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Abstract—A hybrid radix-4/radix-8 architecture targeted for high bit, p2 200 % (G)| D. Somasckhar and V. Visvanathan, 1S
general purpose, digital multipliers is presented as a compromise between bit*Hz Y |G B.S. Cherkauer and E. G. Fricdman, UR
the high speed of a radix-4 multiplier architecture and the low power 130 %
dissipation of a radix-8 multiplier architecture. In this hybrid radix- (B)
4/radix-8 multiplier architecture, the performance bottleneck of a radix-8 100 | “-_“
multiplier, the generation of three times the multiplicand for use in sl (F) |
generating the radix-8 partial product, is performed in parallel with (C), (E) 3((;) H
the reduction of the radix-4 partial products rather than serially, as in 0 Dy, i
a radix-8 multiplier. This hybrid radix-4/radix-8 multiplier architecture 1989 1990 1991 1992 1993 1994 1995
requires 13% less power for a 64x 64-b multiplier, and results in only Year

a 9% increase in delay, as compared with a radix-4 implementation.
When the voltage supply is scaled to equalize delay, the 6% 64-
b hybrid multiplier dissipates less power than either the radix-4 or
radix-8 multipliers. The hybrid radix-4/radix-8 architecture is therefore . . . o .
appropriate for those applications that must dissipate minimal power for partial product reduction, thereby simplifying the physical layout.
while operating at high speeds. Lu and Samueli were most concerned with throughput in the design of
the multiplier-accumulator described in [7], and thus they presented
a 13-stage, deeply pipelined 3212-b multiplier-accumulator which
used no encoding and was implemented with a quasi-domino dynamic
I. INTRODUCTION logic family. Somasekhar and Visvanathan were also concerned with

High speed digital multipliers are fundamental elements in signl® Nigh throughput required by many DSP applications, and in [8]
processing and arithmetic based systems. The higher bit widff}€Y Presented an 8-b, unencoded multiplier pipelined at each half-
required of modern multipliers provide the opportunity to explor@it Stage. The data point representing the multiplier described in
new architectures which would be impractical for smaller bit widtfiS Paper is a 64< 64-b hybrid radix-4/radix-8 multiplier with a
multiplication. While much previous work has concentrated on reduP@dda reduction tree [9]. As described in this brief, this multiplier
ing the delay of multipliers at the architectural level, very little efforfchiéves high power efficiency by operating the radix-4 encoding
has been spent on reducing the power dissipation of these multipli€fad reduction in parallel with the high speed addition required by
The power efficiency of multipliers has increased primarily due '€ radix-8 encoding. _ o _ _
improvements in technology, where power efficiency in a multiplier A hybrld Booth radix-4/radix-8 multiplier architecture is _pre_sen_ted_
is defined here as the inverse of the multiplier power factor, tij& this paper as a method to tradeoff speed and power dissipation in
power dissipated per Bit Hz [1]. two’s complement signed multipliers. The improved speed and power

The data in Fig. 1 describe the power factors for a number of recdligsipation (_:haracteristics of this_ new multiplier architectur_e are
implementations of digital multipliers. Sharne al. utilized Booth Ccompared with that of standard radix-4 and radix-8 based multipliers.
radix-4 encoding along with a reduction array of carry save addef3€ hybrid radix-4/radix-8 architecture presented in this paper is
(CSA's) generated by a recursive algorithm to produce the 16-b desgnl:_)ed in Sec_tlon Il. The c_lrcur[_ compqnents use_d to construct the
multiplier in [2]. In [3], Yano et al. introduced the complementary Multipliers are briefly summarized in Section Iil, while the speed and
pass transistor logic family (CPL) and implemented a1616-b ~POWer d|SS|pat|_on cha_racterlstl_cs of the three multlpller archltecture_s
multiplier in CPL which used no encoding but did use a Wallace tr&i€ compared in Section IV. Finally, some conclusions are drawn in
for partial product reduction. Nagamatstal. presented a 3% 32-b  Section V.
multiplier in which Booth radix-4 was used to generate the partial
products and a tree of 4 : 2 counters was used to reduce these partial 1I. HyYBRID RADIX-4/RADIX -8 MULTIPLIER ARCHITECTURE

products [4]. Moriet al. desigr_l_eq a 54 54-b multiplier similar in In order to perform high speed multiplication, an encoding scheme,
structure to that of [4], also utilizing Booth radlx-é_l a_md 4_: 2 counters,ch as that proposed by Booth [10], is often used. The objective of
[5]. In [6], Goto et al., presented a 54 54-b multiplier with Booth g4t encoding is to reduce the number of partial products which are
radix-4 partial product generation, but used a regularly structured trge. . o generate the complete product, and thereby decrease the
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Fig. 2. Hybrid radix-4/radix-8 multiplier architecture.

[10] with Wallace/Dadda [16], [17] partial product reduction, &o sum the partial products. A diagram of the hybrid radix-4/radix-8
very high speed multiplier architecture is possible. This multipliearchitecture is shown in Fig. 2.

architecture has therefore been chosen as a baseline for comparing tie delay analysis of the multiplier components demonstrates that
performance characteristics of the hybrid radix-4/radix-8 multipliehree reduction steps may take place during the generatighBof
architecture presented here. for both the 32x 32-b multiplier and the 64< 64-b multiplier. The

The process of multiplying two numbers} - B, requires the number of bitsn of multiplier A which are used for radix-8 encoding
generation of a set of partial products followed by the summatiqand hence the number of radix-8 and radix-4 partial products) may
of these partial products. In radix-4 encoding, all partial producte determined by minimizing the number of reduction stages, given
may be generated through simple shifts and negation. However, witlat the radix-8 partial products will not be available until after the
radix-8 encoding all partial product terms may be generated withird reduction stage, under the constraint thatrhod 3)= 0. The
simple shifts and negation with the exception #i8B. The 38  optimum value ofn is m = 18 for a 32x 32-b hybrid multiplier and
terms require an additional high speed adder. The delay overhéad: = 45 for a 64 x 64-b hybrid multiplier. Note that, consistent
of this additional adder stage is a major disadvantage of radix8th the 1-b overlap between adjacent bit fields in Booth encoding,
encoding. This increased delay overhead is addressed by the hybgte is a 1-b overlap between the bit fields 4futilized by the
radix-4/radix-8 architecture. radix-4 and the radix-8 encoders, and the constraininfod 3)= 0

The proposed hybrid radix-4/radix-8 multiplier architecture usesssures that all radix-8 encoders operate on full 4-b sets of data.

a combination of radix-4 and radix-8 encoding in order to mitigate For this 64x 64-b hybrid radix-4/radix-8 implementation, the nine
the delay penalty associated with the generatiobffor the radix- required reduction steps are as follow$:— 9 — 6 — (4 +15) —

8 architecture. In this manner the hybrid radix-4/radix-8 multipliet3 — 9 — 6 — 4 — 3 — 2. For comparison, a 64 64-b
combines the speed advantage of the radix-4 multiplier, by initiatimgdix-4 multiplier requires eight reduction steps, while a>6%64-b

the partial product reduction immediately after the radix-4 encodinadix-8 multiplier requires only seven reduction stages [13]. Note that
with the reduced power dissipation of the radix-8 multiplier, byy using the one’s complement plus the carry-in to form the two’s
reducing the overall number of partial products. complement, the number of bits at the start of the reduction process

In a radix-8 architecture, the multiplication process is seriallis 1 b greater than the number of partial products. This additional bit
dependent upon the time required to genesdie while 3B is being is the carry-in of the highest order partial product. Thus, the hybrid
generated by a high speed adder, no partial product reduction ceduction begins at 11 b although there are only ten partial products.
take place. This requirement to generd® leads to a significant ~ With a 32 x 32-b multiplier, seven steps are required for partial
delay penalty, on the order of 15-20%, as compared with a radip#oduct reduction in a hybrid radix-4/radix-8 implementation, as
architecture [13]. Alternatively, one could repres8it in partially compared with six steps for a radix-4 implementation and five steps
redundant form, reducing the time required to generafe but for a radix-8 implementation. The reduction steps for thex332-b
increasing the number of bits which need to be summed in thgbrid radix-4/radix-8 implementation s&e+ 6 — 4 — (3 +6) —
reduction tree [14]. 6 — 4 — 3 — 2.

In the hybrid radix-4/radix-8 architecture, a subset of the par- It is important to note that the delay penalty associated with the
tial products are generated using radix-4 modified Booth encodirgeneration of38 can not be entirely mitigated using this hybrid
Reduction begins on these radix-4 partial products whil¢ is approach. An additional delay penalty is incurred since all of the
simultaneously being generated by a high speed adder. Upon gepartial products are not immediately available when the reduction
ating 38, the remaining partial products are generated using radixpBocess is initiated. The more data available in parallel to the
encoding, and these partial products are subsequently included wittéduction tree, the more time efficient the reduction steps become.
the reduction tree. In this manner, some reduction of the partias the radix-8 partial products are not available until three reduction
products takes place while the high speed adder is generafing steps have been completed, fewer bits in parallel are available at
therefore, less of a delay penalty is incurred. Utilizing radix-&e start of the reduction process. Thus, the reduction process is not
encoding for many of the partial products reduces the total numbaes time efficient, requiring additional reduction steps as compared
of partial products, thereby reducing the power dissipation requiredth an architecture in which all of the partial products are available
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simultaneously when the reduction process begins. In essence, the
parallelism of the reduction tree is reduced in exchange for operating
the reduction tree in parallel with th#B adder. It should also be

TABLE |

TECHNOLOGY DEPENDENT DELAY OF MULTIPLIER
ARCHITECTURES (1.2 um, 5 V CMOS)
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noted that the relative delay between the reduction steps and the Radix4 | Hybrid | Radix-8
3B adder is logic family dependent, and significant changes in this Radix-4/8
relative delay may reduce the advantages of this hybrid structure. Partial Product Generation | 3.3 ns 3.3 ns 9.2 ns
64 x 64 bit Reduction 13.9 ns 16.3 ns 12.2 ns
Final High Spced Addition | 9.0ns 9.0 ns 9.0 ns
Ill. MuLTIPLIER COMPONENTS Total 262 s 28.6 s 304 ns
In this section the various functional components from which the Partial Product Generation | 3.3 ns 33ns 7.4 ns
multipliers are constructed are summarized. A detailed discussion 82 x 32 bit Reduction 10.4 ns 122ns 8.7ns
the circuits used to implement these multipliers is found in [9]. Final High Speed Addition | 7.9 ns 79 ns 79 ns
An encoding/decoding structure similar to that found in [12] is used Total 216ns | 234ns | 240ns
to perform the Booth encoding. The encoding circuitry generates the
control signals that select the correct partial product. Due to the high TABLE I

fanout at the output of these encoders, low power tapered buffers are NUMBER OF TRANSISTORS FOREACH MULTIPLIER IMPLEMENTATION

included in the sign_al pa_Lth [18]. TheS(_e control signals are pa_ssed to Bit Width | Radix4 | Hybrid Radix4/8 | Radix-8
the decoding/selection circuitry, which is a pass-gate style multiplexer

. o . . f 32x32 | 28522 25,678 23,542
with a conditional inversion to generate the one’s complement.

The full adder cell in the Wallace/Dadda reduction tree utilizes a 64x64 | 108,038 90,210 83,412
standard 28-transistor circuit implementation [19]. A multilevel carry
lookahead adder [11], [20] is used for the final high speed addition TABLE Il

and for the adder generatir®y? in the architectures using radix-  ToraL MuLTiPLIER Power DissipaTion. 5 V, 1.2 zm CMOS, 10 Mk

8 encoding. This adder architecture provides a satisfactory tradeoff —
. C Power Dissipation (mW)
between the propagation delay and the power dissipation [21], [22]. - - - - -
. Bits Radix-4 | Hybrid Radix-4/8 | Radix-8
The carry lookahead adder provides the necessary speed to generate PTeTT 001 559 13
3B_|n paral_lel with the three reduction steps, as required in the hybrid 232 26,1 23.9 225
radix-4/radix-8 architecture.
Transistors are sized considering both speed and power dissipation TABLE IV

characteristics. The transistors in the speed limiting paths, such as
those in the high speed adders and Booth decoders, are sized to

BREAKDOWN OF POWER DISSIPATION FOR A 64 x
64-b MuLTIPLIER. 5 V, 1.2 um CMOS, 10 MH

minimize delay. The transistors in the reduction tree are sized to e
reduce power dissipation Fower Dissipation (mW)
' Function Radix-4 Hybrid | Radix-8
Radix-4/8
V. PERFORMANCE Booth 40.8 39.0 38.6
: . S Encoding
The prpp_agatlon delay, transistor count, and power fjls_smatlon Wallace Troo 33.0 203 6.1
characteristics of the 3% 32-b and the 64x 64-b multipliers 3B Adder N CY) 22
are presented in this section. In Section IV-A, the delay of the Final Adder 44 44 44

proposed hybrid radix-4/radix-8 multiplier architecture is compared

with the delay of the radix-4 and radix-8 multiplier architectures. In . o . .
Section IV-B, the number of transistors required to implement eafihea requirements and power dissipation of the different architectures,

of the multipliers is presented. The power dissipation characteristi 3suming that swﬂchmg probabilities and sizing methodologles_ for
of the three architectures are compared in Section IV-C. The pOV\; p transistors are relatively constant across architectures, as is the
dissipation characteristics of the three architectures after the pov%?eg: thgjeb r_nultll pllers.t '{_he trafnsstt;‘r C}O;Jhm tfﬁr the ﬁﬁz'bt
supply voltages are scaled such that the same delay is achie@gg * ©4-D Impiementations of éach of e fhree arcnitectures
for each architecture are compared in Section IV-D. Note that tRee compared in Table Il. The radix-8 multipliers require the fewest

interconnect capacitance within the reduction tree is estimated ratHﬁpSlstors, while the _radlx-4 mu_ltlpllers require the most tra_n3|sto_rs.
than extracted from physical layout. The number of transistors required to implement the hybrid radix-

