques. Also, the solutions circuit, permitting more exhaustive simulations to be performed
have significantly improved accuracy as compared to the EImore ¢, o1y the critical paths. Also, the Elmore delay is widely used

delay for an overdamped response. The solutions introduced here . L
for RLC trees can be practically used for the same purposes that &5 & delay model for the synthesis of VLSI circuits such as buffer

the Elmore delay is used forRC trees. insertion inRC trees and wire sizing [17]-[28]. The wide use
Index Terms—Dbelay, inductance, interconnectRLC, simulation, of the Elmore delay as a basis for design r_nethodolo_gleS IS pri-
tree. VLSI. marily because the Elmore delay has a high degreeelity

[17]: an optimal or near-optimal solution achieved by a design
methodology based on the Elmore delay is also near-optimal
. INTRODUCTION based on a more accurate (e.g., SPICE-computed [24]) delay

T has become well accepted that interconnect delay dorf@! routing constructions [25] and wire sizing optimization [23].

nates gate delay in current deep submicrometer very la gnulations [26] have shown that the clock skew derived under
scale integration (VLSI) circuits [1]-[9]. With the continuoushe Elmore delay model has a high correlation with SPICE-de-
scaling of technology and increased die area, this situation’iéed skew data.
becoming worse. In order to properly design complex circuits, The popularity of the Eimore delay is mainly due to the ex-
more accurate interconnect models and signal propagation ctigience of a simple tractable formula for the delay [29] that has
acterization are required. Initially, interconnect has been md@cursive properties [27], making the calculation of the circuit
eled as a single lumped capacitance in the analysis of the Fﬂqlays highly efficient even in large circuits. No formula for
formance of on-chip interconnects. CurrentR¢’ models are delay calculation has been determined®drC trees that main-
used for high-resistance nets and capacitive models are used3##s all the characteristics of the Elmore delay. The absence
less resistive interconnect [10], [11]. However, inductance is b&f an equivalent delay model fdRLC' trees is primarily due
coming more important with faster on-chip rise times and longt® the fact that the Elmore delay does not cover nonmonotone
wire lengths. Wide wires are frequently encountered in cloéRSPONses [15] which can occurRLC circuits. The work de-
distribution networks and in upper metal layers. These wires S¢ribed in [30] uses the firstand second moments to characterize
low-resistive wires that can exhibit significant inductive effectdhe response aRLC trees. However, the solutions in [30] are
Furthermore, performance requirements are pushing the intf@mposed of three different formulae for the cases of real, com-
duction of new materials for low-resistance interconnect [12J!€X, and multiple poles and there are no closed-form solutions
Inductance is therefore becoming an integral element in VL r the moments of a tree that can be directly incorporated into

design methodologies, see, e.g., [6], [13], and [14]. the dglay mode_l. Furthermore, the solutions in [30] pnly char-
acterize a step input response and do not characterize the over-

shoots and settling time of an underdamped response. The focus
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tion of anRLC tree is developed. Closed-form solutions for the e 1 | e
50% delay, rise time, overshoots, and settling time of the sig- P
nals within ank LC tree are introduced in Section IV. Accuracy e
characterization of the proposed delay model is presented in /
Section V. Finally, some conclusions are offered in Section VI. J

The algorithmic complexity of the proposed delay model is de- /
scribed in the Appendix. /

Il. BACKGROUND 0 10

In 1948, Elmore [15] introduced a general approach for calcu- e'(r) 0.4 '
lating the propagation delay of a linear system given its transfer
function. If the transfer function of the system(s), the nor- N,
malized transfer function(s) is G(s)/G(0), which can be gen-
erally described as \

14 aistaxs®+ -4 aps” ) T
T 1t bis+ 0282 4 o bys™ 0 I —

a(s)

wherea; andb; are real andn > n. For a monotone response, ® !
all the poles Ofg(s) should be real and for a stable system all thﬁg. 1. Step response of a normalized monotone transfer function. (a) Step
poles should lie on the negative real axis. The unit step resporsgonse. (b) Impulse response (which equals the time derivative of the step
of the normalized transfer function {$/s) - g(s). In the time  response).
domain the transient unit step responég has a final value of
one and is monotonically increasing as shown in Fig. 1(a).

Elmore proceeded from the observation that the time domain
unit step response has the characteristics of the integral of a
probability function since it has a final value of one and is mono-
tonically increasing which makes the area unelét) equal to
one and makes () always positive. Thus, Elmore defined the
50% propagation delay [the time wher&) is equal to 0.5] as

—lj

Fig. 2. SimpleRC circuit.

