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A Hybrid Radix-4/Radix-8 Low Power
Signed Multiplier Architecture

Brian S. Cherkauer and Eby G. Friedman

Abstract—A hybrid radix-4/radix-8 architecture targeted for high bit,
general purpose, digital multipliers is presented as a compromise between
the high speed of a radix-4 multiplier architecture and the low power
dissipation of a radix-8 multiplier architecture. In this hybrid radix-
4/radix-8 multiplier architecture, the performance bottleneck of a radix-8
multiplier, the generation of three times the multiplicand for use in
generating the radix-8 partial product, is performed in parallel with
the reduction of the radix-4 partial products rather than serially, as in
a radix-8 multiplier. This hybrid radix-4/radix-8 multiplier architecture
requires 13% less power for a 64� 64-b multiplier, and results in only
a 9% increase in delay, as compared with a radix-4 implementation.
When the voltage supply is scaled to equalize delay, the 64� 64-
b hybrid multiplier dissipates less power than either the radix-4 or
radix-8 multipliers. The hybrid radix-4/radix-8 architecture is therefore
appropriate for those applications that must dissipate minimal power
while operating at high speeds.

Index Terms—Low power, multiplier, radix.

I. INTRODUCTION

High speed digital multipliers are fundamental elements in signal
processing and arithmetic based systems. The higher bit widths
required of modern multipliers provide the opportunity to explore
new architectures which would be impractical for smaller bit width
multiplication. While much previous work has concentrated on reduc-
ing the delay of multipliers at the architectural level, very little effort
has been spent on reducing the power dissipation of these multipliers.
The power efficiency of multipliers has increased primarily due to
improvements in technology, where power efficiency in a multiplier
is defined here as the inverse of the multiplier power factor, the
power dissipated per bit2

� Hz [1].
The data in Fig. 1 describe the power factors for a number of recent

implementations of digital multipliers. Sharmaet al. utilized Booth
radix-4 encoding along with a reduction array of carry save adders
(CSA’s) generated by a recursive algorithm to produce the 16� 16-b
multiplier in [2]. In [3], Yano et al. introduced the complementary
pass transistor logic family (CPL) and implemented a 16� 16-b
multiplier in CPL which used no encoding but did use a Wallace tree
for partial product reduction. Nagamatsuet al. presented a 32� 32-b
multiplier in which Booth radix-4 was used to generate the partial
products and a tree of 4 : 2 counters was used to reduce these partial
products [4]. Moriet al. designed a 54� 54-b multiplier similar in
structure to that of [4], also utilizing Booth radix-4 and 4 : 2 counters
[5]. In [6], Goto et al., presented a 54� 54-b multiplier with Booth
radix-4 partial product generation, but used a regularly structured tree
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Fig. 1. Multiplier power factor.

for partial product reduction, thereby simplifying the physical layout.
Lu and Samueli were most concerned with throughput in the design of
the multiplier-accumulator described in [7], and thus they presented
a 13-stage, deeply pipelined 12� 12-b multiplier-accumulator which
used no encoding and was implemented with a quasi-domino dynamic
logic family. Somasekhar and Visvanathan were also concerned with
the high throughput required by many DSP applications, and in [8]
they presented an 8-b, unencoded multiplier pipelined at each half-
bit stage. The data point representing the multiplier described in
this paper is a 64� 64-b hybrid radix-4/radix-8 multiplier with a
Dadda reduction tree [9]. As described in this brief, this multiplier
achieves high power efficiency by operating the radix-4 encoding
and reduction in parallel with the high speed addition required by
the radix-8 encoding.

A hybrid Booth radix-4/radix-8 multiplier architecture is presented
in this paper as a method to tradeoff speed and power dissipation in
two’s complement signed multipliers. The improved speed and power
dissipation characteristics of this new multiplier architecture are
compared with that of standard radix-4 and radix-8 based multipliers.
The hybrid radix-4/radix-8 architecture presented in this paper is
described in Section II. The circuit components used to construct the
multipliers are briefly summarized in Section III, while the speed and
power dissipation characteristics of the three multiplier architectures
are compared in Section IV. Finally, some conclusions are drawn in
Section V.

II. HYBRID RADIX -4/RADIX -8 MULTIPLIER ARCHITECTURE

In order to perform high speed multiplication, an encoding scheme,
such as that proposed by Booth [10], is often used. The objective of
Booth encoding is to reduce the number of partial products which are
summed to generate the complete product, and thereby decrease the
time required to compute the final product. However, the encoding
itself incurs a certain delay penalty which must be balanced against
the delay saved by reducing the number of partial products. These
delay tradeoffs in Booth encoding are well established [11]–[13].
In this paper, it is shown that in addition to reducing the number
of partial products, higher radix Booth encoding also reduces the
power dissipation of the multiplier architecture. It has been shown in
[13] and [15] that by combining modified Booth radix-4 encoding
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Fig. 2. Hybrid radix-4/radix-8 multiplier architecture.

[10] with Wallace/Dadda [16], [17] partial product reduction, a
very high speed multiplier architecture is possible. This multiplier
architecture has therefore been chosen as a baseline for comparing the
performance characteristics of the hybrid radix-4/radix-8 multiplier
architecture presented here.

The process of multiplying two numbers,A � B, requires the
generation of a set of partial products followed by the summation
of these partial products. In radix-4 encoding, all partial products
may be generated through simple shifts and negation. However, with
radix-8 encoding all partial product terms may be generated with
simple shifts and negation with the exception of�3B. The 3B
terms require an additional high speed adder. The delay overhead
of this additional adder stage is a major disadvantage of radix-8
encoding. This increased delay overhead is addressed by the hybrid
radix-4/radix-8 architecture.

The proposed hybrid radix-4/radix-8 multiplier architecture uses
a combination of radix-4 and radix-8 encoding in order to mitigate
the delay penalty associated with the generation of3B for the radix-
8 architecture. In this manner the hybrid radix-4/radix-8 multiplier
combines the speed advantage of the radix-4 multiplier, by initiating
the partial product reduction immediately after the radix-4 encoding,
with the reduced power dissipation of the radix-8 multiplier, by
reducing the overall number of partial products.

In a radix-8 architecture, the multiplication process is serially
dependent upon the time required to generate3B: while 3B is being
generated by a high speed adder, no partial product reduction can
take place. This requirement to generate3B leads to a significant
delay penalty, on the order of 15–20%, as compared with a radix-4
architecture [13]. Alternatively, one could represent3B in partially
redundant form, reducing the time required to generate3B but
increasing the number of bits which need to be summed in the
reduction tree [14].