4/radix-8 multipliers fall between those of the radix-4 and radix-8
. multipliers.
A. Delay Analysis
The 32 32-b and 64x 64-b multipliers have been simulatedc, power Dissipation

in SPICE i 5V, 12m CMOS technology. Th . L .
n assuming a  L.2m process technology. 1he The average power dissipation of each circuit operating at 10

output of each circuit was loaded with the next circuit stage and, Whm—iz is determined from SPICE using the Kang power meter [23]

appropriate, with an estimated interconnect loading. The worst ca]j;(]ee ower dissipation of each component is averaged over 100
delay values, derived from SPICE, are shown in Table I. The radix- P P P 9

multiplier exhibits the least delay, and the radix-8 multiplier exhibitgcﬁ:&tvef(:gtrjr's-r:;:jneptu; Zgﬁ;grrfn\'\tlgrﬁ]g::uﬂ?g;iﬁ?g?goﬁgiﬁt;ﬂ”V(\)”r:h
the most delay. The delay of the hybrid radix-4/radix-8 multiplier y

falls between those of the radix-4 and radix-8 multipliers. vector Verilog-XL fu.ncgonal simulations Of the multl_pllers. .
The total power dissipated by each multiplier architecture is shown

in Table 1ll. The breakdown of power dissipation by functional block
for the 64 x 64-b multiplier is shown in Table IV.

The number of transistors required to implement a multiplier As described previously and shown in Tables Il and IV, a radix-8
architecture can provide a metric by which to judge the relativaultiplier dissipates less power than a radix-4 multiplier. The hybrid

B. Transistor Count
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TABLE V The
COMPARISON OF VOLTAGE SCALED PERFORMANCE

OF DIFFERENT MULTIPLIER ARCHITECTURES

Radix4 | oo di?—il/)l;fdix—S Radix-8

64 x 64-bit | Voo for 30.4 ns delay 453V 479V 500V 1]
Power dissipation 813 mW 78.8 mW 8§1.3 mW

32 x32bit | Voo for 24.0 ns delay 465V 491V 5.00V [2]
Power dissipation 22.5mwW 23.1 mW 24.0 mW

(3]
radix-4/radix-8 architecture dissipates power at a level between that
of the radix-4 and radix-8 multipliers. Thus, the hybrid radix-4/radix-

8 multiplier architecture is a useful architecture for those application
which require low power while operating at speeds greater than that
of a full radix-8 multiplier. Radix-8 multiplication is appropriate for
those ultra-low power systems in which added delay can be toleratet?!

D. Voltage Scaled Performance

\oltage scaling [24], reducing the power supply voltage, may bd®
applied to the radix-4 and hybrid multipliers to increase the delay
to that of the radix-8 multipliers, while simultaneously reducing the[7]
power dissipation of these multipliers. The delay of the multipliers is
proportional to the power suppl¥np, as shown in (1), wher&r
represents the average magnitude of the threshold voltages, and {RL
power dissipation is proportional to the square of the power supply
voltage, as shown in (2) [25]. [9]

Voo
Delayoc m (1) [10]
Poweroc (Vo). @) a1

The power dissipation of the radix-4, hybrid radix-4/radix-8, and
radix-8 multipliers after voltage scaling is compared in Table V. NotLelz]
that the scaled voltage levels are referenced to the radix-8 multiplier
operating at 5 V. For shorter bit widths such as exemplified by & 32 [13]
32-b multiplier, the delay and power dissipation overhead due to the
additional 3B adder and more complex encoding is not outweighe, 4]
by the reduction in delay and power dissipation associated with the
partial product summation. In this case, the simpler radix-4 encodpd]
multiplier provides the lowest power dissipation at a given delay.

However at higher bit widths, as exemplified by the>664-b mul-
tipliers, the radix-4 and radix-8 multipliers dissipate approximatelg/ls]
equivalent power at a given delay, whereas the hybrid radix-4/radix£7)
multiplier dissipates less power than either the radix-4 or the radix-8
multiplier. [18]

V. CONCLUSIONS

A hybrid radix-4/radix-8 multiplier architecture is presented in this[
paper that is both low power and high speed; this architecture provides
a tradeoff between the high speed of a radix-4 multiplier architectulé’]
and the low power dissipation of a radix-8 multiplier architecture[m]
In this hybrid radix-4/radix-8 multiplier architecture, the performance
bottleneck of a radix-8 multiplier (the generation3d$ for the radix-8
partial product generation) is performed in parallel with the reductidg2]
of the radix-4 partial products rather than serially, as in a radix-
8 multiplier. This strategy minimizes a portion of the delay penal%z_;]
incurred by the radix-8 multiplier in generatidd@. This hybrid radix-
4/radix-8 multiplier architecture dissipates 13% less power in x64
64-b multiplier with only a 9% increase in delay, as compared to (g4l
radix-4 implementation. When the supply voltage of the>6464-b 25]
multipliers is scaled such that all three architectures exhibit the same
delay, the hybrid radix-4/radix-8 multiplier dissipates the least power.
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hybrid radix-4/radix-8 architecture therefore provides a tradeoff

between high speed and low power for application to those systems
which require both high speed and low power signed multiplication.
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On Fast Running Max-Min Filtering X O C . Yo
Dinu Coltuc and loannis Pitas /f\ /
" O »

X1

Abstract—The problem of fast running max/min filters for arbitrary- ‘

size windows is addressed. The size of the filter window is increased to Xy ‘ O Vo
the least power of two greater than the given size and, the input sequence

is expanded. The running max/min computation uses a fast algorithm for MI

power of two window sizes. The computational complexity (comparisons X3 ‘ ‘ ‘ V3
per sample) of the proposed algorithm is very close tbog, n, wheren is

the size of the given window. A flexible hardware implementation forn.

ranging between two consecutive powers of two is discussed. Xa . . Q Ya

Index Terms—Algorithm optimization, fast algorithms, Max-Mix fil- ”ll
tering. . O y

O
— )
I. INTRODUCTION Xo ‘ . O Yo
Max/min filters are widely used in signal/image processing [2]-[4]. ”ll
Let {x:,i = 0,---, N} be a sequence of samples. The problem of . ‘ O

X7
running max/min filtering within a window of size is to determine
a sequencdy; }, wherey; is either the maximum or the minimum ‘

of n consecutive samples;, z;41, -, Z;+n—1. The computational X8 ‘ ‘ 8
complexity of max/min filters, i.e., the number of comparisons per ”ll

sample depends on, the size of the filter window. Whem is X9 ‘ . . Yo
a power of two, fast algorithms dbg, » comparisons per sample

complexity have been developed. They are based on a factorization / l Yio

of the computation by recursively dividing the sequence shmples *1o /\J / /O

in subsequences af/2 samples and so on until subsequences of size
2 are obtained. The requirement thatbe power of two is crucial
for assuring a perfect decompositionlisg, » steps. The flowchart
of such an algorithm is illustrated in Fig. 1 [1]. This brief deals with

max/min filters for arbitraryn and it proposes a method that take§he expansion of the entire input sequence can be further described
advantage of the fast power of two algorithms. by an integer mapping’, (i) = |i/n|2* + ¢(: mod n), where

|m]| denotes the greatest integer less than or equatiioy is

an increasing mapping, too. Thus, the expanded sequence of the

Our approach consists of: 1) the expansion of the input sequer!lrtlzgut {z:} is generated by the following procedure: each sample

and the elimination of the corresponding extra output values; 2) the placed in positiony(i); between samples,;) and zyi+1) @
. C number ofy(i + 1) — ¢(¢) — 1 dummy samples are inserted, and
computation of the running filter.

¥(0) dummy samples are inserted in front ©f o).
. A formal proof can be given for the validity of the expansion
A. Sequence Expansion procedure. Let/ be the setp(I). The setJ consists ofn values
Let k be the least integer greater than or equal tand the set differenc&™\.J consists ofy values. By construction, the
log, n, 2" <n < 2% Let p = 2" —n,0 < p<n. In order sample placed at position belongs to the initial sequence provided
to preserve the number of original samples within the”" size thatj mod 2* € J. Let us further consider a group 2f consecutive
sliding window, whenever a dummy samplg is inserted into samples of the expanded sequence ang le¢ the index of its first
the position:, then a dummy sample,,, has also to be inserted sample. Their indexes afet ¢, where0 < ¢ < 2”. (5 + ¢) mod 2k
into the position: + 2*. This insertion periodicity of the dummy takes distinct values for distinct values gfi.e., 0---,2* — 1. The
samples assures the expansion of the entire input sequence, @g®(;+¢) mod2*} is identical with the sef(. As required, exactly
the first group ofn samples has been expanded. lietbe any j, samples belong to the initial sequence ansamples are dummy
increasing mappingg: I — K, where! and K are the set of gpes. Sincg has been taken arbitrarily, the property holds for each
integers{0,1,---,»n — 1} and {0, 1, ---, 2" — 1}, respectively. The group of 2* consecutive samples.
expansion procedure for the first group »fsamples defines for  1pe expanded sequence is determined by the mappinghe
each positioni the new positions(¢). The increasing property of t5tal number of possible mappings §& + p)!/n!. For example,
¢ preserves the order of the samples in the expanded sequep@san ¢ is the identity application onl,¢(i) = i, groups ofp

Manuscript received January 13, 1995; revised June 2, 1995. This pagemmy samples are inserted between groups ofiginal samples:
was recommended by Associate Editor T. Hinamoto. Lo, T,y Tpe13 20,y Zp—1, Try Tnfly oy E2nely Zpy =y -
y D:_CsciléucBis with tt_h$4|;g‘s1ealgch Institute for Electrical Engineering, Splaiul The insertion of dummy samples should not alter the extreme

nirii , Bucuresti , Romania. o . .

I. Pitas is with the Department of Informatics, University of Thessaloniki\,/alues within any Wmd(_m_l'_ Thus, when .maXImum has to be computed,
Thessaloniki 540 06, Greece. a straightforward possibility is to consider all dummy samples equal

Publisher Item Identifier S 1057-7130(97)02741-9. to a small value (smaller than any signal sample). Alternatively, a

Fig. 1. Max/min filter flowchart for. = 2° window size.
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large value is used for minimum computation. Another possibility that
holds both for maximum and for minimum is to assign to each dummy
sample the value of an original sample within the same window.
The total number of samples of the expanded sequengigVg+1. Xo
The output sequence will havg(N) 4+ 1 results, which means
¢¥(N) — N extra output samples. Let us consider a window starting
with a dummy sample:;. When the window moves one position, X
z; is discarded and a new sample is added. Due to the mapping
periodicity, the new sample; ., is a dummy sample as well. Since b)
dummy samples do not influence the computation, the result for both
windows is identical. One out of the two samples has to be discarded, 0
e.g., the result produced within the window starting with a dummy
sample.

X3
B. Computation

Flowcharts composed of branches and circles, as the one shown in X4
Fig. 1, are a convenient mean to describe the fast max/min algorithms
for 2* size window filters. The flow of the operands is represented Xs
by branches. The circles represent places where the comparisons
take place. Their output is either the maximum (max filters) or the
minimum (min filters) between the two operands of the incoming
branches. For a filter window of sizZ¥, the flowchart is a cascade

of k stages (in Fig. 1§ = 3). Let stages be numbered from 1 (the x, /O =O Ve

input stage) tok (the output stage), then the comparisons ofithe // /3;\)//'

stage are comparisons between operands placed at distince 5 ‘O i
/U ’,‘ ' )7

The change of the order in which the stages are placed, yields to *7

a flowchart of an algorithm that performs the same filtering. Thus, 3

there arek! possible algorithms for a filter with a window of si2&. Xy
The computational complexity of the fast algorithm wher= 0

is k comparisons per sample. When- 0, the computational com-

plexity of the proposed algorithm increaseskte kp/n comparisons

per sample (onlyr results out ofr + p are preserved). However,

when dummy samples are inserted, the overall performance of the
y P ’ P Fr} 2. Max/min filter flowchart derivation for = 6 window size. Unnec-

a'go'“thm can be Improved s.lnce SOme comparisons Ca_n be ellmlnaé ry comparisons and operands are represented by filled circles and dashed
(either the result is known in advance, or the result is not usefubranches, respectively.