Ip = / te'(t) dt (2)  pole and has no low-frequency zeros near the dominant pole.
0 Using this approximation, the step response of the system is
which is the centroid of the area und#ft). By noting thate’(¢) ¢
for a step input is simply(¢), the transfer functiom(s) can be e(t)=1—exp <_T_> 5)
expressed as b
which indicates a 50% propagation delay equal to 07693

g(s) = /Oo dt)etdt=1—s /Oo te!(t) dt rather than? as anticipated by Elmore. For example, the
0 0 simple RC circuit shown in Fig. 2 has the transfer function
32 /Oo 2 1
+ e/ (t) dt — - - ©)) _ 1

Thus, if the normalized transfer function is expanded in tHEhus, according to Elmore the propagation delais and ac-
powers ofs, the 50% delay can be determined directly as the coerding to Wyatt the propagation delay is 0.683. Note that
efficient of s. From (1), the propagation delayi$, = b — a1 Wyatt's solution is exact for this simple circuit and a step input

which is the definition of the EImore delay [15]. signal. In general, Wyatt's solution is more accurate than El-
In 1987, Wyatt [16] used the relationships thatanda; are more’s solution. Wyatt's approximation is usually still referred
given by to as the Elmore delay.
What has made the ElImore (and Wyatt) delay particularly ap-
=1 =1 pealing forRC trees is the introduction of a simple closed-form
by = z_; p; and a; = z_; 2% ) solution for the time constarfty [29]. For theRC tree shown

in Fig. 3, the time constarfp; at nodei is

respectively, wherey; and z; are the poles and zeros of the

transfer function, respectively. Thus, Wyatt treai@sl = b; — Ipi = Z CrLin 7

a; as the reciprocal of the dominant pole (the pole that has the K

smallest absolute value) of the system. This approximationviderek is an index that covers each capacitor in the circuit and
accurate for systems that can be modeled by a single dominayt is the common resistance from the input to the nadmesd
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| Fig. 4. SimpleRLC circuit.

via lanczos (PVL) [38], matrix pade via lanczos (MPVL) [39],
arnoldi algorithm [40], block arnoldi algorithm [41], passive re-
Fig. 3. RLC tree. duced-order interconnect macromodeling algorithm (PRIMA)
[42], [43], and SyPVL Algorithm [44]. However, the Elmore
k. For example, for theiC' tree shown in Fig. 3R23 = B1 (Wyatt) delay is still widely used within industry since it is com-
andTpy = C1 % Ry + Oy x (R1 + Rp) + C3 * Ri. Wyatt  pytationally faster to evaluate and always leads to stable solu-
approximates the transfer function at node i offei tree by a tions. Also, due to the existence of a closed-form tractable so-

first-order (single-pole) transfer function given by lution, the EImore delay is amenable to synthesis and VLSI-
1 oriented design methodologies. Asymptotic wave evaluation is
9i(s) = ———— (8) mainly used in analyzing those networks that require high ac-

8 2}; Crlty +1 curacy and covers both monotone and honmonotone responses.

In [45], the first and second moments are used to evaluate the
This first-order approximation matches the first moment of thdelay of a VLSl interconnect. However, no closed-form solution
transfer function at nodé but approximates the higher-ordeiis described folR LC trees.
moments by
[ll. SECOND-ORDER APPROXIMATION FORRLC TREES

mé = <— Z CkRik> 9) As mentioned previously, the Elmore (Wyatt) delay does not
k properly characterizé& LC' networks due to the possibility of
a nonmonotone response of Bd.C network. To illustrate this

as can be seen in the expansion of (8 ) . . . . o )
P ® point, consider the simple single -secti.C circuit depicted

2 in Fig. 4. This circuit has a second-order transfer function that
gi(s) =1—5 Y CpRu+s" <Z OkRik> can be characterized by
k k
) ) 1
— =1+ mis+mhs’ 4o (10) 9(3):32LC+3RC+1' (12)