In the hybrid radix-4/radix-8 architecture, a subset of the par-
tial products are generated using radix-4 modified Booth encoding.
Reduction begins on these radix-4 partial products while3B is
simultaneously being generated by a high speed adder. Upon gener-
ating 3B, the remaining partial products are generated using radix-8
encoding, and these partial products are subsequently included within
the reduction tree. In this manner, some reduction of the partial
products takes place while the high speed adder is generating3B;
therefore, less of a delay penalty is incurred. Utilizing radix-8
encoding for many of the partial products reduces the total number
of partial products, thereby reducing the power dissipation required

to sum the partial products. A diagram of the hybrid radix-4/radix-8
architecture is shown in Fig. 2.

A delay analysis of the multiplier components demonstrates that
three reduction steps may take place during the generation of3B
for both the 32� 32-b multiplier and the 64� 64-b multiplier. The
number of bitsm of multiplierA which are used for radix-8 encoding
(and hence the number of radix-8 and radix-4 partial products) may
be determined by minimizing the number of reduction stages, given
that the radix-8 partial products will not be available until after the
third reduction stage, under the constraint that (m mod 3)= 0. The
optimum value ofm ism = 18 for a 32� 32-b hybrid multiplier and
is m = 45 for a 64� 64-b hybrid multiplier. Note that, consistent
with the 1-b overlap between adjacent bit fields in Booth encoding,
there is a 1-b overlap between the bit fields ofA utilized by the
radix-4 and the radix-8 encoders, and the constraint (m mod 3)= 0
assures that all radix-8 encoders operate on full 4-b sets of data.

For this 64� 64-b hybrid radix-4/radix-8 implementation, the nine
required reduction steps are as follows:11! 9! 6! (4+ 15)!
13 ! 9 ! 6 ! 4 ! 3 ! 2. For comparison, a 64� 64-b
radix-4 multiplier requires eight reduction steps, while a 64� 64-b
radix-8 multiplier requires only seven reduction stages [13]. Note that
by using the one’s complement plus the carry-in to form the two’s
complement, the number of bits at the start of the reduction process
is 1 b greater than the number of partial products. This additional bit
is the carry-in of the highest order partial product. Thus, the hybrid
reduction begins at 11 b although there are only ten partial products.

With a 32� 32-b multiplier, seven steps are required for partial
product reduction in a hybrid radix-4/radix-8 implementation, as
compared with six steps for a radix-4 implementation and five steps
for a radix-8 implementation. The reduction steps for the 32� 32-b
hybrid radix-4/radix-8 implementation are8! 6! 4! (3 + 6)!
6 ! 4 ! 3 ! 2.

It is important to note that the delay penalty associated with the
generation of3B can not be entirely mitigated using this hybrid
approach. An additional delay penalty is incurred since all of the
partial products are not immediately available when the reduction
process is initiated. The more data available in parallel to the
reduction tree, the more time efficient the reduction steps become.
As the radix-8 partial products are not available until three reduction
steps have been completed, fewer bits in parallel are available at
the start of the reduction process. Thus, the reduction process is not
as time efficient, requiring additional reduction steps as compared
with an architecture in which all of the partial products are available
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simultaneously when the reduction process begins. In essence, the
parallelism of the reduction tree is reduced in exchange for operating
the reduction tree in parallel with the3B adder. It should also be
noted that the relative delay between the reduction steps and the
3B adder is logic family dependent, and significant changes in this
relative delay may reduce the advantages of this hybrid structure.

III. M ULTIPLIER COMPONENTS

In this section the various functional components from which the
multipliers are constructed are summarized. A detailed discussion of
the circuits used to implement these multipliers is found in [9].

An encoding/decoding structure similar to that found in [12] is used
to perform the Booth encoding. The encoding circuitry generates the
control signals that select the correct partial product. Due to the high
fanout at the output of these encoders, low power tapered buffers are
included in the signal path [18]. These control signals are passed to
the decoding/selection circuitry, which is a pass-gate style multiplexer
with a conditional inversion to generate the one’s complement.

The full adder cell in the Wallace/Dadda reduction tree utilizes a
standard 28-transistor circuit implementation [19]. A multilevel carry
lookahead adder [11], [20] is used for the final high speed addition
and for the adder generating3B in the architectures using radix-
8 encoding. This adder architecture provides a satisfactory tradeoff
between the propagation delay and the power dissipation [21], [22].
The carry lookahead adder provides the necessary speed to generate
3B in parallel with the three reduction steps, as required in the hybrid
radix-4/radix-8 architecture.

Transistors are sized considering both speed and power dissipation
characteristics. The transistors in the speed limiting paths, such as
those in the high speed adders and Booth decoders, are sized to
minimize delay. The transistors in the reduction tree are sized to
reduce power dissipation.

IV. PERFORMANCE

The propagation delay, transistor count, and power dissipation
characteristics of the 32� 32-b and the 64� 64-b multipliers
are presented in this section. In Section IV-A, the delay of the
proposed hybrid radix-4/radix-8 multiplier architecture is compared
with the delay of the radix-4 and radix-8 multiplier architectures. In
Section IV-B, the number of transistors required to implement each
of the multipliers is presented. The power dissipation characteristics
of the three architectures are compared in Section IV-C. The power
dissipation characteristics of the three architectures after the power
supply voltages are scaled such that the same delay is achieved
for each architecture are compared in Section IV-D. Note that the
interconnect capacitance within the reduction tree is estimated rather
than extracted from physical layout.

A. Delay Analysis

The 32� 32-b and 64� 64-b multipliers have been simulated
in SPICE assuming a 5 V, 1.2�m CMOS process technology. The
output of each circuit was loaded with the next circuit stage and, when
appropriate, with an estimated interconnect loading. The worst case
delay values, derived from SPICE, are shown in Table I. The radix-4
multiplier exhibits the least delay, and the radix-8 multiplier exhibits
the most delay. The delay of the hybrid radix-4/radix-8 multiplier
falls between those of the radix-4 and radix-8 multipliers.

B. Transistor Count

The number of transistors required to implement a multiplier
architecture can provide a metric by which to judge the relative

TABLE I
TECHNOLOGY DEPENDENT DELAY OF MULTIPLIER

ARCHITECTURES(1.2 �m, 5 V CMOS)

TABLE II
NUMBER OF TRANSISTORS FOREACH MULTIPLIER IMPLEMENTATION

TABLE III
TOTAL MULTIPLIER POWER DISSIPATION. 5 V, 1.2�m CMOS, 10 MHZ

TABLE IV
BREAKDOWN OF POWER DISSIPATION FOR A 64 �
64-b MULTIPLIER. 5 V, 1.2 �m CMOS, 10 MHZ

area requirements and power dissipation of the different architectures,
assuming that switching probabilities and sizing methodologies for
the transistors are relatively constant across architectures, as is the
case in these multipliers. The transistor count for the 32� 32-b
and 64� 64-b implementations of each of the three architectures
are compared in Table II. The radix-8 multipliers require the fewest
transistors, while the radix-4 multipliers require the most transistors.
The number of transistors required to implement the hybrid radix-
4/radix-8 multipliers fall between those of the radix-4 and radix-8
multipliers.