These comparisons are: comparisons between two dummy samples,

comparisons between a dummy sample and a signal sample and the .
final comparisons for the extra-output samples. Each input samfféch the stage where the distance between the operands to be

appears as operand in two comparisons whose results are furfffdppared together is less t_hah_s' The best performance will be
operands in four other comparisons and so on. When the sampl@Ggieved by using anﬂalg_orlthm where, in the stagéhe samples

a dummy one, the two corresponding comparisons are eliminaté@Perands) placed 3{ distance are compared togeEhe&(l for
Furthermore, when two dummy samples are operands of the saiffe NPUt stage and= & for the final one). Thus, the* dummies
comparison, they propagate a dummy result which normally sholill Propagate throughs stages. Besides the2” comparisons that
be an operand for two further comparisons, which, in this case, c&i €liminated due to dummy propagation through the flowchart,

be eliminated. Thus, five comparisons are eliminated instead of fg}° More comparisons for each inserted dummy sample are also

that are taken out when the dummies do not compare with ed@imninated in thes +1 stage (comparisons between a dummy and a
k — 1, the propagated dummies can reach

other. From a computational complexity point of view, it occurs th4€2! operand). Since <

the more dummy variables will compare to each other, the mop8ly the stage: — 2. No dummy appears as operand in stagand

computationally efficient the scheme will be. thus, the final comparison for each input dummy is eliminated (its

The lower bound of the computational complexity of the max/miffSult is discarded). The general case of arbityamserted dummy
filters depends om, the insertion mapping, and on the Se|ecteaamp!es |mmed|gt_ellyfollows by considering the binary representation
2* algorithm. First we analyze the case when two dummy sampl@b?: €+ P = X2 p;2’,p; = {0,1}. Whenp; =1, the group
have to be inserted. Le2’ be the distance of the samples thaPZ 2’ dummies propagates throughstages, if they are placed at
are compared together in the input stage. The two dummies will ~ distance. The distance requirement for fhelummies holds
propagate one dummy to the next stage, if and only if they a‘rfethe dummies are inserted in the places _that correspond _to the
placed at a distance equal 2. By the periodicity of the insertion Pit reversed values of0,---,p — 1}. If the binary répresentation
procedure we observe that, if the distance from which the operarRfss by USing k Dbits is si_1sx—2 - -s150,(s = X5, s,;2'),
are compared ig’ = 2"~ both dummies will propagate to the nextthen the bit-reversed of, denkottled bybr(s), is the binary number
stage. Similarly, wherz* dummy samples have to be inserted, affos1 =~ $k—28x-1, (br(s) = L2 sk-1-,2’). The closed form of
dummies will propagate to the second stage if they are inserted3@ mapping is
equal distances af*~*, provided that the operands placed24t* ‘ 1 by <
distance are compared in the first stage. Furthermore, the inserted o(1) =1 +Zf(j),f(j) =10 oftr(lé)mﬁspe 1
dummies will propagate from one stage to another, until they will J=0 '

0
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Fig. 3. Optimal algorithm performance: computational compleXity») comparisons per sample (plus sign) with respect to the windowrsizempared
with log, n (solid line) for n ranges [3-64].

The flowchart for a window of size 6 obtained by using the mapping  1----------mmmmmmmmmrr e ;
6, (1), is given in Fig. 2. The inserted dummies are denoted by 0. The | :
comparisons that are not performed are represented by filled circles |:
and dashed branches correspond to the unnecessary operands. I

The algorithm derived by using the mapping (1) and the specified
2" -size window scheme is optimal with respect to the computational '
complex?ty. With the abo_ve mentioned notgtions, its computationf_illg. 4. Pipeline architecture for max/min filters {5 < 8).
complexity C'(n) (comparisons per sample) is given by

= Each dummy sample; takes the value of its previous sampie

y J
22(3 +7 = k)p;2 The expanded sequence is given by
— _J=
C(n)—k n : @) To,20,T1,21, ", Tp—1,%p—1,Tp, Tp41
Whenp > 2572 (i.e, 27" <n < 2¥7' 4 2577) the fraction of S Bl T, En,

(2) is positive andC(n) < k (C(n) < [logan]). C(n) is very A hardware implementation for the flowchart of Fig. 1 was pro-

close tolog, n as can be seen in Fig. 3, whefén) (plus sign) and posed in [1]. The architecture shown in Fig. 4, is a pipeline. At

log, n are plotted forn = [3,---,64]. When no comparisons areeach clock cycle, a new sample is loaded into the pipeline from
eliminated, the proposed algorithms perfornkinkp/n comparisons  the input registed and a result is loaded into the output register

per sample. Regardless the insertion mapping and the'fastheme, Bjocks denoted by “C” compute the extreme value of the entries. A
this upper bound can be slightly improved o+ (k — 1)p/n, or  «C” plock is a multiplexer driven by a comparator. If the expanded

k + (k — 3)p/n, by elimination (for each inserted dummy sample}equence were already available, the pipeline would work without
of the final comparison or of the final plus the two comparisons gfy modification. However, extra hardware must expand the input

the first stage, respectively. sequence and discard certain output samples. Besides, a severe
degradation in performance appears since enlgsults are produced
lll. FLEXIBLE IMPLEMENTATION in n 4+ p clock cycles. We shall overcome these drawbacks by

The computational structures that yield to the lower ligitn) USING an appropriate timing command, such that no degradation in
are of interest for software implementations. When hardware implegrformance occurs. Our idea is to insert hidden clock cycles in
mentations have to be considered, the irregularity of these structuff# PiPeline, keeping the input/output synchronization. The problems
becomes a major drawback since, the position-dependent proces&gear when a dummy sample has to be inserted. Each dummy sample
of the samples results in hardware complexity. Besides, even {8r2 COPY of the previous sample. If the comparators are two times
slightly different window sizes, very different structures are needel@Ster, two cycles (instead of one) are computed, by processing the
In the sequel, we investigate a particular mapping more suitable Window starting with a true sample and the next one. This means that

hardware implementation. Let  — K be the mapping defined as the sampler; is loaded twice, is forwarded into the pipeline and only
one output sample is preserved. When no dummy sample is inserted,

#(1) = {2’ if i<p_ (3) the pipeline and the I/O registers have the same timing. Different
i+p otherwise. clock signals are necessary for the command of the pipeline registers
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-------------------- Multiple Transform Algorithms for Time-Varying
RCK H_FU_LFU \_ﬂm m Signal Representation
m ”””””” ]_|_|_[ """""" mj Victor DeBrunner, Wei Lou, and Jonathan Thripuraneni
I0CK _

To |
,,,,,,,,,,,,,,,,,, plo. TenT Abstract—We develop two new classes of multiple transform algo-
”””””””””””””””””””””””””””””””” TR0 rithms for representing time-varying signals. The algorithms use either
. . o . a gradient search or a recursive greedy search over partial sets of
Fig. 5. Clock signals: RCK pipeline clock, IOCK input/output clock. several different basis functions to capture different signal characteristics.

We see that our proposed algorithms require fewer than one-half the
) ) ~___computations required by the previous methods and represent the signal
R and for thel /O registers. The clock signals are shown in Fig. Swith less error.

The pipeline clock RCK) is a periodic signall’ = n1y whereT;
is the period of the 1/O clock. At each period there are- p clock
ticks, the first2p ticks being twice shorter than the next- p ones.
The processing is performed for different sizes of the window only I. INTRODUCTION
by changing the pipeline command clock.

Index Terms—Nonorthogonal signal representations, transform coding.

Transform-based analysis/synthesis models have been widely used
for nonstationary signal representation, including speech. A sinusoidal
model for speech signal representation was proposed in [1]. Other
o o _ i o transform-based models for speech signal representation can be seen

kMax/mln filters within any arbitrary» window size,2"~" <n < in [2] and [3]. It has been shown that the use of a partial set of
2", are computed by using fagt window size structures operatingpasis functions from one orthogonal set is insufficient to efficiently
on an expanded input sequence. Appropriate mappings assures @fifesent nonstationary signals in low rate coding applications [4].
each2” window contains exactly: original samples. The derived Therefore, multitransform algorithms have been introduced [5]—[8].
algorithms depend both on the expansion mapping and on the selegi@tbrent transforms have different properties which can effectively
fast power of two window size algorithm. For eaghthe existence match various aspects of the nonstationary signals. The algorithms
of a fast algorithm of very close tlg, n comparisons per sample gescribed in [5]-[8] are based on a cascade structure, where the
performance is proven. Wheti~—! <n < 2¥7" 42577 the algorithm  gominant projections (DP) are selected from one transform before
performs in less tharflog, n| comparisons per sample. Anothefexamining the second transform. The selection of the DP is critical.
algorithm suitable for a flexible hardware implementation for alyo methods exist: HPE (harmonics of pitch frequencies) [6] and SP
n, 287t <n < 2% is presented. (spectral peak) [8].

In this brief, we propose a new implementation structure, the
parallel structure, and a new DP strategy, the look-back recursive
residual projection (LBRRP) algorithm based on ideas in [9] and
[1] 1. Pitas, "Fast algorithms for running ordering and max/min calculation f10], to develop new multitransform algorithms. We show that the

IEEE Trans. Circuits Systvol. 36, pp. 795-804, 1989. ~ proposed parallel structure yields algorithms that require fewer com-
(2. Nakaga\;\_/a and /3: .Fiolse.”fte'd' "A note on tE‘E H’_Se of Igcatl r&m anflytations than those based on the cascade structure while improving

g)?t))(e(r)r? (f,r;_losn,aclr_]& I;g);oé 6%'20_%?5??33.5?3?5 rans. Syst. Man, representation performance. We also show that the LBRRP algorithms
[38] M. Werman and S. Peleg, "Min-max filters in texture analysiEEE have superior representation performance to the parallel structure

Trans. Pattern Anal. Machine Intellvol. PAMI-7, pp. 730-733, 1986. algorithms except when very low numbers of DP are selected.
[4] P. W. Verbeek, H. A. Vrooman, and L. J. Vliet, “Low-level image

processing by max-min filters Signal Processingvol. 15, no. 3, pp.

249-258, Oct. 1988. Il. EXISTING MULTITRANSFORM ALGORITHMS

IV. CONCLUDING REMARKS

REFERENCES

The Gauss-Seidel algorithm proposed in [6] and [7] assumes that
the time-varying signal is the superposition of a narrow-band signal
and a broad-band signal. A partial set of basis functions is first used
to model the narrow-band portion, and then a partial set of basis
functions from a different transform are used to represent the residual
created by removing the narrow-band model. The block algorithm
works in a cascade fashion, and the selections in each transform
domain are mutually dependent. This means that both the projection
values and the selected DP in each domain depend on each other.
An iterative technique to select the DP and their projections was
developed in [6] and [7]. The techniqgue assumes independence of
the two transform domains. The total represenation error is minimized
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Fig. 1. Parallel implementation structure.
using a Gauss-Seidel search technique. The DP selection process Newd, using
is the HPF method. N-1 N-1
The gradient method [8] uses the same processing scheme as (#a[1])* = (a[j]Xa[j])Q (©)]
the Gauss-Seidel method. However, the SP DP selection process is =0 j=0
used, and the convergence determination is different. After numerical ~-1 N-1
convergence is achieved, the smallest weights in both domains are z[i]Ea[t] = a[5](Xa[5])° (4)
discarded. Then, the remaining large weights are retained and used i=o §=0
as the initial values in a new numerical solution of the minimization N—1 N-1
problem. In [11], a slight modification of this procedure is used: (2[5 = (B51Xu[5])? (5)
not only are the smallest projections monitored for convergence, i=0 j=0
but also the smallest gradients are monitored. This method is more  N-! N1 .
computationally intense than the Gauss-Seidel method. w[i]ds[i] = BUIKD) (6)
=0 =0
N—1 N—1 N—1
lll. NEw MBR ALGORITHMS B [i)i[i] = a[j]Xa[j]{ Z
In the cascade structure, each transform operates on the residual :=o §=0 1=0
resulting from subtracting the selected DP in a previous transform N-1
stage from the input residual to that stage. Each of the selected . (Z Ta[m,j]Tb_l[m,l]) [i‘[l]f(b[l]}
DP are weighted appropriately by a nonzero gain which must be m=0
optimally determined. In contrast, our parallel implementation, shown (7)

in Fig. 1, loosens the tight interconnection betv_veen the Varioy, put the performance index in the convenient matrix form
transforms. We also find that the parallel structure is computationally

less burdensome. We use the two previously discussed DP selection J(a,f) =2’ + o diag(X3)a + 5 diag(X;)s
processes in our parallel structure multitransform algorithms. —2(X2) ' — 2(X2) B+ 20" R (8)
Also, we develop an alternative nongradient DP selection strate
the LBRRP [10], [16]. As it turns out, the LBRRP is closely relate
to the “matching pursuits” algorithm developed in [17]. However, Rap = diag(Xa)TaTb_l diag(Xb). 9)
the LBRRP may be slightly more efficient computationally,
residual error is always reduced at each iteration.

gxyheref(;b is the column vector of transform coefficients squared and

and t .
In\%/e have assumed the transform to be real-valued. We use a gradient
iterative search over and/# to minimize the energy of the residual

) error. In this case, the gradients are calculated using
A. Parallel Implementation Structure