This single pole first-order approximation of the transfegote that the coefficient of! is RC, which does not include
function can be inaccurate in certain cases where arbitrgRe jnductance. This coefficient of the Elmore time constant
initial_ conditions can create a |oyv-frequency zero, theret()gmd thus the Wyatt approximation) does not depend on the in-
violating one of Wyatt's assumptions [31]. For this reasory,ctance. However, inductance can have a significant effect on
Horowitz approximates the capacitor voltage with a two polge response of the circuit. To better observe the effects of in-

one zero transfer function by matching boundary conditioRgctance, the transfer function of the circuit can be reconfigured
[32]. Pillage extended this concept by introducing asymptotjg

wave evaluation (AWE), which depends on matching the

first ¢ moments of the transfer function [33]-[35] rather than g(s) = “n (13)

only the first moment as Wyatt and Elmore did. This concept 5% + s2Cwn + Wi

allows arbitrary accuracy by including additional momentgynere

The normalized transfer functiof(s) can be expanded in the 1 RO

powers ofs as ¢ = 3 = (14)
VvLC

g(s) =14+ mis+mos® + - (11)
wherem; is theith moment of the transfer function [33]. The - L 15
first 2¢ moments of the transfer function include the informa- VLC

tion needed to calculate the first g poles and the residuestgfe poles of the transfer function are

these poles. Numerical methods have been developed [34]-[37]

to efficiently calculate the moments, poles, and residues. Also, Piy=w, [—C +./¢2 — 1} ) (16)
model-order reduction techniques based on the state-space rep-

resentation of amLC network have been used to calculat®&ote that if{ is less than one, the poles are complex and oscil-
the transient response of signals within the tree such as: p&atéeons occur in the response which violates the monotone re-
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sponse condition of the Elmore delay. In this case, the respor
is underdamped and overshoots occut, i§ greater than one,
the poles are real and the response is an overdamped respo
If  is equal to one, the response is a critically damped respon:
( is called the damping factor of the system. From (14), as tt
inductance increaseédecreases which violates the assumptiol
of a monotonic response.

At least a second-order approximation is required to cha
acterize a nonmonotone response, because a nonmonotone
sponse involves complex poles which appear in conjugate pa
in a real system. Thus, a second-order system such as (13)
be used to approximate a system with a nonmonotone respon
Itis therefore necessary to determthandw,, in order to make
the second-order approximation as accurate as possible as ct
pared to the exact transfer function. The transfer function in (1:
can be expanded in powersoivhere the first two moments of
the transfer function are equated to the first two moments of tt
systemyn; andms. The expansion of the transfer function in
(13) is

Fig. 5. GeneraRLC tree.

m>=y-<<)+ Qiigi)
Wp, Wy, Differentiating (21) with respect te and substituting = 0
— =14 mis+mast 4. a7
_ _ - Z CrRix Vi(5)|s=0 (24)
The parameters that characterize the second-order approxima- x

tion of a nonmonotonic systerj,andw,,, can be calculated in
terms of the moments of the nonmonotonic system and are

— 1 | R _ LV _
CI miy (18) moy Z CkRzk ds L Z CkLZka(S) =i
2 mi —mo k = k
(25)
Wy, = 1 ) (19) Note thatVi(s)|s=o = 1 and de(s)/ds|5=0 = mk¥ since
m? —mo Vi(s0 = gi(s) = 1 +mbs +mbs? +---. Thus, the first and
econd moments of a genefal.C tree at node are
Hence, for a system with a nonmonotonic response a secon
order approximation can be found if the first and second mo- i
ments of the system are known. M= Z CrRit (26)
For the generaRLC tree shown in Fig. 5, the voltage drop
at any node as compared to the input voltage is
Vin(s Z CiVi(8)s[Rri + L) (20) my = Z Z Cr B Cj e — Z CrLix- (@7)
B k

If the input is a unit impulse};,, (s) is equal to 1.0 and the Since the Elmore (Wyatt) model approximates the first term
voltages at the nodes of the tree are the unit impulse resporises, by (X CiR;x)?, a similar approximation is used here.
of these nodes. Thus, the normalized transfer fungfi¢s) at Thus, the second moment is approximated by

nodei is given byV;(s) and is

2
=1- Z CiVi(s)s[Rii + Ly s mh = <Z CkRik> - Z Cr L. (28)
K !

=14+mis+mis® +- (21) Substituting the first and second moments of a geng@ial’

The first and second moments at nadean be derived from  tree into (18).(; andw,,; that characterize a second-order ap-
proximation of the transfer function at nodare

< dgi(s)
mi = 22)
! ds =0 Z CkRzk
1 %
=12 (29)
2
@ 1 d29i( ) Z CrLix
m2 = 5 d32 o . (23) .