C. Power Dissipation

The average power dissipation of each circuit operating at 10
MHz is determined from SPICE using the Kang power meter [23].
The power dissipation of each component is averaged over 100
input vectors. The input vectors were pseudorandomly generated with
activity factors made to conform to those measured from one million
vector Verilog-XL functional simulations of the multipliers.

The total power dissipated by each multiplier architecture is shown
in Table III. The breakdown of power dissipation by functional block
for the 64� 64-b multiplier is shown in Table IV.

As described previously and shown in Tables III and IV, a radix-8
multiplier dissipates less power than a radix-4 multiplier. The hybrid
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TABLE V
COMPARISON OF VOLTAGE SCALED PERFORMANCE

OF DIFFERENT MULTIPLIER ARCHITECTURES

radix-4/radix-8 architecture dissipates power at a level between that
of the radix-4 and radix-8 multipliers. Thus, the hybrid radix-4/radix-
8 multiplier architecture is a useful architecture for those applications
which require low power while operating at speeds greater than that
of a full radix-8 multiplier. Radix-8 multiplication is appropriate for
those ultra-low power systems in which added delay can be tolerated.

D. Voltage Scaled Performance

Voltage scaling [24], reducing the power supply voltage, may be
applied to the radix-4 and hybrid multipliers to increase the delay
to that of the radix-8 multipliers, while simultaneously reducing the
power dissipation of these multipliers. The delay of the multipliers is
proportional to the power supply,VDD, as shown in (1), whereVT
represents the average magnitude of the threshold voltages, and the
power dissipation is proportional to the square of the power supply
voltage, as shown in (2) [25].

Delay/
VDD

(VDD � VT )2
(1)

Power/ (VDD)
2
: (2)

The power dissipation of the radix-4, hybrid radix-4/radix-8, and
radix-8 multipliers after voltage scaling is compared in Table V. Note
that the scaled voltage levels are referenced to the radix-8 multiplier
operating at 5 V. For shorter bit widths such as exemplified by a 32�

32-b multiplier, the delay and power dissipation overhead due to the
additional3B adder and more complex encoding is not outweighed
by the reduction in delay and power dissipation associated with the
partial product summation. In this case, the simpler radix-4 encoded
multiplier provides the lowest power dissipation at a given delay.

However at higher bit widths, as exemplified by the 64� 64-b mul-
tipliers, the radix-4 and radix-8 multipliers dissipate approximately
equivalent power at a given delay, whereas the hybrid radix-4/radix-8
multiplier dissipates less power than either the radix-4 or the radix-8
multiplier.

V. CONCLUSIONS

A hybrid radix-4/radix-8 multiplier architecture is presented in this
paper that is both low power and high speed; this architecture provides
a tradeoff between the high speed of a radix-4 multiplier architecture
and the low power dissipation of a radix-8 multiplier architecture.
In this hybrid radix-4/radix-8 multiplier architecture, the performance
bottleneck of a radix-8 multiplier (the generation of3B for the radix-8
partial product generation) is performed in parallel with the reduction
of the radix-4 partial products rather than serially, as in a radix-
8 multiplier. This strategy minimizes a portion of the delay penalty
incurred by the radix-8 multiplier in generating3B. This hybrid radix-
4/radix-8 multiplier architecture dissipates 13% less power in a 64�
64-b multiplier with only a 9% increase in delay, as compared to a
radix-4 implementation. When the supply voltage of the 64� 64-b
multipliers is scaled such that all three architectures exhibit the same
delay, the hybrid radix-4/radix-8 multiplier dissipates the least power.

The hybrid radix-4/radix-8 architecture therefore provides a tradeoff
between high speed and low power for application to those systems
which require both high speed and low power signed multiplication.
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On Fast Running Max-Min Filtering

Dinu Coltuc and Ioannis Pitas

Abstract—The problem of fast running max/min filters for arbitrary-
size windows is addressed. The size of the filter window is increased to
the least power of two greater than the given size and, the input sequence
is expanded. The running max/min computation uses a fast algorithm for
power of two window sizes. The computational complexity (comparisons
per sample) of the proposed algorithm is very close tolog

2
n; where n is

the size of the given window. A flexible hardware implementation forn
ranging between two consecutive powers of two is discussed.

Index Terms—Algorithm optimization, fast algorithms, Max-Mix fil-
tering.

I. INTRODUCTION

Max/min filters are widely used in signal/image processing [2]–[4].
Let fxi; i = 0; � � � ;Ng be a sequence of samples. The problem of
running max/min filtering within a window of sizen is to determine
a sequencefyig; whereyi is either the maximum or the minimum
of n consecutive samples,xi; xi+1; � � � ; xi+n�1: The computational
complexity of max/min filters, i.e., the number of comparisons per
sample depends onn; the size of the filter window. Whenn is
a power of two, fast algorithms oflog2 n comparisons per sample
complexity have been developed. They are based on a factorization
of the computation by recursively dividing the sequence ofn samples
in subsequences ofn=2 samples and so on until subsequences of size
2 are obtained. The requirement thatn be power of two is crucial
for assuring a perfect decomposition inlog2 n steps. The flowchart
of such an algorithm is illustrated in Fig. 1 [1]. This brief deals with
max/min filters for arbitraryn and it proposes a method that takes
advantage of the fast power of two algorithms.

II. A RBITRARY n-SIZE WINDOW FILTERING

Our approach consists of: 1) the expansion of the input sequence
and the elimination of the corresponding extra output values; 2) the
computation of the running filter.

A. Sequence Expansion

Let k be the least integer greater than or equal to
log2 n; 2

k�1<n � 2k: Let p = 2k � n; 0 � p<n: In order
to preserve the numbern of original samples within the2k size
sliding window, whenever a dummy samplezj is inserted into
the positioni; then a dummy samplezj+p has also to be inserted
into the positioni + 2k : This insertion periodicity of the dummy
samples assures the expansion of the entire input sequence, once
the first group ofn samples has been expanded. Let� be any
increasing mapping,�: I ! K; where I and K are the set of
integersf0; 1; � � � ; n � 1g andf0; 1; � � � ; 2k � 1g; respectively. The
expansion procedure for the first group ofn samples defines for
each positioni the new position�(i). The increasing property of
� preserves the order of the samples in the expanded sequence.
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Fig. 1. Max/min filter flowchart forn = 23 window size.

The expansion of the entire input sequence can be further described
by an integer mapping ;  (i) = bi=nc2k + �(i mod n), where
bmc denotes the greatest integer less than or equal tom.  is
an increasing mapping, too. Thus, the expanded sequence of the
input fxig is generated by the following procedure: each samplexi
is placed in position (i); between samplesx (i) and x (i+1) a
number of (i + 1) �  (i) � 1 dummy samples are inserted, and
 (0) dummy samples are inserted in front ofx (0):

A formal proof can be given for the validity of the expansion
procedure. LetJ be the set�(I): The setJ consists ofn values
and the set differenceKnJ consists ofp values. By construction, the
sample placed at positionj belongs to the initial sequence provided
thatj mod 2k 2 J: Let us further consider a group of2k consecutive
samples of the expanded sequence and letj be the index of its first
sample. Their indexes arej+ q; where0 � q < 2k : (j+ q) mod 2k

takes distinct values for distinct values ofq, i.e., 0 � � � ; 2k� 1. The
setf(j+q) mod2kg is identical with the setK: As required, exactly
n samples belong to the initial sequence andp samples are dummy
ones. Sincej has been taken arbitrarily, the property holds for each
group of 2k consecutive samples.