_ _ _ . V.J =2 diag(X2)a — 2X; + 2R, (10)
Refer to Fig. 1. The weight estimates are found by minimizing the . . oo .
block mean square of the residual error. As in the cascade structure, Vi =2diag(X;)f — 2X; + 2R (11)
the performance index is the square residual error (SRE) The weight update equations are
J(a,8) = rr 1) a(n+1)=a(n) — %NVQJ (12)
B(n+1)=p(n) = 2uV5sJ. (13)

wherer = ¢ —&.,—2:. Each transform branch of the parallel structure . L ) . )
uses the original signal, while successive transforms in the casc&®¢h step in the minimization procedure involves moving the weight
structure use the residuals from the previous transform. Working wifgctorse and 5 along the gradient directions a distance controlled

the performance index (and assuming a block lengttVof by step sizegi., andpug,, respectively. The optimal step sizes are
t
v 2 oy = 2oV PO ) (14
e, B) = 3 (ali] = £ali] — 2 [i])’. @ (Vo ) Rar(Va, J)

i=0 and the step sizes for the are found by substitutingV, /).
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B. LBRRP IV. SIMULATION RESULTS SUMMARY

The processing of the LBRRP strategy is shown in Fig. 2. The The multitransform algorithms based on the above described struc-
LBRRP compares components from the various transform domaitoses and DP selection strategies are developed and tested. Several
at each iteration step. Initially, the two transformations are applied ¢onsonant-vowel-consonant (CVC) speech signals are examined. The
the input signal segment. The component with the largest projectigikHz-sampled speech signal was processed using a 32 ms trapezoidal
in each transform domain is selected and compared to the largest githdow (256 points wide with a flat center region of length 200
jections in the other transform domains. The overall largest projectigaints). Each segment of the windowed speech signal has total 20%
is removed, creating a residual signal. This residual is then projeci@gerlap. For the various speech segments we use the DCT and WHT
onto each transform domain, and again the largest projection frfansforms. By examining the error surface of the criterion function
among all transforms is removed, creating a new residual. Becaygghe converged-to-point, we make the following observations.
anly the largest project_ion fr_om among all transform domains s 1) For unvoiced sound, most optimal weights are around 1 in
removed_ at each iteration W|thout_ regard to future !teratlons, the value. Therefore, the assumption of domain independence is
LBRRP is a “greedy” search and is not globally optimal. Several reasonable.
stopping criteria can be used: mean square error, maximum deviatio ) For voiced and transition sounds, the optimal weights do
or the total number of selected projections (i.e., number of iterations not necessarily converge to 1 Tr;erefore the independence
of LBRRP). What distinguishes the LBRRP from the RRP developed S oo
in [9] and [10]? Because the selected DP come from nonorthogona assumption is violated for these signals. .
sets of basis functions, a basis function projection removed in a ) The LBRRP DP selection strategy has superior performance
previous iteration can “come back to life.” For instance, suppose When _compared to bOth the H.FP and M.SP' Even for the
that our search is the plane, and we have four basis functions. If the _transmon sound, the °F?“mf’" weights are sill close to 1. The
vertical component is removed followed by the selection and removal independence assumption is reasonable. ) )
of a nonhorizontal basis function, then a vertical portion of the new ) For a large number _(128 or more) of DP, the optlmgl weights
residual will exist. This phenomena is addressed in the “matching pur- a_re no longer appromm_ately 1 for_any of the DP selection strat_e-
suits” algorithm in [17]. The look-back portion of the LBRRP consists ~ 9i€s: However, the weight variation of the LBRRP strategy is
of monitoring projections of residuals onto any previously removed ~ the smallest among all observed strategies.
basis function. Any nonzero (or resuming) projection is removed Using different implementation structures with the same total
and added directly to the previously removed value. The LBRRRUmber of DP and different DP selection strategies, the performances
requires one N-point transform to find one DP (after the first DPYf the multitransform algorithms are evaluated using signal-to-noise
The transform of the new residual in one domain must be calculateadio and the average FLOPS (counted using MATILABper it-
while the other transform is known. The cascade and parallel structeration. The comparisons are shown in Table |. The total number
algorithms require 2 N-point transformations for each iteration, aredf DP is 16 and the final weights are chosen as the weights at
the number of DP found is not related to the number of iterationsthe 1000th iteration (except for LBRRP). The performances of the

Fig. 2. LBRRP DP selection.
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TABLE | TABLE IV
CoMPUTATIONAL COMPARISON OF IMPLEMENTATION STRUCTURE CoMPARISON OF DP SELECTION STRATEGIES (TRANSITION SOUND)
SNR {dB} Average FLOPS per iteration SNR (dB)
Structure MSP | HPF | RRP | LBRRP | MSP | HPF | RRP & LBRRP Number Multitransform Algorithms SBR. Algorithms
Parallel | Voiced 8.2 48 10.6 | 10.6 4.3%10° 1.5 % 108 of DP | Parallel Structure | Cascade Structure | Residual Projection
Unvoiced | 35 |25 |39 |39 43510 1.5+10° Selected | MSP | HPF |MSP| HPF |RRP| LBRRP |DCT| DWT
Transition | 5.7 4.5 94 94 4.3+ 10° 1.5 10° 4 - - - - - - 4.9 1.8
Cascade | Voiced 76 5.0 106 | 106 10 % 10° 1.5 10° 8 4.7 2.4 4.6 2.3 72 7.2 7.1 2.5
Unvoiced | 3.4 24 39 39 10 % 107 1.5 % 10° 16 5.7 4.5 5.6 44 94 94 9.2 3.6
Transition | 5.6 4.4 9.4 9.4 10 % 107 1.5 % 10° 32 7.1 5.1 7.0 5.2 11.6 11.8 11.1 5.5
64 10.0 7.9 9.7 7.3 133 16.2 141 9.2
TABLE I 128 10.8 10.3 10.5 10.0 22.0 25.1 20.8 16.1
CoMPARISON OF DP SELECTION STRATEGIES (VOICED SOUND)
SNR, (dB) . . .
the GHPF and MSP strategies using either cascade or parallel
Number Multitransform Algorithms SBR Algorithms structures.
of DP | Parallel Structure | Cascade Structure | Residual Projcction 3) For a |al’ge number of selected DP, the LBRRP performance
Selected | Msp | mpr | msp| ®PF | mRP| LsRrp | poT| DwWr is only slightly better when compared to the single transform
methods.
4 - - - - - - 49 24 4) For some specific signal segments, such as unvoiced segments,
8 . B - - - - 7.2 39 the MBR algorithms using the GHPF or MSP strategies and
6 02 8 6 50 . ] R either the cascade or parallel structures are superior to a single
transform method.
32 10.2 9.6 9.6 7.1 14.7 14.9 14.4 8.9
64 10.5 9.9 9.9 9.3 20.2 21.2 20.4 13.6
V. CONCLUSIONS
128 | 104 9.9 9.9 9.3 20.1 316 307 | 221 . ) )
The development of constrained LMS algorithms using a parallel
multitransform structure for time-varying signal representation is
TABLE 1lI given in this brief. This structure is compared to cascade struc-
COoMPARISON OF DP SELECTION STRATEGIES (UNVOICED SOUND) ture multitransform algorithms developed elsewhere. The LBRRP
strategy, similar to Mallat's “matching pursuits” algorithm, is also
NR (dB : . :
SNR (dB) developed. The LBRRP performance is shown to be superior (in
Number Multitransform Algorithms SBR Algorithms terms of performance and computational complexity) to either the
of DP | Parallel Structure | Cascade Structure | Residual Projection cascade or para”el structure algorlthms In most cases.
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1992. z(i+1, j+ 1) =Az(i, j+ 1)+ Asz(i+ 1, j)
+biu(s, g+ 1)+ bhui+1, )
y(i, j) = CTI(i’ 7) + du(z, j) 1

where (4, j) is ann x 1 local state vectoru(z, ) is a scalar
input, y(z, ) is a scalar output, and, Az, b1, b2, ¢, andd are

2-D Adaptive State-Space Filters Based on the
P P real matrices of appropriate dimensions. The transfer function of (1)

Fornasini-Marchesini Second Model

is given by
Takao Hinamoto, Akimitsu Doi, and Mitsuji Muneyasu i ) Y(z1, 22)
21, Z) = —/————=
T2 U(Z1 s ZQ)
- . =" (I, — 27" A — 277" As)
Abstract—Based on the Fornasini—-Marchesini second model, a tech- n 1 1 2 2
nique is developed for implementing two-dimensional (2-D) adaptive ~(21_1b1 + 22—152) +d 2

state-space filters. First, the relationship between the coefficient sensi-
tivities and the intermediate transfer functions is investigated for the whereU(z;, z,) andY (2, z,) denote the:-transforms of the input

Fornasini-Marchesini second model. A least mean square (LMS) adaptive . e
algorithm is then presented by using new systems that generate the and the output, respectively. Some sensitivity formulas for the LSS

gradient signals. Finally, a 2-D adaptive line enhancer is constructed by mModel (1) will be given to adapt the state-space parameters. These
using the 2-D adaptive state-space filter to illustrate the utility of the formulas require the definition of three sets of intermediate functions:

roposed technique.
prop q X(#, %)

Index Terms—Adaptive filter, Fornasini-Marchesini’'s second model, F(Zl’ Z2) = U(z1 z2)
LMS algorithm, 2-D system. ’ 1 1 1
=T, — 7 AL — 27 Ad)

. INTRODUCTION (1 btz ) 3
. .. . . . . G}j;(zla 22):Zk_1CT(In —21_1A1 —Z2_1A2)_1,
In order to achieve desired filtering performance, adaptive recursive h— 1o @

filters are preferred because of lower order filter structure compared

to that of adaptive transversal filters [1]-[4]. As an alternative to thignere X (21, ) stands for the-transform of the local state vector,
technique, adaptive state-variable filters by using a gradient-base 5)=GL(x, n)ex(#1, ), andex (21, 2), k = 1, 2 denote
algorithm have been proposed recently [5]. Due to the capability Qifgnal injection vectors at the inputs of the delay operatgrsl.,.
adapting arbitrary state-space filters, the designer can enjoy freedompafinition 1: Let Q be anm x n real matrix and letf(Q) be a

to explore the performance advantages of different structures [G}5ar complex function o, differentiable w.r.t. all the entries of
More recently, 2-D adaptive filters using the structure of 2-D adaptivg_ The sensitivity function off w.r.t. @ is then defined as
FIR filters [7]-[14], 2-D adaptive IIR filters [15], [16], and 2-D

adaptive state-space filters [17] have been studied with applications So = af

to image enhancement and noise reduction in an image. In [17], 2-D 9Q

adaptive state-space filters which rely on the LMS algorithm hayéth

been developed by using the Roesser local state-space (LSS) model. (S0 = 9f (5)
In this brief, based on the Fornasini-Marchesini second LSS model I

[18], a technique is developed for implementing 2-D adaptive stalghere ¢, denotes thgk, 1)th entry of the matrixQ.
space filters. The LMS algorithm is used to update the coefficientsTo obtain gradient signals, the derivatives of the output signal w.r.t.
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Yy .
Y (21, 2) =G(21, 2)U(%, 2) @) )
by,
Y (71, 2) 4 x(.j) Y4 y(i.) &ar
B ve— =X(Z1, Z2) (8) u(i,j) — Zl-l ‘:l((”)) _i)ﬁ > 3((11.-;)) >
Y 13 + ,
@:U(Zh %), k=12 ©) ;
ad
From (6) to (9) it is clear that the gradient signals needed to adapt A
the ¢ vector are available as the output state@, j), whereas the Ao
gradient signal for the scalar is the input signal(z, j). However, by (i) /
the gradient signals required to adapt e matrix andb, vector, Adsptive |
k = 1, 2 must be created by new systems with the intermediate Algorithm e(ij)
functions from the input to the states, equaldg(z1, 22), k =1, 2 A
of the original filter. The new systems are described by

Wi(i+1, j+1) = AT (i, j+ DWa(i, j+ 1)

. ) ) ) Fig. 1. Block diagram of 2-D adaptive state-space filters.
+A i+ 1, HWL(i+1, j)

i+ Da" (4, 41 10a ) . ,
. . +Tc(,l ?+ )z (l, ]‘+ ) (102) During adaption, the same data are used repeatedly. The indexes
Wolit+1, j+1) =A (5, j+ YWo (i, 5 + 1) (i, j) and(¢, ;') satisfy the condition that the sum dénd; (that of
+ AT (i+1, HW2(i+1, 5) ¢ andj') along each diagonal line is constant. There are six different
+e(i+1, ]‘)IT(Z' +1, ) (10b) cases for changing the indexes as given below.
w41, j+1) = AT (G, j+ Dos(i, j+1) For ¢ 4+ j an even number
+AL(i+1, Ho (i +1, 5) i'=i4+1, j=5-1, fi<M—1landj#0
+e(d, 5+ Vuld, j+1) (11a) =i+1, j =7y ifi<M-—1and;=0
vw(i+1, j+1)=A] (i, j+ )va(i, j +1) i =1, J=541, ifi=M-1.
. o . or an odd number
+e(i+ 1, j)uli+1, j) (11b) Y
where i'=i—1, j =j5+1, ifj<N-—1andi#0
g g o _ -
sG41,j+1) =Ai(i, j+ 1), j+ 1) i =1, 77 =341, ifyj<N-—-1landi=0
. N . =141, =7y if j=N-1.
+A(i+1, (i + 1, j) b= ) )
b (4, 5+ Du(, 5 +1) The instantaneous value of the squared error signal is usually
+h(i 41, Pu(i+1, 5) utilized to approximate the expected value in the LMS algorithm.