ISMAIL et al. EQUIVALENT ELMORE DELAY FORRLCTREES 87

whereS/(¢) is the time scaled response at naded¢# is time
scaled byw,;. The time scaled 50% delay and rise time can be

Wi = ;. (30) calculated by equating/(t) to 0.5V, 0.1Vpp, and 0.9 p,
Z CrLix respectively. The time scaled 50% delay at nod@ad the rise
& time are only functions of one variab{e. The 50% delay and

the rise time calculated for several values(pfare plotted as
Note the analogy witl{ andw,, for a single RLC section in functions of¢; in Fig. 6. A curve fitting method is applied to
(14) and (15). The time constani&C and+/LC are replaced characterize the time scaled 50% delay and rise time as func-
by the summations of the equivalent time constants in the tréiens of ; and these functions are
Note also that (29) and (30) becomes (14) and (15), respectively, }
for a single section. This second-order approximation has the t;,di =1.04764/989) 4 1 39¢; (33)
same accuracy characteristics as that of the ElImore (Wyatt) ap-
proximation for anRC' tree. The accuracy characteristics of this
second-order approximation is discussed in Section V. Las Los
#. = 6.017e(C77/04) _p (CF27/064) |y 39c,  (34)
V. SIGNAL CHARACTERIZATION IN RLC TREES FOR ASTEP

/
INPUT wheret

;i andt,; are the time scaled 50% delay and rise time
at nodei, respectively. The 50% delay and rise time at node

The second-order approximation of the transfer function efn be determined by dividing,,; andt/., by w,; and are
an RLC tree at node described by (13), (29) and (30) can be

used to determine the time domain signal at nofer an ar-
bitrary input. The Laplace transform of the input is multiplied
by the second-order approximate transfer function. The inverse
Laplace transform is calculated for the resulting expression to
determine the time domain signal. After determining an expres-;  _ (6.0176(43'35/0'4) selc®/06s) 439@) Jeoms.
sion that describes the time domain signal at nooflean RLC ’ ’ ,(36)
tree, an iterative methoq Is app!ied to calgulate the primary Rote that the 50% delay and the rise time at nodan be de-
rameters that characterize the time domain response such a %%ed as

50% propagation delay and the 90% rise time. However, for the

special case of a step input, these parameters can be calculategpdi _ (1.0476@{/0.&3)) Jwni + 0.695 Z CiRix  (37)
k

tpdi = (1.047e<<f/°~85> + 1.394’71) [wni (35)

directly without applying the aforementioned procedure due to
the mathematical nature of the time domain signal.
For a step input and a supply voltagef, the time domain

response at nodelerived from the second-order approximation P (6 or7e(ch?r04) _ 5@(@1'25/0'64» Jeons
is e . ni
+2.195 CrRix. (38)
Vop €xp [wm‘t (—Q‘ + V¢ - 1)} k
Si(t) = Vop + 2 2 . .
2y -1 -G+ VG -1 For large¢; (low inductance effects), these solutions become

the Elmore (Wyatt) approximation of the 50% delay and the
it (=G — /G — 1 - i i i
_ P [w ( G G )} rise time for anRC tree at node. This relationship between
—G— V¢ -1

' (87) and (38) for larg€; and the ElImore (Wyatt) delay demon-

(31) strates that the general solutions for the 50% delay and the rise

time introduced here include the Elmore (Wyatt) delay for the
The rise time is defined here as the time for the signal to rispecial case of aRC tree. Note also that the general solutions
from 10% to 90% of the final value. Also, the overshoots angdtroduced here include all types of responses (underdamped
the settling time for the case of an underdamped response R®amMonotone, critically damped, and overdamped) in one con-
characterized. In the step response in (31), note that time istiluous equation, which is useful in applications such as buffer
ways multiplied byw,,;. Thus, if the time is scaled hy,,;, the insertion, wire sizing, and other VLSI-based design, synthesis,
step response at nodevith a supply voltage of’pp volts be- and analysis methodologies.

comes a function of only one variabjeand is For the case of an underdamped nonmonotone response when
¢ < 1 (see Fig. 7), overshoots and undershoots occur which

v exp [t’ (_Q TG - 1)} must also be characterized. Also, another parameter can be used

Si(t)=Vpp + DQD [ > ’ to characterize nonmonotone responses and is defined as the
2v6 —1 —G+ VG -1 time when the oscillations about the steady state are smaller

exp [t’ (_ G — m)} thanz of the steady state value. This parameter is usually called
_ the settling time and: is typically chosen to be 0.1 [47]. The
—G— G -1 ] value of the maximum or minimum oscillations can be found by
(32) differentiating (31) with respect to time and equating the result