The expanded sequence is determined by the mapping�: The
total number of possible mappings is(n + p)!=n!: For example,
when � is the identity application onI; �(i) = i; groups of p
dummy samples are inserted between groups ofn original samples:
x0; x1; � � � ; xn�1; z0; � � � ; zp�1; xn; xn+1; � � � ; x2n�1; zp; � � � ; :

The insertion of dummy samples should not alter the extreme
values within any window. Thus, when maximum has to be computed,
a straightforward possibility is to consider all dummy samples equal
to a small value (smaller than any signal sample). Alternatively, a

1057–7130/97$10.00 1997 IEEE



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 8, AUGUST 1997 661

large value is used for minimum computation. Another possibility that
holds both for maximum and for minimum is to assign to each dummy
sample the value of an original sample within the same window.

The total number of samples of the expanded sequence is (N)+1:
The output sequence will have (N) + 1 results, which means
 (N)�N extra output samples. Let us consider a window starting
with a dummy samplezi: When the window moves one position,
zi is discarded and a new sample is added. Due to the mapping
periodicity, the new samplezi+p is a dummy sample as well. Since
dummy samples do not influence the computation, the result for both
windows is identical. One out of the two samples has to be discarded,
e.g., the result produced within the window starting with a dummy
sample.

B. Computation

Flowcharts composed of branches and circles, as the one shown in
Fig. 1, are a convenient mean to describe the fast max/min algorithms
for 2k size window filters. The flow of the operands is represented
by branches. The circles represent places where the comparisons
take place. Their output is either the maximum (max filters) or the
minimum (min filters) between the two operands of the incoming
branches. For a filter window of size2k; the flowchart is a cascade
of k stages (in Fig. 1,k = 3). Let stages be numbered from 1 (the
input stage) tok (the output stage), then the comparisons of theith
stage are comparisons between operands placed at distance2i�1:
The change of the order in which the stages are placed, yields to
a flowchart of an algorithm that performs the same filtering. Thus,
there arek! possible algorithms for a filter with a window of size2k :

The computational complexity of the fast algorithm whenp = 0
is k comparisons per sample. Whenp> 0, the computational com-
plexity of the proposed algorithm increases tok+kp=n comparisons
per sample (onlyn results out ofn + p are preserved). However,
when dummy samples are inserted, the overall performance of the
algorithm can be improved since some comparisons can be eliminated
(either the result is known in advance, or the result is not useful).
These comparisons are: comparisons between two dummy samples,
comparisons between a dummy sample and a signal sample and the
final comparisons for the extra-output samples. Each input sample
appears as operand in two comparisons whose results are further
operands in four other comparisons and so on. When the sample is
a dummy one, the two corresponding comparisons are eliminated.
Furthermore, when two dummy samples are operands of the same
comparison, they propagate a dummy result which normally should
be an operand for two further comparisons, which, in this case, can
be eliminated. Thus, five comparisons are eliminated instead of four
that are taken out when the dummies do not compare with each
other. From a computational complexity point of view, it occurs that
the more dummy variables will compare to each other, the more
computationally efficient the scheme will be.

The lower bound of the computational complexity of the max/min
filters depends on�; the insertion mapping, and on the selected
2k algorithm. First we analyze the case when two dummy samples
have to be inserted. Let2j be the distance of the samples that
are compared together in the input stage. The two dummies will
propagate one dummy to the next stage, if and only if they are
placed at a distance equal to2j: By the periodicity of the insertion
procedure we observe that, if the distance from which the operands
are compared is2j = 2k�1; both dummies will propagate to the next
stage. Similarly, when2s dummy samples have to be inserted, all
dummies will propagate to the second stage if they are inserted at
equal distances of2k�s; provided that the operands placed at2k�1

distance are compared in the first stage. Furthermore, the inserted
dummies will propagate from one stage to another, until they will

Fig. 2. Max/min filter flowchart derivation forn = 6 window size. Unnec-
essary comparisons and operands are represented by filled circles and dashed
branches, respectively.

reach the stage where the distance between the operands to be
compared together is less than2k�s: The best performance will be
achieved by using an algorithm where, in the stagei; the samples
(operands) placed at2k�i distance are compared together (i = 1 for
the input stage andi = k for the final one). Thus, the2s dummies
will propagate throughs stages. Besides thes2s comparisons that
are eliminated due to dummy propagation through the flowchart,
two more comparisons for each inserted dummy sample are also
eliminated in thes+ 1 stage (comparisons between a dummy and a
real operand). Sinces<k � 1; the propagated dummies can reach
only the stagek � 2: No dummy appears as operand in stagek and
thus, the final comparison for each input dummy is eliminated (its
result is discarded). The general case of arbitraryp inserted dummy
samples immediately follows by considering the binary representation
of p, i.e., p = �k�1j=0 pj2

j ; pj = f0; 1g: When pj = 1; the group
of 2j dummies propagates throughj stages, if they are placed at
2k�j distance. The distance requirement for thep dummies holds
if the dummies are inserted in the places that correspond to the
bit reversed values off0; � � � ; p � 1g: If the binary representation
of s by using k bits is sk�1sk�2 � � � s1s0; (s = �k�1j=0 sj2

j);
then the bit-reversed ofs; denoted bybr(s); is the binary number
s0s1 � � � sk�2sk�1; (br(s) = �k�1j=0 sk�1�j2

j): The closed form of
the mapping is

�(i) = i+
iX

j=0

f(j); f(j) =
n
1 br(j) � p
0 otherwise.

(1)
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Fig. 3. Optimal algorithm performance: computational complexityC(n) comparisons per sample (plus sign) with respect to the window sizen compared
with log2 n (solid line) for n ranges [3–64].

The flowchart for a window of size 6 obtained by using the mapping
�; (1), is given in Fig. 2. The inserted dummies are denoted by 0. The
comparisons that are not performed are represented by filled circles
and dashed branches correspond to the unnecessary operands.