With such an approximation, we obtain
and the initial conditions of all the above systems are assumed to

g - = i P o . 0y(s, g
be ngl!. Here,A;f(z, J) andb. (i, ), k _ 1,'2‘are the estimates of p(7, 7) = p(i, §) + 2pei, §) y(' J). (13)
coefficient matricesAx and ;. at location (s, ), respectively, and ap(i, j)
are updated in the following manner.

From (13), adaption equations for the filter coefficients are obtained as

B. Adaptive Algorithm An(7', §) = Ak(i, 5) + 2pe(i, H)Wi(5, J)

A block diagram of a 2-D adaptive state-space filter is depicted k=1,2 (14)
in Fig. 1 where the state-space parameters now change with each bo(i' i) = b (i 1)+ 2pe(i. i .
location and, hence, are functions of locatienj). Suppose:(s, 7) k(i 77) =il ) + 2we(is j)on(is ),

andr(i, y) are stationary discrete stochastic processes. Let an error k=1,2 (15)
signale(z, §) be defined by the difference between a reference signal c(i'y ')y =¢(i, j) + 2pe(s, )=(i, 5) (16)
(7, j) and the filter outpuy(s, ). During adaption, the coefficients (i’ ') =d(i, j) + 2pe(i, j)u(i, j) 17)

of an adaptive filter are changed to minimize the mean-squared error

signal E[e2(i, 7)]. To find a minimum of the mean-squared errofyhere the gradient signals{s, j), W (i, j), andw (1, ), k = 1,

performance surface, the steepest descent algorithm can be empl@yage obtained from the new systems shown in (10) and (11). From

with the use of gradient signals. It is assumed that 2-D data arethé foregoing arguments, it is possible to implement 2-D adaptive

sizeM x N,ie, {(, )0 <1 <M -1,0< 5 < N -1} state-space filters.
Taking the 2-D spatial correlations of pixels in a heighborhood into

account, the idea of 2-D diagonal processing is useful. Combining

the steepest descent method with the diagonal scanning scheme, an

updating equation for any coefficiepiof the adaptive filter is written ~ A block diagram of the 2-D adaptive line enhancer is drawn in

IIl. | LLUSTRATIVE EXAMPLE

as Fig. 2 whered(z, j) is an original imagey(t, §) is an additive noise,
IE[e* (4, )] and (¢, j) is a reference signal specified bye, j) = d(¢, j) +
p(i'y 7)) =p(i, ) — n W’J; (12) w(4, j). The input signak(z, j) to the 2-D adaptive state-space filter

is formed by delaying the reference signal oy * + 25 ')/2 and is
wherep(i', j') is the updated coefficient at locati¢n, j) andp is  given byw(z, j) = [r(i —1, j) 4+ r(s, § —1)]/2. The delay is used as
a step-size parameter which controls convergence of the algorittardecorrelation operator to obtain the input signal from the reference
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(i)

V(i)

4

d(i.j) N -1 vGd | 2p Adaptive
3 @ vz filter

/

Fig. 2. 2-D adaptive line enhancer structure.

signal. This enables us to remove the effects of additive noise from
an image by making use of autocorrelations.

The original image of 100< 100 pixels with 256 gray levels is
shown in Fig. 3. The Gaussian noise of zero mean and variance 500 is
added to the original image to produce the degraded image in Fig. 4.

Let the order of the 2-D adaptive line enhancersbe= 4 and Fig. 3.

let the initial coefficient matrices be chosen to be a certain 2-D IIR
low-pass filter [19, p. 108] given as follows:
A1 (0, 0) =
0.057002 0.083792 0.404 317 —0.150120
—0.205230 0.334741 —0.138844 0.055 005
0.224 854 0.249 008 0.112 312 0.032 287
| 0.059384 0.333645 0.090 921 0.149 825

AQ(O, 0) =
0.501861 0.029451 —0.048577 0.125627
0.009376 0.459600 —0.133237 0.283 091

—0.018 777 0.294124 0.380790 —0.365214
|—0.132510 —0.326956 0.282 682 0.369630

b:1(0, 0) =

[-0.270682 0.184186 0.195692 0.500127]T
b2(0, 0) =

[0.076 862 0.186164 0.018185 —0.045435]T
¢(0,0) =

[0.409775 —0.105288 0.249 880 0.181697]T
d(0, 0) = 0.001924.

The step-size parameter was chosen to 1. 10~" by exper-
iments (trial and error). To evaluate the characteristics of the 2-D
adaptive line enhancer, we used a signal to noise ratio (SNR) defined

by

99 99
2.2 )
=N J=n

99 99

DD [y(ig) — A, 5)P

t=nj=n

SNR=10 log,,

(18)

The 2-D adaptive line enhancer was realized by the proposed
technique. Consequently, the initial SNR equal to 11.893756 was
changed to 15.602 459 &t= 30. Here,! stands for the number of
normalized iterations, i.el,= m/M N = m x 10~* wherem is the

number of iterations. The output image produced by the 2-D adaptig@ 5

line enhancer at =30 is shown in Fig. 5.
The 2-D adaptive state-space filter presented here was compared to

Original image.

Fig. 4.

¢

Result processed by the 2-D adaptive line enhancer.

the 2-D adaptive FIR filter reported in [7] with the order= 6 and yields higher SNR than the 2-D adaptive FIR filter presented in [7].
the step size parametgr= 1.2 x10~°. Applying the 2-D adaptive Notice that the number of the coefficients of the transfer function
FIR filter, the initial SNR equal to 11.943 223 became 15.453 219 af the adaptive state-space filter is equal to 29. Alternatively, the
{ = 30. In other words, the proposed 2-D adaptive state-space filsgtaptive FIR filter has 36 coefficients.
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IV. CONCLUSION Efficient Polyphase DFT Filter Banks with Fading Memory

Based on the Fornasini—-Marchesini second model, a technique has
been developed for implementing 2-D adaptive state-space filters.
This has been done by using the LMS algorithm. To obtain all the

gradients required for adapting a 2-D state-space filter, new systemz A . )

. - . . bstract—In this brief, new composite polyphase filter banks are
_related .to the intermediate funct_lons have been presented. F”—!a”y'p?&ented for the implementation of the recursive Fourier transformation
illustrative example has been given to demonstrate the effectivengfg some of its generalizations. These structures can be operated both
of the proposed technique. in sliding window and block recursive modes with a computational
complexity in the order of the fast algorithms. The parallelization applied
enables very high speed and also a considerably higher sampling rate.
Based on this structure almost all issues of the so-called transform-domain

Annarrdria R. Varkonyi-Kéczy
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phase m=0
N/2-point [ < '\—1 compen- 2-point
DFT . —— sation DFT |— m=N2
h — m=1
K F ;m;s:n- 2-point "
sation DFT | — m=N/241
Input \]\
N2-point 77 phase — m=N/2-1
DFT : KF compen-  |—| 2-point
TP sation DFT | — m=N-1 -1
. - To
Fig. 1. Polyphase decomposition f8f = N/2 andL = 2.
x(n) E:ﬂ l
r, Yy (n)
-1
r=r =12
Y, (n)

(b)

Fig. 3. 2-point DFT filter-bank versions. (a) Tree structure version. (b)
Resonator-based version.

x(n) n

1 One of the typical characterizations is thelomain transfer function

of the averager

11—27"
N1—z1" 2)
() This transfer function is present in every sliding DFT channel that

produces the linear average of the Idét (properly demodulated)
eiﬁ'put samples. A very similar characterization is valid for the DFT

Fig. 2. 2-point DFT structure versions. (a) Tree structure version. (b) R
onator-based version.

filter-bank
—N
This recursive FFT technique is well suited to system identification 1 1-= = J2r/N)m
i . . « o —1? m
problems where periodic, multifrequency (e.g., multisine) perturba- N 1—znzt

tion signals [10] are applied. If the actual frequency components m=0,1,.--, N—1, (3)

of the perturbation signal directly correspond to the discrete frgq,i-p operates as an “averager’ at theth frequency position.
guency locations of the FFT, then the systematic error of frequenGyis extension of the recursive DET to a fading memory version,
compo_nent measurements.can be av0|_ded. ) as it is motivated in [11] and [12], can be easily solved with the
Section Il presents the implementation of the radix-2 case fgpjication of recursive building blocks producing also certain poles
the recursive DFT while Section Ill is a generalization toward IRy e gyerall transfer function. Due to implementational reasons the
applications like recursive DFT with fading memory [11]. resonator-based approach is applied which proved to be advantageous
also for higher-order blocks. If in Fig. 3(b) the coefficients and
Il. THE BAsic BUILDING BLocks r1 are not fixed as 1/2 we can implement the transfer function of

In the radix-2 case a total decomposition results in 2-point DFT'#1€ channels:

In Fig. 2 two possible versions are presented. In case of complex Ho(z) = roz (1+27") 4)
inputs such blocks are required both for the real and for the imaginary ° 14 (ro —ri)z=' 4+ (ro + 71 —1)z—2’

parts. Fig. 2(a) shows the simplest tree-structure version which due to —rz7N (1= 27

B Wy H ” H _ti i Hl(Z): . (5)
its “pipelined” nature meets the requirements of real-time execution. T4 (ro—r)e 4 (ro+m —1)z—2

Fig. 2(b) presents the so-called resonator-based version [4], [5]_|_ ) . . . )
which can play an interesting role in the generalizations toward IIR he_ fading memory eff_ect des_crlbed n [1_1] and in [12] _W'_th an
applications. other interpretation, requires uniformly distributed poles within the
The decomposition described above can be directly utilized eVHHIt C|r_cle. T_he characterization of this modified DFT system can be
in the case of DFT filter-banks. The DFT filter-banks produce tHEven if (2) is replaced by
Fourier components instead of the Fourier coefficients. For many 1l—a 1—2" 6
applications this fact has real practical advantages. With a slightly N 1—az-N1—_ 21 (6)

different “phase compensatlon,” 1.€., with the proper combination Where the poles, which are théth roots ofa are responsible for the

the compl_ex demodulatlpn-modulatlon and the phase Compensa“f?i'a’ing memory effect. If we consider the behavior of the polyphase

the DFT fllt_er-bank version can also be generateq. For_ th'? case gl’l%ctures [13], it turns out that these poles can be generated for the

corresponding 2-point DFT filter-bank forms are given in Fig. 3. radix-2 case in such a way that the first stage of the overall structure
consisting of N/2 2-point DFT blocks is realized using blocks of

Ill. REcURSIVE DFT HLTER BANK WITH FADING MEMORY Fig. 3(b) with
As it is well known from the literature (see e.g., [1]) the averaging _ 1—a 7)
effect in (1) can have an interesting frequency-domain interpretation. 2

N 1
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The effects of these poles can be illustrated with the correspondiggntification problems where periodic, multifrequency perturbation
magnitude and phase characteristics. Fig. 4 presents the magnigfals [10] are applied or the Kalman filtering approach [12] is
behavior for different« > 0 values. From this figure it turns out ytjlized. In this brief the details are given only for the radix-2 case,

that in the case of synchronized sine-waves higher selectivity canigyever, the ideas are quite general, the extension to other cases is
achieved, i.e., this simple modification can really serve the multisiRgrajghtforward.

perturbation approaches. Fig. 5. shows the phase characteristics for
different ¢ values.

If not only the first stage of the radix-2 structure is replaced with REFERENCES
the block of Fig. 3(b), but also some others, further poles can be ) o - )
introduced. [1] L. R. Rabiner and B. GoldTheory and Application of Digital Signal
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Fig. 1. Composite output and sensitivity generation.

the generation of the filter output: one multiplication for each of
N + 1 degrees of freedom in the numerator of the filter's transfer
function, and one multiplication for each @f degrees of freedom

for the denominator. OnlyW additional multiplications are required

to obtain sensitivities that are not already generated in the process of
obtaining the filter output.

Note that this result gives only a lower bound on the implemen-
Abstract—The problem of implementing adaptive IR filters of mini-  tation complexity of Vth-order adaptive IIR filters. For a particular
mum complexity is considered. The complexity used here is the number realization, there is the possibility that the lower bound cannot be
of multiplications in the implementation of the structures generating both  achieved. Furthermore, we exclude algorithm complexity from the

the adaptive filter output and the sensitivities to be used in any gradient- ; - : L
based algorithm. This complexity is independent of the specific adaptive measure. To implement GN algorithms requires a significant number

algorithm used. It is established that the sensitivity generation requires a ©f additional multiplications, so that the complexity from signal
minimum of N additional states, whereN is the order of the filter. This ~generation may be small in comparison. However, all gradient descent
result is used to show a minimum complexity o3V 4 1 multiplications  based algorithms require the sensitivities, so our work establishes
for an order N filter. Principles to use in the construction of such lowest minimum complexity levels for this aspect of adaptive filter imple-
complexity implementations are provided, and examples of minimum mentation. Furthermore. when emploving the LMS alqorithm. the
complexity direct-form, cascade-form, and parallel-form adaptive IR S e . _p y g g '
filters are given. potential for complexity reduction is significant.