88 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 1, JANUARY 2000

t’pdx' 4 T T T l//
//
A
////
# .
////. ” Numerical
2 (33) ——p~ Solutions -
#
-
////
l :" -
| | ] ] |
0
0 0.5 1 15 2 25 3 G

r . | 1 1 |/ |
1o} / -

rd Numerical
e

Soluti
L (34) » olutions |
e

Fig. 6. The time scaled 50% delay and rise tirtjg,, andt; ;, versus(,. (33) and (34) are also shown.

to zero. The values for the maximum or minimum oscillationSor x = 0.1, ¢,; is

at node: as a percentage of the final value are given by 53

) tsi = oot (42)

7’L7TC7‘,

%0; = (=)™ - 100exp | ————==
V1=¢2

n=12--- (39) V. ACCURACY CHARACTERIZATION OF THE SECOND-ORDER

. APPROXIMATION
where%O; represents the maximum overshootssioodd and

minimum undershoots for even at nodeé. The time at which ~ The accuracy characteristics of the second-order approxima-
the nth overshoot occurs at nodés tion introduced in Section Ill are discussed and explained in this
section. The effect of the signal applied at the input of the tree on
to; = ————. (40) the accuracy of the second-order approximation is discussed in
wniy/1— ¢ Section V-A. The effects of the unbalance in impedances within

The settling time can be calculated by equatifi@; to z+100 to the tree and the branching factor for balanced trees are discussed

determinen which represents the first overshoot that is less théﬁ? Shectlons. VdB and VdC rgspgctw\e/l;g T_lr_]ﬁ efff(?ct of :hﬁ depth

x times the steady state value. The time of this overshoot is | e e.:;]ee IS |stctustie n ect|fotrr1] ) d ?eh,e(:t?] the posi-

settling time and can be calculated by substituting n calculat.g.-(an with respect fo the source of the node at which the response

from %0, = « + 100 in (41). Thus, the settling time at nodés Is evaluated is presented in Section V-E. Finally, the effect of
! ' higher-order oscillations in the response is discussed in Section

V-F. In general, the approximation introduced here fatC

trees has the same accuracy characteristics as that of the Elmore

nim

—1In (a:)

tyi =
* Ciwni

(41)
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Fig. 7. Characterization of an underdamped respdrise, is the supply voltager is the ratio of the final value which bounds the oscillations for the response
to be considered settled. The times, , to2, - - - are the times at which the overshoots and undershoots @ggdarthe settling time.

(Wyatt) delay forRC trees. Expression (35) in Section IV is 6nH 50Q 9nH 1800 0
used to calculate the propagation delay throughout this sectic —"”T‘WW
, 8mH 250 0.6 pF I 0.3 pF I

A. Effect of the Input Waveform Shape TRV |
1pF

As mentioned in Section 1V, the second-order approximatio I 7nH 100 Q
introduced in this paper in (13), (29) and (30) can be used to ce =
culate the time domain response of an arbitrary input signal. Tt
error of the time domain response calculated using the secor
order approximation as compared to AS/X [46] simulations i
dependent on the characteristic of the input signal. More spec
ically, the calculated time domain response becomes more &
curate as the rise time of the input signal increases. To illustra
this behavior, an exponential input signal of the form

Fig. 8. An example of alRLC tree.

Vin(t) = Vo[l — exp(—t/7)]u(t) (43)
is applied to the second-order approximation whef is the <TT ) V1-¢
unit step function}yp p is the supply voltage, and the 90% rise 6y = tan~* Lci (46)
time of the input signal is 23 7 is the time constant of the < T ) G —1
exponential in (27). Note that an exponential signal more accu- Trci
rately characterizes the signals in VLSI circuits as compareddqg
a ramp input signal. The time domain response at riaafean
RLC tree for this exponential input is <

k= Trci : 47)
(7o) ()

Cirrc ( ) Vop |1 —ke™ /) + 617@ Trc: Trc;

Trcqis

1
. |:SlIl Wit — 01) — \/ism (Writ — 92)}
k Trei = Z CrLi. (48)
(44) b

This closed-form time domain solution is evaluated for output
where O, of the RLC tree shown in Fig. 8 and is compared to AS/X
[46] simulations in Fig. 9. Note in Fig. 9 that as the rise time of
1— CQ . . .
i (45) the input signal increases as compared’{e;, the calculated
Gi