The algorithm derived by using the mapping (1) and the specified
2k -size window scheme is optimal with respect to the computational
complexity. With the above mentioned notations, its computational
complexityC(n) (comparisons per sample) is given by

C(n) = k�

k�1X
j=0

(3 + j � k)pj2
j

n
: (2)

When p � 2k�2 (i.e., 2k�1 <n � 2k�1 + 2k�2); the fraction of
(2) is positive andC(n) � k (C(n) � dlog2ne): C(n) is very
close tolog2 n as can be seen in Fig. 3, whereC(n) (plus sign) and
log2 n are plotted forn = [3; � � � ; 64]: When no comparisons are
eliminated, the proposed algorithms perform ink+kp=n comparisons
per sample. Regardless the insertion mapping and the fast2k scheme,
this upper bound can be slightly improved tok + (k � 1)p=n; or
k + (k � 3)p=n; by elimination (for each inserted dummy sample)
of the final comparison or of the final plus the two comparisons of
the first stage, respectively.

III. FLEXIBLE IMPLEMENTATION

The computational structures that yield to the lower limitC(n)
are of interest for software implementations. When hardware imple-
mentations have to be considered, the irregularity of these structures
becomes a major drawback since, the position-dependent processing
of the samples results in hardware complexity. Besides, even for
slightly different window sizes, very different structures are needed.
In the sequel, we investigate a particular mapping more suitable for
hardware implementation. Let�: I ! K be the mapping defined as

�(i) =

�
2i if i< p
i+ p otherwise.

(3)

Fig. 4. Pipeline architecture for max/min filters (5� n � 8).

Each dummy samplezi takes the value of its previous samplexi:
The expanded sequence is given by

x0; z0; x1; z1; � � � ; xp�1; zp�1; xp; xp+1

� � � ; xn�1; xn; zn; � � � :

A hardware implementation for the flowchart of Fig. 1 was pro-
posed in [1]. The architecture shown in Fig. 4, is a pipeline. At
each clock cycle, a new sample is loaded into the pipeline from
the input registerI and a result is loaded into the output registerO:
Blocks denoted by “C” compute the extreme value of the entries. A
“C” block is a multiplexer driven by a comparator. If the expanded
sequence were already available, the pipeline would work without
any modification. However, extra hardware must expand the input
sequence and discard certain output samples. Besides, a severe
degradation in performance appears since onlyn results are produced
in n + p clock cycles. We shall overcome these drawbacks by
using an appropriate timing command, such that no degradation in
performance occurs. Our idea is to insert hidden clock cycles in
the pipeline, keeping the input/output synchronization. The problems
appear when a dummy sample has to be inserted. Each dummy sample
is a copy of the previous sample. If the comparators are two times
faster, two cycles (instead of one) are computed, by processing the
window starting with a true sample and the next one. This means that
the samplexi is loaded twice, is forwarded into the pipeline and only
one output sample is preserved. When no dummy sample is inserted,
the pipeline and the I/O registers have the same timing. Different
clock signals are necessary for the command of the pipeline registers
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Fig. 5. Clock signals: RCK pipeline clock, IOCK input/output clock.

R and for theI=O registers. The clock signals are shown in Fig. 5.
The pipeline clock(RCK) is a periodic signalT = nT0 whereT0
is the period of the I/O clock. At each period there aren+ p clock
ticks, the first2p ticks being twice shorter than the nextn� p ones.
The processing is performed for different sizes of the window only
by changing the pipeline command clock.

IV. CONCLUDING REMARKS

Max/min filters within any arbitraryn window size,2k�1 <n �
2k ; are computed by using fast2k window size structures operating
on an expanded input sequence. Appropriate mappings assures that
each2k window contains exactlyn original samples. The derived
algorithms depend both on the expansion mapping and on the selected
fast power of two window size algorithm. For eachn; the existence
of a fast algorithm of very close tolog

2
n comparisons per sample

performance is proven. When2k�1<n � 2k�1+2k�2 the algorithm
performs in less thandlog

2
ne comparisons per sample. Another

algorithm suitable for a flexible hardware implementation for all
n; 2k�1<n � 2k; is presented.
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Multiple Transform Algorithms for Time-Varying
Signal Representation

Victor DeBrunner, Wei Lou, and Jonathan Thripuraneni

Abstract—We develop two new classes of multiple transform algo-
rithms for representing time-varying signals. The algorithms use either
a gradient search or a recursive greedy search over partial sets of
several different basis functions to capture different signal characteristics.
We see that our proposed algorithms require fewer than one-half the
computations required by the previous methods and represent the signal
with less error.

Index Terms—Nonorthogonal signal representations, transform coding.

I. INTRODUCTION

Transform-based analysis/synthesis models have been widely used
for nonstationary signal representation, including speech. A sinusoidal
model for speech signal representation was proposed in [1]. Other
transform-based models for speech signal representation can be seen
in [2] and [3]. It has been shown that the use of a partial set of
basis functions from one orthogonal set is insufficient to efficiently
represent nonstationary signals in low rate coding applications [4].
Therefore, multitransform algorithms have been introduced [5]–[8].
Different transforms have different properties which can effectively
match various aspects of the nonstationary signals. The algorithms
described in [5]–[8] are based on a cascade structure, where the
dominant projections (DP) are selected from one transform before
examining the second transform. The selection of the DP is critical.
Two methods exist: HPF (harmonics of pitch frequencies) [6] and SP
(spectral peak) [8].

In this brief, we propose a new implementation structure, the
parallel structure, and a new DP strategy, the look-back recursive
residual projection (LBRRP) algorithm based on ideas in [9] and
[10], to develop new multitransform algorithms. We show that the
proposed parallel structure yields algorithms that require fewer com-
putations than those based on the cascade structure while improving
representation performance. We also show that the LBRRP algorithms
have superior representation performance to the parallel structure
algorithms except when very low numbers of DP are selected.

II. EXISTING MULTITRANSFORM ALGORITHMS

The Gauss-Seidel algorithm proposed in [6] and [7] assumes that
the time-varying signal is the superposition of a narrow-band signal
and a broad-band signal. A partial set of basis functions is first used
to model the narrow-band portion, and then a partial set of basis
functions from a different transform are used to represent the residual
created by removing the narrow-band model. The block algorithm
works in a cascade fashion, and the selections in each transform
domain are mutually dependent. This means that both the projection
values and the selected DP in each domain depend on each other.
An iterative technique to select the DP and their projections was
developed in [6] and [7]. The technique assumes independence of
the two transform domains. The total represenation error is minimized
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Fig. 1. Parallel implementation structure.

using a Gauss-Seidel search technique. The DP selection process used
is the HPF method.

The gradient method [8] uses the same processing scheme as
the Gauss-Seidel method. However, the SP DP selection process is
used, and the convergence determination is different. After numerical
convergence is achieved, the smallest weights in both domains are
discarded. Then, the remaining large weights are retained and used
as the initial values in a new numerical solution of the minimization
problem. In [11], a slight modification of this procedure is used:
not only are the smallest projections monitored for convergence,
but also the smallest gradients are monitored. This method is more
computationally intense than the Gauss-Seidel method.