In addition to establishing the main result, we also motivate general

techniques for reducing the implementation complexity. We then

Implementations of Adaptive IIR Filters
with Lowest Complexity

Geoffrey A. Williamson

Index Terms—Adaptive filtering, adaptive IIR filters, sensitivity func-

tions.
indicate lowest complexity realizations for direct-form, cascade-form,
and parallel-form adaptive IIR filters.
. INTRODUCTION
For several realizations of adaptive IIR filters, most notably the Il. LowesT COMPLEXITY ADAPTIVE IIR FILTERS

cascade-and lattice-forms, computational complexity has been prohibgig. 1 shows the general form for the composite systems)
itively large. To implement gradient descent based algorithms suchgerating both the filter output (via subsystginand the sensitivi-
the least mean square (LMS) and the Gauss-Newton (GN) algorithfiss (via subsysten$) when the filter is parametrized via parameters

one must generate output sensitivity functions with respect to the ... 4,,. The structure off andS can be related: each sensitivity
adapted parameters, and these computations must be included in the ay

implementation complexity. For lattice-form adaptive IIR filters [1], 0.

[2], the computational burden of sensitivity generation is formidable, S ]

though complexity reduction from the original algorithm is possibl8'@y be generated by replicating i the filter structureg, and

[3]. Cascade-form adaptive IIR filters [4] also engender complicat&XCiting this replication with a signal taken frogh [2].

sensitivity generation, but reconfigurations of the cascaded filterV& Tely in the exposition on a feedback gain model (FGM)

structure can reduce the complexity of the sensitivity generati6fPresentation fos. A system representable by an FGM is one

[5]. The same holds true for adaptive FIR filters implemented #7 Which the adjustable parameters all appear as internal feedback

cascade-form [6]. gains. Mgst pf the usual (_jlrec_t-, parallel-, cascade-, and Iattlce_-form
These issues raise the question of what is the minimal level B@rametrlz_atlons of adaptive filters possess such a represeritétion.

computation, including that of sensitivity function generation, that &1 FGM with parameters, , ... ., a., the dependence on parameter

needed to implement aiVth-order adaptive IIR filter. We use as alS @ Shown in Fig. 2. The dimension bfappearing in the feedback

measure of complexity the total number of multiplications requirdfOcK of the figure indicates the number of times thagppears as a

to compute, at iteratiok, the adaptive filter output together with the9@in in the filter” The transfer functioné;, (=) have no dependence

sensitivities with respect to all adapted parameters. We demonst@eti» Put may depend om, £ # 1. This framework encompasses

in this brief that the minimal complexity in this sense 387 + 1 treatment of multi-input, multi-output systems, but in this brief we

multiplications. Of these2N + 1 correspond to multiplications in VieW « andy as scalar signals. _ o _
Bingulac et al. studied the generation of sensitivity functions

Manuscript received December 1, 1994; revised December 18, 1996. Thigh respect to parameters in a finite dimensional, linear, time-

paper was recommended by Associate Editor P. A. Regalia. invariant system [9]. They showed conditions under which sensitivity
The author is with the Department of Electrical and Computer Engi-

neering, lllinois Institute of Technology, Chicago, IL 60616 USA (e-mail: For an exception, see the lattice-form realization of [7].

gaw@ece.iit.edu). 2Typically, each parameter will appear only once. However, in IIR lattice
Publisher Item Identifier S 1057-7130(97)06031-X. models [8], the reflection coefficients appear twice.

1057-7130/97$10.00 1997 IEEE
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Fig. 2. Feedback gain model for parameier Fig. 3. Sensitivity generation for parameter

functions for all parameters in aNth-order, single input systeit
may be simultaneously generated by augmenting the system with Fi b; Fj
N additional states irS. Hence the composite syste(¥,S) has

dimension2 V. Below we show that when alV poles of the system

depend upon the adjustable parametdéfsis a lower bound on the Fi
number of additional states necessary to generate sensitivities for all
the parameters. Fig. 4. Filter with feedforward parametér.

Theorem 1: Let G be representable as an FGM all of whao¥e
poles depend upon the values of the parameters. Then to generate the
sensitivity functions for all parameters, one must augngemtith a  the systemS must have at leasV poles, and hencé’ states. [

systemS having at leastV states. Theorem 1 gives a lower bound on the additional states needed for
Proof: Let p be a pole of sensitivity generation. Note that it does not state that this lower bound
Y(2) is achievable, and there may be situations where the minimum number

z

of additional states that are required can exc&ed-urthermore, we
U(z) are here interested in tlowmplexityof the sensitivity generation, and

the « to y transfer function ofG, that is influenced by the value Not simply the dimensionality of the system.

of «. By assumptiong is representable in the form of Fig. 2. For Theorem 2:Letg be given by an FGM that can model an arbitrary

convenience of notation, we drop ti@lependence i, z; and Nth-order transfer function

a; as given in that figure. One may show that Y(2)
; U(=)
r = [I — aGgg]_ G21u (l) : i ini
. by choice of parameters , - - -, a.,. Then(G, §) requires a minimum
Yy = G11u —|— aG12 [I - aGgg] G21 u. (2)

of 3N 4+ 1 multiplications.
Proof: In order to set the N +1 degrees of freedom in aith-

Using results from [2], one may establish that h )
order transfer function, we require that the number of parameters

9y m satisfiesm > 2N + 1. Eache, necessitates a multiplication in
da the implementation of;. By Theorem 1,8 must have at leasiV
is generated as shown in Fig. 3. We see that poles. The minimal number of additional multiplications required to
9 implement these igV, yielding the total of3/N + 1 multiplications
9% _ Gio[l —aGxn]'x (3) as a minimum for(G, S). O
da . . We say thatG has lowest complexity if there is afi such that
= Gio[l —aGo] [l = aGs] " Goyu. 4) (G, S) contains only3N 4+ 1 multiplications, whereN is the order

of G and assuming that the poles @fall have a dependence on the
parameters. In such a cadgj, S) is termed a lowest complexity
Y (z) implementation. The following development establishes structural
U(z) requirements o for it to have lowest complexity.
First, we examine necessary conditions on the way feedforward
parameters entdy for it to have lowest complexity.
Lemma 1: Let G be an orderN filter having feedfoward pa-

As p is a pole of

depending ore, and eachG;, does not depend om, we see from
(2) thatp must be a pole off — aG22]"". Then from (4), we may
conclude that the transfer function generating

rametersb,,...,bx41, Whereb; is a feedforward parameter if the
dy dependence of onb; is representable as shown in Fig. 4. Then
da has lowest complexity only if for each=1,..., N +1, F contains

no multiplications and hence has no parametric dependence.

from ¢ must of necessity have appear with twice the multiplicit
! y have app i Proof: Suppose thatg, S) is a lowest complexity implementa-

't has in tion. Let (G, S) be the structure obtained by settihg= 1 for each
Y(Z). i in (G, S). SincegG retains N parameter dependent poleéshas N
U(=) multiplications. Thus,S has the same number of multiplications as
Therefore, S must containp with at least multiplicity one, to S, and therefore cannot depend ¢h ..., bx1}.
complement the occurrence pfin §. Since the above fact holds With reference to Fig. 4, we observe that the sensitivity function
true for all polesp:,---,px of for b; is Iz, so thatF; =; must be available frorfg, §) by virtue of
(G, S) being lowest complexity. Clearly; ; is not available inG
Y(z) unless /i = 1, in which caseF: has no parametric dependence.

U(z) Suppose instead thakis; is in S, implying that £§ has been
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Fig. 5. Filter structure for lowest complexity implementations. 0 /L o
&
implemented withinS. We reason that in this cagg cannot depend @)
on any parameters. First, if; depends on a feedforward parameter,
thenS has such a dependence, which is not possible. Second, suppose Fy
F3 depends on a parameter that determines a pole location. The
sensitivity with respect to that parameter will require replication of u
it i i . P R,
the pole that it influences, and will also be proportionabtoThese
two conditions together are incompatible wiff being in S: to
avoid duplication of multiplications (which would result in excess of
R . o o B By
N multiplications inS), the replication of the pole must occur within
the realization off; producing £ z;, which forces a multiplication /[\
by b; to occur inS. O v @ Y2
Remark 1: In most filter configurations, the only interestirfg
satisfying the requirements of Theorem 1f§ = 1. In that case, ()
Fig. 7. Structures without the lowest complexity property. (a) Feedforward
N+1 across pick-off point. (b) Feedback around pick-off point.
y(k) =Y biwi(k) + s (k), (5)
i=1

argue that the sensitivities with respectsg must be available as
wherey (k) does not depend on any of theparameters. In situations S, z;; as claimed. Letting/;; denote the transfer function between
were Fi # 1, it is always possible to modify the implementation toz; andy:, in Fig. 5, we see that the sensitivity gfwith respect to
incorporatel’ into F;, leaving the newF; in the modification equal a;; must includel;; as a factor. To avoid replication &, in S, one
to unity. Also, in most cases (k) = 0. must exploit the availability of;; in G, and this is possible only if
Theorem 3: If G is representable as shown in Fig. 5, th@ris  the sensitivity ofz;; with respect toa,; is available asS;; z;;. This
lowest complexity if and only if eact;; and F;; satisfy the follow- allows.S;;y;; to implement the sensitivity with respect gowith 7;;
ing conditions. EachB;; depends only on feedforward parametersappearing in the generation 9f;. O
is linear in those parameters, and contains no further multiplications.The question then arises as to whether structures other than that
Each F;; depends only on feedback parameters, assembled in tfd-ig. 5 have lowest complexity. Technically, the answer is yes. For
vector a;;, and has minimum complexity. Furthermore, there mugtstance, one possibility is the arrangement of Fig. 6, whérés
exist a minimum complexity implemention foF:; such that the a system of the form of Fig. 5 with the properties demanded by
sensitivity of z;; with respect toa;; is generated a$;; z;;. Theorem 3. The key property of Fig. 5 that is preserved in this
Proof: First we address sufficiency. As per Lemma 1, theariation is that the effects of a given set of feedback parameters
conditions on eaclB;; make available the sensitivities with respecare isolated in one signal available ¢ and that the sensitivities
to the feedforward parameters directly withis;, as for instance with respect to those parameters can be obtained from that signal
the z; values in (5), or from signals withil;; but without addi- in a lowest complexity fashion. For instance, in Fig. 6, the effects
tional multiplications. The sensitivities with respect to the feedbaak parameters in¥; are isolated iny;, : = 1,2, and the effects of
parameters irf;; may be constructed as; y.;, with the number of parameters if{ remain isolated from those i, due to the parallel
multiplications in.S;; equal to the dimension ad;;. This yields a construction.
lowest complexity implementation. Some structures that are not lowest complexity are shown in Fig. 7.
For necessity, we begin by noting that Lemma 1 establishes tlidgre, the feedforward connectidfy in Fig. 7(a) mixes the effects of
all feedforward parameters % must appear within thé;; transfer both /> and Fz in y., and the feedback connectidhy in Fig. 7(b)
functions in Fig. 5 and that the required conditions 8f) must be mixes i, F>, and f> in y;. Connections such as these in the
satisfied. So, eactt:; must depend only on feedback parametersattice filter of [1] and [2] prevent their being lowest complexity
If some F;; is not lowest complexity, then neither & We further implementations.
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Fig. 8. Filter with cascaded feedback section.
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Ill. CONSTRUCTING LOWEST COMPLEXITY |IMPLEMENTATIONS

In order to construct lowest complexity implementations, we must
first isolate the feedforward parameters in tBg transfer functions
of Fig. 5. This is in general simplest to do by letting eal) be a
tapped delay line of the form

> beg (6)

We then need to develop lowest complexity building blocks to One may construct a prototypical building blodk; exploiting
implement thefF;; in Fig. 5. For this purpose, we identify two keythese two features as follows. Let thg to y, transfer function of

Fig. 9. Direct-form Il filter,G andS portions.

principles. Fig. 8 be
Cascaded Feedback ParameteBuppose that parameterenters 1
G in the fashion shown in Fig. 8. Such a parameter appears within 1 _4ZN aéq__f. (20)
£=1

feedback that is in cascade with the remainder of #heto y, N ‘
transfer function. To relate Figs. 2 and 8, we hava = F, F,Fy, With respectto Fig. 8, let = a1, F1 =1, I, =1/ 7.1, aiq”',
G12 = F4F2, G21 = F3F2F1, anngg = .F3F2. Itis straightforward F3 = q_l, and F4 = 1. We then have

to show that Yo Iy ¢
go= —1L 7  m ey A T A
_ 14 aGa requiring N multiplications to implement. Fof = 2,---, N, we
Using (1) and (4), we have exploit the delay relationships and set
Ya G12Ga d &)
= —————Ugqy. 8 Ya = Ya — 3
aa (1 —|— aGQQ )2 ( ) aai (k) aal (k ? + 1)

Noting that in this situation,, G2 = Gi12G21, and taking into ) ) ) i
account (7), (8) becomes In the context of Fig. 5, withf;; given by (10), then the sensitivity

5 G of y with respect to the parameters In; is generated in the same
Yo _ L (9) way, but with the operator in (11) acting gy in Fig. 5, as discussed
9a  1+aGxn in the proof of Theorem 3.