6, = tan~*
time domain response becomes more accurate. This relationship
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Fig. 9. Simulations of the time domain response for oupeibf the tree shown in Fig. 8 as compared to the closed-form solution in (43) for different input rise
times.

is intuitive since the closed-form solution accurately captureVs bR L2 oRp g3 LA RA
the characteristics of the input signal. As the input rise time in W T
creases as compared to the time constants of the impedan C 2G, 4c,

within the RLC tree, the dependence of the output respons I I I

on the input signal increases as compared to the dependerice
on the characteristics of theLC' tree. Hence, the output re-rig. 10. Equivalent ladder circuit of thLC tree shown in Fig. 5 when the
sponse becomes more accurate when the response is dominated balanced.

by the input characteristics, which are accurately captured by

the closed-form solution. Thus, an argument can be made theiking the order of the numerator eight. When the tree is bal-
the time domain response calculated using the second-ordera@ficed, an exact calculation of the transfer function illustrates
proximation introduced here is largest for a step input (whighat the eight finite zeros of the transfer function coincide with
has a zero rise time). eight of the poles. These eight poles and zeros cancel, leaving
the transfer function at the sinks only of order six with no fi-
nite zeros. To better interpret this behavior, note that nodes 2
A balanced tree is a tree where the impedances ofth€’ and 3 can be shunted when the tree shown in Fig. 5 is balanced
sections that constitute each level are equal, making the patlie to symmetry without affecting the response at any node of
to all the sinks identical. For example, the tree shown in Fig.tBe tree. Also, nodes 4, 5, 6, and 7 can be shunted due to sym-
is balanced if theRLC' sections, 2 and 3, which constitute thenetry. Thus, the?LC tree shown in Fig. 5 is equivalent to the
second level of the tree are identical and theC sections, 4, ladder circuit shown in Fig. 10 after calculating the equivalent
5, 6, and 7, which constitute the third level are identical. If thenpedance of the parallét LC sections. This ladder circuit has
tree in Fig. 5 is not balanced, the transfer function at any of tlagransfer function of order six at the output with no finite zeros.
sinks (nodes 4, 5, 6, or 7) is of order 14 since the tree has selate that if the tree has a fourth level, the eigtt C sections
capacitors and seven inductors. The transfer function at anyobfthat level correspond to onBLC' section in the equivalent
the sinks has six of the 14 zeros (the total number of zeroslaslder circuit. In the fifth level, 1&RLC sections correspond
always equal to the total number of poles) at infinity since thete one RLC section in the equivalent ladder circuit. Thus, the
are three shunt capacitors and three series inductors from tlaenber of poles of the transfer function at the sinks of a bal-
input to each sink. The remaining eight zeros are finite zeragcedRLC tree increases linearly with the number of levels in

B. Effect of Unbalanced Impedances within fReC Tree
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Fig. 11. AS/X simulations as compared to (31) for several valu€s ®he Elmore (Wyatt) solution is also shown. Results are for node 7 for the circuit shown
in Fig. 5.

the tree due to pole-zero cancellation. Note that no finite zergeeater the asymmetry of the tree. The error in the propagation
are added by increasing the number of levels. For an unbalandethy can reach 20% for highly asymmetric trees. The error in
RLC tree with a binary branching factor, the number of polete waveform shape is even higher as compared to AS/X simu-
and finite zeros at the sinks increases exponentially with tketions. These characteristics, however, are also typical for the
number of levels in the tree. The second-order approximati&@more (Wyatt) approximation foRC' trees.

used here has two poles and no finite zeros and more accurately

approximates the transfer function of a balanédd” tree than
that of an unbalanced tree.