III. N EW MBR ALGORITHMS

In the cascade structure, each transform operates on the residual
resulting from subtracting the selected DP in a previous transform
stage from the input residual to that stage. Each of the selected
DP are weighted appropriately by a nonzero gain which must be
optimally determined. In contrast, our parallel implementation, shown
in Fig. 1, loosens the tight interconnection between the various
transforms. We also find that the parallel structure is computationally
less burdensome. We use the two previously discussed DP selection
processes in our parallel structure multitransform algorithms.

Also, we develop an alternative nongradient DP selection strategy,
the LBRRP [10], [16]. As it turns out, the LBRRP is closely related
to the “matching pursuits” algorithm developed in [17]. However,
the LBRRP may be slightly more efficient computationally, and the
residual error is always reduced at each iteration.

A. Parallel Implementation Structure

Refer to Fig. 1. The weight estimates are found by minimizing the
block mean square of the residual error. As in the cascade structure,
the performance index is the square residual error (SRE)

J(�;�) = rtr (1)

wherer = x�x̂a�x̂b: Each transform branch of the parallel structure
uses the original signal, while successive transforms in the cascade
structure use the residuals from the previous transform. Working with
the performance index (and assuming a block length ofN )

J(�;�) =
N�1X
i=0

(x[i]� x̂a[i]� x̂b[i])
2: (2)

Now, using
N�1X
i=0

(x̂a[i])
2 =

N�1X
j=0

(�[j]X̂a[j])
2 (3)

N�1X
i=0

x[i]x̂a[i] =
N�1X
j=0

�[j](X̂a[j])
2 (4)

N�1X
i=0

(x̂b[j])
2 =

N�1X
j=0

(�[j]X̂b[j])
2 (5)

N�1X
i=0

x[i]x̂b[i] =
N�1X
j=0

�[j](X̂b[j])
2 (6)

N�1X
i=0

x̂a[i]x̂b[i] =
N�1X
j=0

�[j]X̂a[j]

(
N�1X
l=0

�

 
N�1X
m=0

Ta[m; j]T�1b [m; l]

!
�[l]X̂b[l]

)

(7)

we put the performance index in the convenient matrix form

J(�;�) =x
t
x+ �

t diag(X̂2

a)�+ �
t diag(X̂2

b )�

� 2(X̂2

a)
t
�� 2(X̂2

b )
t
� + 2�t

Rab� (8)

whereX̂2

a;b is the column vector of transform coefficients squared and

Rab = diag(X̂a)TaT
�1

b diag(X̂b): (9)

We have assumed the transform to be real-valued. We use a gradient
iterative search over� and� to minimize the energy of the residual
error. In this case, the gradients are calculated using

r�J =2 diag(X̂2

a)�� 2X̂2

a + 2Rab� (10)

r�J =2 diag(X̂2

b )� � 2X̂2

b + 2Rt
ab�: (11)

The weight update equations are

�(n+ 1) =�(n)� 1

2
�r�J (12)

�(n+ 1) = �(n)� 1

2
�r�J: (13)

Each step in the minimization procedure involves moving the weight
vectors� and � along the gradient directions a distance controlled
by step sizes��i

and��i , respectively. The optimal step sizes are

��i
=

1

2

(r�i
J)t(r�i

J)

(r�i
J)Rab(r�i

J)
(14)

and the step sizes for the� are found by substituting(r�iJ):
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Fig. 2. LBRRP DP selection.

B. LBRRP

The processing of the LBRRP strategy is shown in Fig. 2. The
LBRRP compares components from the various transform domains
at each iteration step. Initially, the two transformations are applied to
the input signal segment. The component with the largest projection
in each transform domain is selected and compared to the largest pro-
jections in the other transform domains. The overall largest projection
is removed, creating a residual signal. This residual is then projected
onto each transform domain, and again the largest projection from
among all transforms is removed, creating a new residual. Because
only the largest projection from among all transform domains is
removed at each iteration without regard to future iterations, the
LBRRP is a “greedy” search and is not globally optimal. Several
stopping criteria can be used: mean square error, maximum deviation,
or the total number of selected projections (i.e., number of iterations
of LBRRP). What distinguishes the LBRRP from the RRP developed
in [9] and [10]? Because the selected DP come from nonorthogonal
sets of basis functions, a basis function projection removed in a
previous iteration can “come back to life.” For instance, suppose
that our search is the plane, and we have four basis functions. If the
vertical component is removed followed by the selection and removal
of a nonhorizontal basis function, then a vertical portion of the new
residual will exist. This phenomena is addressed in the “matching pur-
suits” algorithm in [17]. The look-back portion of the LBRRP consists
of monitoring projections of residuals onto any previously removed
basis function. Any nonzero (or resuming) projection is removed
and added directly to the previously removed value. The LBRRP
requires one N-point transform to find one DP (after the first DP).
The transform of the new residual in one domain must be calculated
while the other transform is known. The cascade and parallel structure
algorithms require 2 N-point transformations for each iteration, and
the number of DP found is not related to the number of iterations.

IV. SIMULATION RESULTS: SUMMARY

The multitransform algorithms based on the above described struc-
tures and DP selection strategies are developed and tested. Several
consonant-vowel-consonant (CVC) speech signals are examined. The
8 kHz-sampled speech signal was processed using a 32 ms trapezoidal
window (256 points wide with a flat center region of length 200
points). Each segment of the windowed speech signal has total 20%
overlap. For the various speech segments we use the DCT and WHT
transforms. By examining the error surface of the criterion function
at the converged-to-point, we make the following observations.

1) For unvoiced sound, most optimal weights are around 1 in
value. Therefore, the assumption of domain independence is
reasonable.

2) For voiced and transition sounds, the optimal weights do
not necessarily converge to 1. Therefore the independence
assumption is violated for these signals.

3) The LBRRP DP selection strategy has superior performance
when compared to both the HFP and MSP. Even for the
transition sound, the optimal weights are still close to 1. The
independence assumption is reasonable.

4) For a large number (128 or more) of DP, the optimal weights
are no longer approximately 1 for any of the DP selection strate-
gies. However, the weight variation of the LBRRP strategy is
the smallest among all observed strategies.

Using different implementation structures with the same total
number of DP and different DP selection strategies, the performances
of the multitransform algorithms are evaluated using signal-to-noise
ratio and the average FLOPS (counted using MATLAB) per it-
eration. The comparisons are shown in Table I. The total number
of DP is 16 and the final weights are chosen as the weights at
the 1000th iteration (except for LBRRP). The performances of the
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TABLE I
COMPUTATIONAL COMPARISON OF IMPLEMENTATION STRUCTURE

TABLE II
COMPARISON OFDP SELECTION STRATEGIES (VOICED SOUND)

TABLE III
COMPARISON OFDP SELECTION STRATEGIES (UNVOICED SOUND)

multitransform algorithms with varying numbers of selected DP is
given in Tables II–IV. For cases where the number of selected DP is
less than 16, some strategies only choose projections from a single
transform. In this case, the multitransform algorithm has defaulted to a
DCT-only algorithm. Also, for cases where the number of selected DP
is greater than 64, some DP selection strategies cannot find enough
peaks in the spectrum. Analyzing those results which are presented
in the tables, we summarize as follows.