Compare (3) to (9). In both we generate Thus, if eachf;; in Fig. 5 is of the form of (10), and each;; is
dy of the form (6), we then have a lowest complexity implementation.
da

from a signal obtained frorf passed through a transfer function, but IV. EXAmMPLES

in (9) this transfer function depends only upon the local dynamics Lowest complexity implementation of direct-form, cascade-form,
Gor = F3 Fy, while (3) depends as well of¥,; = FuF>, which and parallel-form are demonstrated below. As noted previously, the
includes a potentially complex terif.. Furthermore, the sensitivity lattice-form is not known to admit a lowest complexity implemen-
generation of (9) is accomplished by filtering the output. If the systetation. Other implementations can be checked for the possibility of
of Fig. 8 represents one of thé; blocks in Fig. 5, then this manner lowest complexity sensitivity generation by comparing them with the
of sensitivity generation satisfies one of the requirements of Theoréonm of Fig. 5.
3.

Delay: If for two parameters:; anda; we haver; (k) = z:(k — A. Direct-Form

A), then A direct-form Il implementation of av th-order IIR filter is shown

in Fig. 9. This filter is essentially the configuration of Fig. 5 with
only Fi; and Bi: as nonzero transfer functions, and with these
implemented as (10) and (6), respectively. The prototypical sensitivity
generation for the denominator (feedback) parameters is shown in

dy .. Iy
W(k)_aai(k A).

In S, we need implement only

9y Fig. 9. Note the total 08N 4 1 multiplications in(G, S).

da; The direct-form | implementation, which is that typically given in
and construct adaptive filtering texts, requires filtering of the inputs by the same

dy operator appearing in (11) in order to construct sensitivities for the

% numerator parameters. The total number of multiplications becomes

4N 4 2 (again exploiting delay relationships). By collapsing the
states of direct-form | into direct-form Il, we obtain linearity in
dy the numerator parameters, as required, and the consequent lowest
da; complexity property follows.

as a delayed version of
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Fig. 10. Cascade-form filterg-portion only.

U= ux q-! (75 -2 us

P — 1> ——'—g'l—_z T — — —*
1-ang~T-a12q72 1—a2q~"'—a2q 1
by + biag ! ] I bor + baaq™! I
Yy=un A Y2 A Y3
\L/ U -
Fig. 11. Tapped cascade-form filter.
Noting that
ai2 ay
Oaiz
W a1 is obtained from
0
Uj Ui+l aay
o -1 ~1 1
1 1 via the delay relationship, we see that sensitivity generation for this

oy 5 section requires two multiplications. The same is true for the other
Bbi B_b% (N/2) — 1 sections, for a total ofV. With the tapped delay line
implemented at the end of the cascade, its parameters enter linearly,
so no additional multiplications are need to yield those sensitivities.
The total of the multiplications comes $aV + 1, indicating that this

is a lowest complexity adaptive IIR filter structure.

bi1 bio

Yi Yi+1

& &, C. Parallel-Form
:1:+ A lowest complexity parallel-form realization may be readily

constructed from a parallel combination of lowest complexity direct-
form Il implementations of second-order sections. With respect
g~ ! to Fig. 5, we would implementt;; as (10) with N = 2, and
i) Bix = bio + biig! 4 bi2g™? and Bix = big™" + biag™” for
5&% i=2,...,N/2. All F;; and B;; with j > 2 are set to zero, so we
G’P‘_ i1 have a basic parallel connection in Fig. 5. The output is of course
linear in the numerator parameters of all stages, so their sensitivities
1 are available inG. The sensitivities of the denominator parameters
for each parallel section are computed as for the direct-form II.
R Each section thus contributes four multiplies to implement, plus two
aiz multiplies for sensitivity generation, for a total of six. Multiply by
N/2 to sum the multiplies for all sections, and add one multiply
Fig. 12. Tapped cascadah section with sensitivitygeneration. for the one direct feedthrough parameter, for a total3df + 1
multiplications.

B. Cascade-Form
. . . _D. Tapped Cascade-Form
In [5], Rao proposed the cascade-form implementation of Fig. 10.

We can interpret this via Fig. 5 by noting that tfith second-order
section implementing two poles correspondsie, with B, N the
) -1
(N + 1)-order tapped delay and all othé; = 0. The sensitivities Fo (1) = m, =1
with respect to thes;; parameters are implemented in a fashion ale )= -2
similar to S in Fig. 9, with
dy ¢!
k)= k).
da;y 1—aing™! —ai2q? y(k)

A novel implementation structure having lowest complexity can
be developed from Fig. 5 as follows. Let

(12

= = 1=2,...
1—aj 9~ l—a;2q=2 ’ ’

and

Bi1(q_1) =bio + bi1q_1
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and assume thaB;; (¢~ ") = 0 for j > 1. The principles of Section [9] S. Bingulac, J. H. Chow, and J. R. Winkelman, “Simultaneous gen-
Il indicate that such a structure has lowest complexity. These choices eration of sensitivity functions—Transfer function matrix approach,”
interpret Fig. 5 as a tapped cascade of second-order sections,ga_}; Automatica vol. 24, pp. 239242, Feb. 1988.

[

. - . . ; G. A. Williamson and S. Zimmermann, “Globally convergent adaptive
shown in Fig. 11. It is shown in [10] that such a structure is ab lIR filters based on fixed pole locationdEEE Trans. Signal Processing

to represent an arbitrary strictly proper transfer function of order vol. 44, pp. 1418-1427, June 1996.
2M . A proper transfer function may be realized by including a tap
directly between: and y.

To implement theth section, consisting of;; and the subsequent
“tap” transfer functionB;1, in lowest complexity form, we apply the
concepts given in Section 3. In particular, the sensitivities for the L .
paramF()etergs iB;1 will be available |F:1 its tapped delay line, while the On the Common Mode_ _Rejec'Flon Ratio in Low Voltage
sensitivities for the parameters i, can be constructed as discussed Operational Amplifiers with _Complementary
below (10). One must be careful, however, to apply the filtering N-P Input Pairs
operation ofl /(1 — ai1g~" — ai2¢~ ) that is used in the sensitivity
generation only to the part of the outpytthat is influenced by the
parameters in the section. This is the reason why the signals from

the taps are summed from right to left in Fig. 11 (as is done for the apstract— ow voltage op amps with complementary N—P input differ-
outputs of B;; in Fig. 5). ential pairs are known to suffer from low common mode rejection ratio

The resulting structure showing both thith section itself and due to mismatch errors and the tail current switching between the N
also its associated sensitivity generations is given in Fig. 12. N pd P input stage. To understand the contribution of the systematic and

. - . . the random common mode gains to the overall common mode rejection
that the additional delays present #. in (12) do not modify ratio (CMRR) we studied three op amp topologies, which use N-P

this construction. Notice also that only two additional multipliesomplementary input differential pairs. A detailed small signal analysis
occur in the sensitivity generation, indicating the lowest complexitipr each of them has been performed to compare their systematic and
characteristic. random CMRR. The analysis shows that random CMRR caused by
mismatch does not depend on the topology, while the systematic CMRR
is topology dependent. It is also concluded that the CMRR of low voltage
op amps with N-P complementary input pairs will be ultimately limited
V.. CONCLUSION by the process mismatch and that the random CMRR will determine the

. . . . . _ overall CMRR.
We have examined in this brief the problem of implementing

adaptive IR filters with lowest complexity, as measured by the Index Terms—Common mode rejection ratio (CMRR), low voltage,
s - o&)eratlonal amplifier.

number of multiplications used to generate the filter output an

additionally the sensitivities with respect to all adapted parameters.

We have shown that for an ordé¥ filter, the minimum number . INTRODUCTION

of Sl.JC.h multiplications |53N_+ 1 Wwe outlln_ed some stra_teg|es for There is a strong demand for lowering the supply voltage of analog
obtaining a lowest complexity implementation, and applied these Seuits including op amps. To increase the signal to noise ratio of

direct-, cascade-, and parallel-form implementations. low voltage op amps, it is highly desirable to have a rail-to-rail input

voltage swing. N-P complementary pairs have been widely used in
the input stage of low voltage op amps to achieve a rail-to-rail input
voltage swing [1]-[8]. An advantage of using N-P complementary

[1] D. Parikh, N. Ahmed, and S. Stearns, “An adaptive lattice algorithm fdfifferential pairs is that the op amps can be implemented in a standard
recursive filters,"IEEE Trans. Acoust., Speech, Signal Processimg ~ digital process. Fig. 1 shows a typical structure of a low voltage

ASSP-28, pp. 110-111, Feb. 1980. op amp with N-P differential pairs. Using N—P complementary

(2] G. A. Williamson, C. R. Johnson Jr., and B. D. O. Anderson, “Locallynnt pairs will, however, degrade the common mode rejection ratio
robust identification of linear systems containing unknown gain eleme

with application to adapted IIR lattice model®\utomaticavol. 27, pp. MRR). _This occurs while the tail current switches between Fhe P

783-798, May 1991. and N pairs. A CMRR as low as 40-55 dB has been reported in [4],
[3] J. A. Rodriguez-Fonollosa and E. Masgrau, “Simplified gradient ca[6], and [7]. This brief presents a rigorous analysis of the CMRR of

culation in adaptive IIR lattice filters,JEEE Trans. Signal Processing |ow voltage op amps with N-P differential pairs. Three illustrative

vol. 39, pp. 1702-1705, July 1991. . . . o
[4] N. Nayeri and W. K. Jenkins, “Alternate realizations of adalotivetopologles have been considered here. In Section I, a derivation of

IIR filters and properties of their performance surfacéEEE Trans. the_ CMRR of the three op amp topologies with Complementary N-P
Circuits Syst. vol. 36, pp. 485-496, Apr. 1989. pairs is presented. In Section Ill, we compare the systematic and
[5] B. D. Rao, “Adaptive IIR filtering using cascade structures,"Hroc. random CMRR of the different topologies. The random CMRR is

27th Asilomar Conf. Signals, Syst., and Compblov. 1993, Pacific compared with the systematic CMRR in Section IV, to find which
Grove, CA, pp. 194-198.

[6] L. B. Jackson and S. L. Wood, “Linear prediction in cascade form,” Manuscript received October 31, 1995; revised April 5, 1996. This paper
IEEE Trans. Acoust., Speech, Signal Processired 26, pp. 518-528, was recommended by Associate Editor F. Larsen.
Dec. 1978. F. You was with the Department of Electrical Engineering, Texas A&M
[7] P. A. Regalia, “Stable and efficient lattice algorithms for adaptive lIRJniversity, College Station, TX 77843 USA. He is now with Bell Laboratories,
filtering,” IEEE Trans. Signal Processingol. 40, pp. 375-388, Feb. Lucent Technologies, Allentown, PA 18103 USA.
1992. S. H. K. Embabi and E. &ichez-Sinencio are with the Department of
[8] A. H. Gray Jr. and J. D. Markel, “Digital lattice and ladder filter Electrical Engineering, Texas A&M University, College Station, TX 77843
synthesis,”|IEEE Trans. Audio Electroacoustvol. 21, pp. 491-500, USA.
Dec. 1973. Publisher Item Identifier S 1057-7130(97)03654-9.
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Fig. 1. An N-P complementary input stage with common mode cancellation
proposed in [1]—Topology I. vdd—l Sy

of them determines the overall CMRR for each of the topologies My M, @ My N(';) é[‘lM’
under consideration. Finally, we verify the results of the analysis Vi :
02

with simulation and study the CMRR as a function of frequency.

Ix Ml My
Il. DERIVATION OF COMMON MODE @
GAIN OF THE Low VOLTAGE Op AmP T ® ’j
x i i
The use of N-P complementary input pairs to achieve rail to rail Vo Lo, Mg M
input swing may result in a variable transconductance of the input Vol Sy

stage—a property which severely affects the optimal compensation of

the op amp. In order to make the over@ll constant, the tail currents Fig. 3. The half of the amplifier of Fig. 1 used for small signal analysis.

1., and I., (in Fig. 1) are generated using a square-root current

source which maintains the sum of the square root of both currerXsT | |

constantv_+ﬁ_ constant) [1], [4]. If the input devices of the ' OP9'0%Y

differential pair operate in the weak inversion region, a current sourcel he circuit topology shown in Fig. 1 has a special circfty-M~)

which maintains the sum of the two tail currents constaniI., = Whose function is to cancel the common mode current resulting from

constant) [5], [6] is used to achieve a constant The tail currents the change of the tail current [1]. For the common mode gain analysis,

I., andI,, are, however, dependent on the common mode inpt¢ Will consider only one input pair as shown in Fig. 3. For the

voltage ¥..) as illustrated in Fig. 2. Both currents exhibit shargN-P complementary input amplifiers, the overall small signal gain is

changes in magnitude as the tail current switches between the N aiaply the summation of the gains of the two input pairs. The tail

the P pair. Although the,., may be constant, the CMRR is not.current/.;, in the figure is assumed to be generated by a constant-

Fig. 2 shows the simulation result of using a constgatinput stage g current biasing circuit. To maintain generality, we use a generic

with a square-root current source. A drop of at least 35 dB in thigodel for the tail current generatdr,, in the small signal analysis.