The closed-form solution is compared to AS/X [46] simula- An RLC tree with a binary branching factor andevels has
tions of the tree shown in Fig. 5 at output node 7. The simula? —1 branches. As shown in Section V-B, the tree is equivalent
tions are shown in Fig. 11 for a balanced tree with several valuesa ladder circuit with nRLC sections if the tree is balanced
of {7 (the equivalent damping factor at node 7) and a step inpiiie to pole-zero cancellation. The second-order approximation
which represents the highest error as discussed in subsectiomsAnore accurate for balanced trees because of this exponential
The Elmore (Wyatt) solution is also shown for comparison. Nof®le-zero cancellation. A tree with a general branching faBtor
the high accuracy that the solution exhibits as compared to @wedn levels hag B” — 1)/(B — 1) branches. However, if the
AS/X simulations for the case of a balanced tree. The error in ttree is balanced, the tree is again equivalent to a ladder circuit
propagation delay is less than 4% for this balanced tree exampiéth » RLC sections. Thus, a higher number of zeros are can-
The accuracy of the solution introduced here deteriorates as tieéed by poles by increasing the branching factor of a balanced
tree becomes more asymmetric. To quantify the error betweese while keeping the number of sinks constant. For example,
the closed-form solution introduced here and AS/X simulations,balanced tree with a binary branching factor driving 16 sinks
simulations and analytic solutions of several asymmetric treleas five levels and is equivalent to a five-section ladder circuit. If
are shown in Fig. 12 The paramegaymis introduced to quan- the same 16 sinks are driven by a balanced tree with a branching
tify the relative asymmetry of aR LC tree. For example, when factor equal to 16, the tree has only two levels and is equivalent
asymis equal to two, the impedance of the left branch is always a two-section ladder circuit. Thus, the second-order approxi-
twice the impedance of the right branch. The higagym the mation more accurately describesi@hC tree with a branching

C. Effect of the Branching Factor for Balanced Trees
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Fig. 12. AS/X simulations as compared to (31) for several asymmetric trees. Results are for node 7 for the circuit shown in Fig. 5.

factor equal to 16. AS/X simulations and the closed-form solaH, andC = 1 pF. All of the RLC sections in the tree with a
tion from (31) with a step input for the response at the sinks bfanching factor of 16 haB = 25 2, L = 5 nH, andC = 1 pF.

both trees are shown in Fig. 13. In this example, all offlle”  Note that the second-order approximation is less accurate in the
sections in the binary branching tree Was= 12.5 2,I. = 5 case of a tree with a binary branching factor.
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Fig. 14. AS/X simulations as compared to (31); for several balanced trees with different depths.
D. Effect of the Depth of the Tree tree increases. Note also that for a single line, the depth repre-

sents the number of sections of the line.

The depth of a tree can be characterized by the number of .
levels n of the tree. The accuracy of the solution decreasestasEffect of the Node Position
the number of levels in the tree increases since the order of th&he error exhibited by the second-order approximation in-
transfer function at the sinks increases. The increased error dueases as the position of the node at which the response is eval-
to increasing the depth of the tree can be best observed faraaed moves from the sinks toward the source. This behavior is
balanced tree since the error due to the unbalance overridesdbe to the extra finite zeros in the transfer function since there
error due to the depth in an unbalanced tree. AS/X simulatioase less capacitors and inductors in the path from the input to the
are compared to (31) in Fig. 14 for balanced trees with a difiode at which the response is evaluated. Again, this effect is best
ferent number of levels. Note that the error between AS/X amtbserved for a balanced tree. AS/X simulations are compared to
the closed-form solution increases as the number of levels of {84) in Fig. 15 at several positions of the five-level binary bal-
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Fig. 15. AS/X simulations as compared to (31) for a binary balanced tree for nodes at different levels within the tree.

anced tree described in Section V-C. Note that the error betwe3 '
AS/X and the closed-form solution is least at the sinks which it _ |
typically the location of greatest interest.

25 -

F. Effect of Second-Order Oscillations

As anRLC tree becomes larger and as the number of level
increase, high-frequency oscillations are superimposed over = [ £
primary response. For example, in Fig. 16, the second-ordera ; | i
proximation (31) of the response for a lar§&.C tree is illus- 30% Error = 1.2%
trated. Note the overshoots. AS/X simulations are also shown 05
Fig. 16 and the actual signal oscillates around the second-ord | &/ . . ' . . . . .
approximation with a higher frequency as compared to the fre s 100 150 200 200 3000 3500 4000 450 5000
guency of the primary oscillations. The oscillations around the Time (ps)
low-frequency response characterized by (31) are second-order _ _
oscillations. The second-order approximation introduced hdrd 16- AS/Xsimulations as compared to (31) for a lafgeC” tree.
cannot accurately model the higher frequency harmonics of the
time domain response since it only has two poles. However, the
second-order approximation can be used effectively to estimatéd general method to characterize the response of a linear
the macro features of the response such as the propagation delagmonotone system that is equivalent to the EImore delay is
the rise time, and the primary overshoots. If the fine details pfesented. The generated delay expressions foRafy tree
the response are of interest, higher-order delay models carhlage the same accuracy characteristics as the Elmore (Wyatt)
used such as AWE [33]-[35] at the expense of additional prapproximation forRC trees. Simple analytical expressions of
cessing time, numerical issues, and stability issues. Note te@nals in anRLC tree are provided for the 50% delay, the rise
the responses in the simulations presented in this section alswe, overshoots, and settling time. These expressions consider
exhibit second-order oscillations. The second-order approxintath monotone and nonmonotone signal responses. The delay
tion successfully characterizes the dominant low-frequency expressions are continuous and hence are useful for opti-
sponse. mization and synthesis in VLSI-based design methodologies.