1) Among the multitransform algorithms, the LBRRP consistently
yields superior results except when only a few DP are chosen.
In that case, the parallel implementation structure with the MSP
DP selection strategy is superior.

2) For a moderate number of selected DP, the LBRRP perfor-
mance is superior to the single transform methods as well as

TABLE IV
COMPARISON OFDP SELECTION STRATEGIES (TRANSITION SOUND)

the GHPF and MSP strategies using either cascade or parallel
structures.

3) For a large number of selected DP, the LBRRP performance
is only slightly better when compared to the single transform
methods.

4) For some specific signal segments, such as unvoiced segments,
the MBR algorithms using the GHPF or MSP strategies and
either the cascade or parallel structures are superior to a single
transform method.

V. CONCLUSIONS

The development of constrained LMS algorithms using a parallel
multitransform structure for time-varying signal representation is
given in this brief. This structure is compared to cascade struc-
ture multitransform algorithms developed elsewhere. The LBRRP
strategy, similar to Mallat’s “matching pursuits” algorithm, is also
developed. The LBRRP performance is shown to be superior (in
terms of performance and computational complexity) to either the
cascade or parallel structure algorithms in most cases.
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2-D Adaptive State-Space Filters Based on the
Fornasini–Marchesini Second Model

Takao Hinamoto, Akimitsu Doi, and Mitsuji Muneyasu

Abstract—Based on the Fornasini–Marchesini second model, a tech-
nique is developed for implementing two-dimensional (2-D) adaptive
state-space filters. First, the relationship between the coefficient sensi-
tivities and the intermediate transfer functions is investigated for the
Fornasini–Marchesini second model. A least mean square (LMS) adaptive
algorithm is then presented by using new systems that generate the
gradient signals. Finally, a 2-D adaptive line enhancer is constructed by
using the 2-D adaptive state-space filter to illustrate the utility of the
proposed technique.

Index Terms—Adaptive filter, Fornasini–Marchesini’s second model,
LMS algorithm, 2-D system.

I. INTRODUCTION

In order to achieve desired filtering performance, adaptive recursive
filters are preferred because of lower order filter structure compared
to that of adaptive transversal filters [1]–[4]. As an alternative to this
technique, adaptive state-variable filters by using a gradient-based
algorithm have been proposed recently [5]. Due to the capability of
adapting arbitrary state-space filters, the designer can enjoy freedom
to explore the performance advantages of different structures [6].
More recently, 2-D adaptive filters using the structure of 2-D adaptive
FIR filters [7]–[14], 2-D adaptive IIR filters [15], [16], and 2-D
adaptive state-space filters [17] have been studied with applications
to image enhancement and noise reduction in an image. In [17], 2-D
adaptive state-space filters which rely on the LMS algorithm have
been developed by using the Roesser local state-space (LSS) model.

In this brief, based on the Fornasini–Marchesini second LSS model
[18], a technique is developed for implementing 2-D adaptive state-
space filters. The LMS algorithm is used to update the coefficients
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in the 2-D adaptive state-space filters. To compute all the required
gradients of the filter coefficients, new systems are derived from the
relation between coefficient sensitivities and intermediate functions.
Finally, an illustrative example demonstrates the validity of the
proposed technique.

Throughout this brief, then-dimensional identity matrix is denoted
by IIIn. The transpose and(i; j)th element of any matrixAAA are
indicated byAAAT and (AAA)ij, respectively. Moreover,E[�] is used
to denote the expected value.

II. 2-D ADAPTIVE STATE-SPACE FILTERS

A. Generation of Gradient Signals

Let the LSS model for a 2-D digital filter be specified by

xxx(i+ 1; j + 1) =AAA1xxx(i; j + 1) +AAA2xxx(i+ 1; j)

+ bbb1u(i; j + 1) + bbb2u(i+ 1; j)

y(i; j) = cccTxxx(i; j) + du(i; j) (1)

where xxx(i; j) is an n � 1 local state vector,u(i; j) is a scalar
input, y(i; j) is a scalar output, andAAA1; AAA2; bbb1; bbb2; ccc, and d are
real matrices of appropriate dimensions. The transfer function of (1)
is given by

H(z1; z2) =
Y (z1; z2)

U(z1; z2)

= cccT (IIIn � z�11 AAA1 � z�12 AAA2)
�1

� (z�11 bbb1 + z�12 bbb2) + d (2)

whereU(z1; z2) andY (z1; z2) denote thez-transforms of the input
and the output, respectively. Some sensitivity formulas for the LSS
model (1) will be given to adapt the state-space parameters. These
formulas require the definition of three sets of intermediate functions:

FFF (z1; z2) =
XXX(z1; z2)

U(z1; z2)

= (IIIn � z�11 AAA1 � z�12 AAA2)
�1

� (z�11 bbb1 + z�12 bbb2) (3)

GGGT
k (z1; z2) = z�1k cccT (IIIn � z�11 AAA1 � z�12 AAA2)

�1;

k = 1; 2 (4)

whereXXX(z1; z2) stands for thez-transform of the local state vector,
Y (z1; z2) = GGGT

k (z1; z2)"""k(z1; z2), and"""k(z1; z2), k = 1, 2 denote
signal injection vectors at the inputs of the delay operatorsz�1k IIIn.

Definition 1: Let QQQ be anm � n real matrix and letf(QQQ) be a
scalar complex function ofQQQ, differentiable w.r.t. all the entries of
QQQ. The sensitivity function off w.r.t. QQQ is then defined as

SSSQ =
@f

@QQQ
with

(SSSQ)kl =
@f

@qkl
(5)

whereqkl denotes the(k; l)th entry of the matrixQQQ.
To obtain gradient signals, the derivatives of the output signal w.r.t.

each of the filter coefficient matrices are related to the intermediate
functions.

@Y (z1; z2)

@AAAk

=GGGk(z1; z2)XXX
T (z1; z2) (6)

1057–7130/97$10.00 1997 IEEE
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@Y (z1; z2)

@bbbk
=GGGk(z1; z2)U(z1; z2) (7)

@Y (z1; z2)

@ccc
=XXX(z1; z2) (8)

@Y (z1; z2)

@d
=U(z1; z2); k = 1; 2: (9)

From (6) to (9) it is clear that the gradient signals needed to adapt
the ccc vector are available as the output states,xxx(i; j), whereas the
gradient signal for thed scalar is the input signalu(i; j). However,
the gradient signals required to adapt theAAAk matrix andbbbk vector,
k = 1, 2 must be created by new systems with the intermediate
functions from the input to the states, equal toGGGk(z1; z2); k = 1; 2
of the original filter. The new systems are described by

WWW 1(i+ 1; j + 1) =AAAT
1 (i; j + 1)WWW 1(i; j + 1)

+AAAT
2 (i+ 1; j)WWW 1(i+ 1; j)

