The Rochester Cube and Other 3-D Circuits for Clock and Power Delivery

> Prof. Eby G. Friedman University of Rochester

> www.ece.rochester.edu/~friedman

November 22, 2009

3-D Architectures for Semiconductor Integration and Packaging

- Three-dimensional (3-D) integration
- Physical design issues in 3-D integration
- The Rochester cube
- 3-D power delivery
- 3-D logic on memory
- 3-D optical interconnect
- Conclusions

Presentation Outline

- Three-dimensional (3-D) integration
- Physical design issues in 3-D integration
- The Rochester cube
- 3-D power delivery
- 3-D logic on memory
- 3-D optical interconnect
- Conclusions

6

- Three-dimensional (3-D) integration
- Physical design issues in 3-D integration
- The Rochester cube
- 3-D power delivery
- 3-D logic on memory
- 3-D optical interconnect
- Conclusions

- Three-dimensional (3-D) integration
- Physical design issues in 3-D integration
- The Rochester cube
- 3-D power delivery
- 3-D logic on memory
- 3-D optical interconnect
- Conclusions

- Three-dimensional (3-D) integration
- Physical design issues in 3-D integration
- The Rochester cube
- 3-D power delivery
- 3-D logic on memory
- 3-D optical interconnect
- Conclusions

Effective Power Delivery Will be Essential

- All but one of the planes are located next to the P/G pads
 - TSVs convey current to other planes
- Decoupling capacitance can be placed within or on a nearby plane
- Multiple, distributed power supplies will be necessary
 - Due to thermal issues
 - Heterogeneous technologies
 - Lower power consumption

- Three-dimensional (3-D) integration
- Physical design issues in 3-D integration
- The Rochester cube
- 3-D power delivery
- 3-D logic on memory
- 3-D optical interconnect
- Conclusions

Tezzaron: 3-D Logic on Memory Multi-Project Wafer (MPW)

- Two logic layers
 - 130 nm process
 - Six metal levels per plane
 - Five metals for interconnect
 - Metal 6 for face-to-face bonding
 - 5 x 5 mm²
 - Wafer-to-wafer bonded
- One DRAM controller layer
 - ~ 800 I/O pads for communication with outside world
- Two layers DRAM cells
 - Proprietary technology
 - 1 Gbit data per plane
- Logic bonded to memory by die-to-wafer process

Next 3-D Test Circuit Projects Tezzaron Logic Planes

• 3-D free optical system

- VCSEL driver circuitry (transmitter)
- Transimpedance amplifier (receiver)
- Limiting amplifier (receiver)
 - Volt to volt converter
- Distributed pulse generation circuitry
- Injection locked clock multiplier

• 3-D microprocessor

- Bit-error-rate at different stages of pipeline
- Cross-plane thermal stressing

- Decap placement in 3-D stack
 Noise generating circuits
 - V_{dd} and G_{nd} noise detect circuits
- Thermal aware floorplanning
 Cross plane thermal sounding
 - Cross-plane thermal coupling
 - Heat generators
 - On-chip thermal sensors

Presentation Outline

- Three-dimensional (3-D) integration
- Physical design issues in 3-D integration
- The Rochester cube
- 3-D power delivery
- 3-D logic on memory
- 3-D optical interconnect
- Conclusions

- Three-dimensional (3-D) integration
- Physical design issues in 3-D integration
- The Rochester cube
- 3-D power delivery
- 3-D logic on memory
- 3-D optical interconnect
- Conclusions

Design Methodologies for Heterogeneous 3-D Integrated Systems

- Integrate processing and sensing within a multi-plane system
- Develop design methodologies to manage plane-to-plane interactions
 - Prevent processing planes from disturbing sensor planes
- Develop general purpose processing planes
 - Compatible with
 - Different types of sensors
 - Disparate communication schemes
- Manage heterogeneous data fusion

Conclusions

- Three-dimensional integration is a promising solution to expected limits of scaling
- Interplane through silicon vias (TSVs) are the key technology
- Advanced and novel 3-D architectures are now possible
- We've demonstrated a 3-D test circuit operating at 1.4 GHz
 - 3-D power delivery test circuit currently being fabricated
 - Multiple 3-D circuits currently being designed
 - More to come from many sources
- 3-D integration is a likely next step in the evolution of semiconductor technology