VI. CONCLUSION
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The second-order approximation introduced here is always float Cal_Cap_Loads (section w)

stable and can be used with arbitrary inputs. Furthermore, the
second-order approximation is computationally efficient since
the number of multiplication operations required to evaluate
the approximation at all of the nodes of RALC tree is linearly
proportional to the number of branches in the tree.

APPENDIX
COMPLEXITY OF THE SECOND-ORDER APPROXIMATION

Referring to (13), (29), and (30), the second-order approxi-
mate transfer function at nodds

gi(s) = (49)

s 4 s+1

Z CrLiy,
n

Z Cr Ry,
n

Thus, evaluating this transfer function for all of the nodes of an
RLC tree requires the calculation of the following two summa-
tions:

Trei = Z Cr iy (50)
%

Tici =Y CrLa (51)
k

for all of the nodes of th&2.C tree. These two summations carfig- 18-

be rewritten as

Trei = Z Cri By, (52)
k

Fig. 17.

if(right(w)=0 and left(w)=0)
return w.C;

/*if w is a leaf */

if(right(w)=0)
Crg=Cal_Cap_Loads(right(w));
else
Crr=0; /* No right branch is driven by w */
if(left(w)=0)
Cq=Cal_Cap_Loads(left(w));
else

Cr=0; /* No left branch is driven by w */

W.CFCTR+CTL;

return w.Cr;

Pseudocode for calculating the total load capacitance at each section.

Cal_Summations(section w, float Treprevs float Ticprey)

{
TRC=Tchrev+ wR*w.Cr;
TLC‘_‘Tchrev+W~L*W~CT;

f(right{w)=0)

Cal_ Summations (right{w),Trc,T1r0);
if(left(w)=0)

Cal_ Summations (left(w),Trc,Tie);

}

Pseudocode for calculating the delays at the sinks &f/afi tree.

general tree can be transformed into a binary tree by inserting
wires with zero impedances [27], [28].
The second step is to calculate and store the summations in

(52) and (53) at the nodes of the tree. The function performing

Tici =Y Craly (53)
k

where the summation indéxoperates over all of th&1.C sec-
tions that belong to the path from the input to nade?;, and
L is the resistance and inductance of sectiorCr;, is the
total load capacitance seen By andL ;. For example, in Fig.
5Trcr = R1(01+02+' . '+O7)+R6(03+06+O7)+R7O7.

this task is described in Fig. 18. The function is initially called
by Cal_Summatior(s; ,0,0). w.R andw.L are the resistance
and inductance of sectiom, respectively. The computational
time required to calculate the summations is proportional to the
number of RLC' sections in the treen. The total number of
multiplications required to evaluate the second-order approxi-
mation at all of the nodes of aRLC tree is2m. Alternatively,

the number of multiplications is equal to the order of the char-

This form of expressing the summations is convenient sincedigteristic equation describing tifeL.C' tree since the order of

has recursive properties [29], [48].

an RLC tree withm RLC sections i22m (eachRLC section

The summations in (52) and (53) of a tree rooted at sectibas an inductor and a capacitor).

wl are calculated in two steps. The first step is to calculate the

total load capacitance seen by each section. Pseudocode that

performs this task is described in Fig. 17.

The function is initially called by Cal_Cap_Lo&ds ) and
recursively calculates the capacitive load at each sectaf.
is the capacitance of the sectian The functions, left(w) and
right(w), return the left and right sections driven {y respec-
tively. If no left (right) section is driven byw, left(w) = 0
(right(w) = 0). If w is a leaf, leffw) = 0 and rightw)
0. The time required to calculate the total capacitive loads is[4]
proportional to the number aRLC' sections in the treen,
and requires no multiplication operations. Note that a binary[5]
branching factor is assumed without loss of generality since any

(1]
(2]
(3]
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