CMRR can be observed. For the N-channel input stagé/.asis Since the value of the tail current is dependent on the common mode

lowered toward;,, the NMOS which is acting as the current sourcéput voltagev..., we may use a voltage controlled current source

is pushed into triode region. This means that the resistance of fAesvew as its ac model. Note tha... is a function of the dc

current source decreases and that the common mode gain incregz®8mon mode input voltage. The finite output conductance ofthe

If V... is further lowered, the N-pair is completely turned off and@urrent source is also accounted for through the usg.ofs shown

it will not contribute to the overall common mode gain. A similain Fig. 4. The conductance seen through the sourc¥of and M1,

explanation applies for the P stage, and we will have an increasefnFig. 3 has been modeled gs. andg., as shown in Fig. 4. The

common mode gain when either current source operates in the trig@@ductance.. andg., are fairly low because the resistance of the

region. loads connected to nodesandé are very large. It can be shown that
In the following subsections, we present a detailed analysis of the andg., are in the order of. (1/r4.) and notg.. as expected

small signal differential and common mode gains of three op anf@ small load resistance [9].

topologies. All three have N—P complementary differential pairs. The Note that the following analyses are carried out for the range of

second stage is different for each topology. The first and the secdfie. Where the tail currents/(, andl...) are switching. It is in this

topology (Figs. 1 and 5) have been reported in [1]-[3], respectivekurrent transition range where the CMRR becomes minimum.

We are proposing a third topology (Fig. 6) which is basically an In the CMRR analysis the input voltages; andv.» are usually

improved version of the second topology shown in Fig. 5. For ea€ipressed as functions of the differential and common mode inputs:

circuit, we will derive the systematic CMRR, which is topology L

dependent, and the random CMRR, which is a function of the process Vi1 =Vem — 7 Ydm (1a)

mismatching. Uiz =Vem + 5 Vdm- (1b)
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Fig. 4. Low frequency small signal model of the circuit shown in Fig. 3.

To simplify the analytical computation, the small signal model of thethere

amplifier shown in Fig. 4 is used to derive the nodal equations at (goz + goz) Gime

nodesz andy. If the node voltages, andv, could be expressed Acms & Tt (9on + ) (5a)
in terms of the common mode gair{.) and the differential mode d g \Jow T Jola T §o8
gain (Aaw) as follows: an y
Acmr ~ me . 5b
Vg = Adm UVdm + Acmvcm (2) 4(ge.r —|— Golz _|_ 908) ( )

the CMRR can then be obtained by calculatint/Acm). Note  The first term of (4) will be referred to as Systematic Common Mode
that such a simplification in the small signal model will not affecGain (Acms), Since it is independent of the mismatching. The second
the accuracy of the CMRR analysis since the CMRR at output nodesm is a function of the mismatching and, hence, will be called
a or b is the same as the CMRR at nodesor y. This is due to the Random Common Mode GaimM{..). Now we can express
the fact that both differential and common mode voltage signals the CMRR in terms of the systematic and random common mode
nodesz (or y) will be amplified by the gain of the common gaterejection ratios which are given by

configuration of Mo (or Mi1). s g
m2 Ym4a

For the circuit topology in Fig. 1, the matching of the differential CMRR. = PR PR (6)
pairs and that of the current mirrors are crucial for the performance m (902 +gon)
of the amplifier. As an example to demonstrate how mismatching CMRR, =~ 2-‘7_’"2. (7)
affects the common mode gain, we only consider the mismatching €Gims
betweean (or My,) and M>. Hence, we can make the following The overall CMRR is given by
assumptions )
Im2 :2(1 + E)gmlm CMRR = 1 1 (8)
Go2 =20o1a CMRR. + CMRR."
gmiz = Gmiy B. Topology I
Gorz =YGoly To reduce the systematic common mode gain of Topology |, one
Gme = Gm7 can use the circuit topology in [2] and [3] which is illustrated in
1 Fig. 5. This will be discussed in Section lll. Following the same
2 9gms procedure used to analyze the circuit in Fig. 1, we obtained the
Jex = gey following systematic and random CMRR’s:
gos8 = go9. m m m
P CMRR, ~ —29m2 gms gme )
The mismatching in the output conductancélf, (or M.,) and M- Gins goo (gor + got)
is ignored because of its little significance on the analysis result. The CMRR, ~ 2gm2 ) (10)
factor ¢ may account for mismatching in the sizingfy, X, etc. €Gme

Based on (1), (2) and the assumptions above, the differential gain

(Aam) and common mode gaind(.,,) can be solved for by using C. Topology I

MAPLE [10]. By ignoring the second order terms in the numerator The systematic CMRR of the second topology can be further
and denominator the following expressions fd§.. and Ac.. can improved by introducing an extra gain stage, which for example

be obtained: can be implemented using a simple noninverting amplifier, with
Ay gm2 3) Miller compensation, as shown in Fig. 6. Care should be taken to
T 2(gew + goro + gos) insure that this added stage will not degrade the high frequency

Acm = Acms + Acmar (4) performance of the amplifier. It can be proven that the CMRR
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I My M, Fig. 7. A gengral amplifier model with tail current variation and common
mode cancellation.
\

ss=—1.5v
Fig. 5. An op amp with N—P complementary differential pairs [2], [3]_Assuming that there is mismatch) (in_the input (_jifferential pair
Topology 1I. [i.e., gm2 = gmi(1 + €)], the current in the two input transistors
could be expressed ds = GzVerm /2 aNdlz = G s e (1+ €)/2.
The difference between the currents of the two input transistors due
t0 Gusern €an be written asA i, = €Go.vem /2. A differential
input va,, Will otherwise generate the following current difference:
Alam = ¢gmvam, Whereg,, is the transconductance of the input pair.
Since the differential and common mode output voltages are given by
Ad g Rony and AL, Ry, respectively, we can derive the following
generic expression for the random CMRR:

Adm _ ng
Acm - EGms

which is the same as (7), (10), and (12). This simple analysis confirms
that the CMRR is topologies independent.

CMRR. =

IV. COMPARISON BETWEEN SYSTEMATIC
Fig. 6. A low voltage amplifier with systematic CMRR enhancement— CMRR AND RANDOM CMRR
Topology Il
It is interesting to note that both the systematic and the ran-

dom common mode rejection ratios are reciprocally proportional to
improves byA, as shown by the following equation: the common mode transconductanc®,(). To compare between
2Gm2 Gma Gme 11 CMRR. and CMRR, we first need to compare the magnitude of

Gre Goo (gor + gor ) a1 G With that of g.’s and g.,’s. Gy« IS the rate of change of.,

. . (or I.,) when!., and ., are switching. The expression 6f,,. is
The random CMRR, however, remains unchanged and is given bymax/(vdd — V..)a, Where/ .y is the maximum value of., (or
2gma (12) I.») and« is typically 0.5 or less (see Fig. 2). The typical value of
e go is in the order ofAl...x . Hence

% ~ ;
Yo - )\a(‘/dd _‘/55)

CMRR; = A,

CMRR, =~

IIl. CompARISON OF THECMRR OF THE THREE TOPOLOGIES

Although each of the topologies has a scheme for systematic com-
mon mode current cancellation, yet, the accuracy of the cancellatlof * = 0.0l andVaa = —V.. =15V a_mda =0.5, Gims/go = 67.
varies. In the first topology (Fig. 3), the common mode curtent G- andy,, are of comparable magnitudes. So, we may assume that
is supposed to be cancelle_d (_)ut throufih _Which is hal_f pf the Go < Gme < gom. (13)
common mode current;. This is only true if all ofl> is injected
into M,. Due to the finite conductance.§) of M;, I, will be Let us first ignore the mismatching. The minimum common mode
slightly less than/; /2. Thus the cancellation is not exact even if theejection is determined by the systematic common mode gain. Using
mirror transistorsM; and Me are perfectly matched. In the case othe inequality (13) we can determine the order of the CMRR
the second topology (Fig. 5), if we assume perfect matching betwefen all three topologies as shown in Table |I. For Topology |, the
M- and M., it can be easily seen that the common mode curfent CMRR. is in the order ofg2, /Gm.g. (25-35 dB), the CMRR of
will be exactly cancelled by the mirror dfi. A similar explanation the second topology is in the order @, /Gm.g2 (50-70 dB). The
can be given for Topology Ill. It is, hence, expected that the commahird topology may have a CMRRof the order of 70-95 dB. For
mode cancellation of Topologies Il and Il is more accurate than thattypical mismatching factore) less than 1% [11], the CMRRis
of Topology I. This implies that the systematic CMRR of Il and lliclose to 40—60 dB.
will be superior to that of | which is confirmed by the analytical For all three topologies, we now compare the CMRRith
expressions derived in Section Il and summarized in Table I. CMRR- to evaluate which of the two components limit the improve-

The similarity of CMRR of the three different topologies can bement of CMRR. The ratios of CMRRCMRR, for all topologies is
explained by using a more general amplifier model which is illustratedimmarized in Table I. For the first topology (Fig. 1), the ratio is less
in Fig. 7. In the figure, the blockls —1,” is an abstract model for the than unity, which implies that the overall CMRR will be determined
cancellation of the common mode current dueGta.. A common by the low systematic CMRR. In the case of the second topology,
mode input ¢.m) will generate a tail current., = Gm:vcm. the CMRR approaches the CMRRAs for the third topology, the
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TABLE |
COMPARISON OF RANDOM AND SysTemMATIC CMRR

CMRR / Topology [ Il 111
2gm2gm4 2gm2gm4gm6 2Abgm2gm4gm6
Gms(go2 + goa Gmsgos(go2 + 9o Gmegos (9o o
CMRR. grg (9o2 + 903) 77;39 6(go2 + gos) Ab;ge(gz-f—g 4)
O( m ~ 25-35 dB O( m 2) ~ 50-75 dB O(—’" = 70-95 dB
Gmsgo Gmsgo Gmsgo
29m2 29ma2 2g9m2
Gims Gims Gims
CMRR, 2 crms 9 €ames 5 eGms
O (—) =~ 40-60 dB O (—) =~ 40-60 dB O (—) =~ 40-60 dB
€ € €
CMRR ¢ €gm2 <1 €Ggmagmé > 1 Apcgmagme 51
CMRR, (go2 + go3) gos(go2 + god) gos(go2 + god)
93.7185 _:-—-—————(—: ————— ‘EH:D

CMRR (db)

4 IvLJ.I Ll.l.l.l.l.(.l.l.l Ll l.I.I.l,LJ_I_H.IAl.LLI.LI 1.0 l.ll.l.\J.; l.I.LI.lJ.I.H
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100.0 106

Frequency (Hz)

Fig. 8. CMRR versus frequency with and without mismatching.

systematic CMRR exceeds the random CMRR, hence, the ovemlld CMRR (lll). It is interesting to note that Topologies Il and Ill
CMRR will be determined by the CMRR have similar CMRR which is smaller than their systematic CMRR.
This confirms that the CMRR of these two topologies will be limited
by the random CMRR which is equal for all three topologies. As for
V. SIMULATION RESULTS the first amplifier, the CMRRis smaller than CMRR and therefore
To verify the results of the above analysis, the CMRR of athe total CMRR is slightly smaller than CMRR
the three topologies has been simulated using HSPICE. The thre@he above theoretical analysis and simulation all confirm that the
amplifiers were designed to have the same gain bandwidth prodagstematic CMRR can be improved through topology modification.
of 3 MHz with 10 pF of capacitive load and the same low frequendyy doing that, the random common mode gain becomes the ultimate
differential gain. First the systematic CMRR was simulated assumifagtor to determine the overall CMRR. The effect of mismatching on
no mismatches. The result of the simulations are depicted in Fig.tBe simulated CMRR for the circuits in Figs. 5 and 6 is illustrated in
Note that the curves denoted as CMRR, CMRR. (II), and CMRR  Fig. 9. It is observed that the CMRR of the circuit in Fig. 6 is much
(1) represent the systematic CMRR for Topologies |, Il, and lligreater than that in Fig. 5, when the mismatching is small (below
respectively. From these three curves we can make the followiAgl%). However, this is hardly realizable in practical amplifiers. The
observations. First, the low frequency CMRREf Topology | is the topology with the systematic CMRR enhancement is useful only if
lowest with 32 dB, the CMRR of Topology Il is 70 dB, and that the transistor matching is very good. It is also observed from the
of Topology Il is the largest with 84 dB. These numbers agréégure that both circuits have similar CMRR when the matching is
with the theoretical analysis (see Table ). The second observatjaeor since the typical mismatching facte) {s in the order of 0.1%
is that the systematic CMRR of Topologies Il and Il drops beyondr more. It is expected that mismatching will be the dominant factor
10 kHz, but is still greater than that of Topology | even at 3 MHZn determining the CMRR.
The advantage of Il and Ill over | in terms of CMRRhowever,
gradually diminishes as the frequency increase. To study the effect
of mismatching, the simulation was performed with 2% mismatch in
the input pair. The simulated total CMRR, which includes systematic In this brief, the CMRR degradation problem in low voltage op
and random CMRR, is also shown in Fig. 8 as CMRR(l), CMRR (llamps with N—P complementary pairs is discussed. A small signal

VI. CONCLUSION
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Fig. 9. Effect of mismatching on the CMRR.

analysis revealed that the increase of both systematic and mismatdht J. F. Duque-Carrillo, R. Perez-Aloe, and J. M. Valverde, “Biasing
ing common mode gain in the low voltage op amp is due to the change Circuit for high input swing operational amplifierdEEE J. Solid-State

of the tail current of the N-P complementary pairs. The systemati
CMRR degradation can be improved by using suitable topologies.

]

However the common mode gain due to mismatching remains to be
a dominant factor which limits the CMRR improvement.
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