+ ccc(i; j + 1)xxxT (i; j + 1) (10a)

WWW 2(i+ 1; j + 1) =AAAT
1 (i; j + 1)WWW 2(i; j + 1)

+AAAT
2 (i+ 1; j)WWW 2(i+ 1; j)

+ ccc(i+ 1; j)xxxT (i+ 1; j) (10b)

vvv1(i+ 1; j + 1) =AAAT
1 (i; j + 1)vvv1(i; j + 1)

+AAAT
2 (i+ 1; j)vvv1(i+ 1; j)

+ ccc(i; j + 1)u(i; j + 1) (11a)

vvv2(i+ 1; j + 1) =AAAT
1 (i; j + 1)vvv2(i; j + 1)

+AAAT
2 (i+ 1; j)vvv2(i+ 1; j)

+ ccc(i+ 1; j)u(i+ 1; j) (11b)

where

xxx(i+ 1; j + 1) =AAA1(i; j + 1)xxx(i; j + 1)

+AAA2(i+ 1; j)xxx(i+ 1; j)

� bbb1(i; j + 1)u(i; j + 1)

+ bbb2(i+ 1; j)u(i+ 1; j)

and the initial conditions of all the above systems are assumed to
be null. Here,AAAk(i; j) andbbbk(i; j), k = 1, 2 are the estimates of
coefficient matricesAAAk and bbbk at location(i; j), respectively, and
are updated in the following manner.

B. Adaptive Algorithm

A block diagram of a 2-D adaptive state-space filter is depicted
in Fig. 1 where the state-space parameters now change with each
location and, hence, are functions of location (i; j). Supposeu(i; j)
and r(i; j) are stationary discrete stochastic processes. Let an error
signale(i; j) be defined by the difference between a reference signal
r(i; j) and the filter outputy(i; j). During adaption, the coefficients
of an adaptive filter are changed to minimize the mean-squared error
signal E[e2(i; j)]. To find a minimum of the mean-squared error
performance surface, the steepest descent algorithm can be employed
with the use of gradient signals. It is assumed that 2-D data are of
sizeM �N , i.e., f(i; j)j0 � i � M � 1; 0 � j � N � 1g.

Taking the 2-D spatial correlations of pixels in a neighborhood into
account, the idea of 2-D diagonal processing is useful. Combining
the steepest descent method with the diagonal scanning scheme, an
updating equation for any coefficientp of the adaptive filter is written
as

p(i0; j0) = p(i; j)� �
@E[e2(i; j)]
@p(i; j)

(12)

wherep(i0; j0) is the updated coefficient at location(i; j) and� is
a step-size parameter which controls convergence of the algorithm.

Fig. 1. Block diagram of 2-D adaptive state-space filters.

During adaption, the same data are used repeatedly. The indexes
(i; j) and(i0; j0) satisfy the condition that the sum ofi andj (that of
i0 andj0) along each diagonal line is constant. There are six different
cases for changing the indexes as given below.

For i + j an even number

i0 = i+ 1;

i0 = i+ 1;

i0 = i;

j0 = j � 1;

j0 = j;

j0 = j + 1;

if i < M � 1 andj 6= 0

if i < M � 1 andj = 0

if i = M � 1:

For i + j an odd number

i0 = i� 1;

i0 = i;

i0 = i+ 1;

j0 = j + 1;

j0 = j + 1;

j0 = j;

if j < N � 1 andi 6= 0

if j < N � 1 andi = 0

if j = N � 1:

The instantaneous value of the squared error signal is usually
utilized to approximate the expected value in the LMS algorithm.
With such an approximation, we obtain

p(i0; j0) = p(i; j) + 2�e(i; j)
@y(i; j)

@p(i; j)
: (13)

From (13), adaption equations for the filter coefficients are obtained as

AAAk(i
0; j0) =AAAk(i; j) + 2�e(i; j)WWW k(i; j)

k = 1; 2 (14)

bbbk(i
0; j0) = bbbk(i; j) + 2�e(i; j)vvvk(i; j);

k = 1; 2 (15)

ccc(i0; j0) = ccc(i; j) + 2�e(i; j)xxx(i; j) (16)

d(i0; j0) = d(i; j) + 2�e(i; j)u(i; j) (17)

where the gradient signals,xxx(i; j), WWW k(i; j), andvvvk(i; j), k = 1,
2 are obtained from the new systems shown in (10) and (11). From
the foregoing arguments, it is possible to implement 2-D adaptive
state-space filters.

III. I LLUSTRATIVE EXAMPLE

A block diagram of the 2-D adaptive line enhancer is drawn in
Fig. 2 whered(i; j) is an original image,v(i; j) is an additive noise,
and r(i; j) is a reference signal specified byr(i; j) = d(i; j) +
v(i; j). The input signalu(i; j) to the 2-D adaptive state-space filter
is formed by delaying the reference signal by(z�1

1
+ z�1

2
)=2 and is

given byu(i; j) = [r(i�1; j)+r(i; j�1)]=2. The delay is used as
a decorrelation operator to obtain the input signal from the reference
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Fig. 2. 2-D adaptive line enhancer structure.

signal. This enables us to remove the effects of additive noise from
an image by making use of autocorrelations.

The original image of 100� 100 pixels with 256 gray levels is
shown in Fig. 3. The Gaussian noise of zero mean and variance 500 is
added to the original image to produce the degraded image in Fig. 4.

Let the order of the 2-D adaptive line enhancer ben = 4 and
let the initial coefficient matrices be chosen to be a certain 2-D IIR
low-pass filter [19, p. 108] given as follows:

AAA1(0; 0) =2
664

0:057 002 0:083 792 0:404 317 �0:150 120
�0:205 230 0:334 741 �0:138 844 0:055 005
0:224 854 0:249 008 0:112 312 0:032 287
0:059 384 0:333 645 0:090 921 0:149 825

3
775

AAA2(0; 0) =2
664

0:501 861 0:029 451 �0:048 577 0:125 627
0:009 376 0:459 600 �0:133 237 0:283 091

�0:018 777 0:294 124 0:380 790 �0:365 214
�0:132 510 �0:326 956 0:282 682 0:369 630

3
775

bbb1(0; 0) =

[�0:270 682 0:184 186 0:195 692 0:500 127 ]T

bbb2(0; 0) =

[0:076 862 0:186 164 0:018 185 �0:045 435 ]T

ccc(0; 0) =

[0:409 775 �0:105 288 0:249 880 0:181 697 ]T

d(0; 0) = 0:001 924:

The step-size parameter� was chosen to 1.1�10�7 by exper-
iments (trial and error). To evaluate the characteristics of the 2-D
adaptive line enhancer, we used a signal to noise ratio (SNR) defined
by

SNR= 10 log
10

99X
i=n

99X
j=n

d(i; j)2

99X
i=n

99X
j=n

[y(i; j)� d(i; j)]2

: (18)

The 2-D adaptive line enhancer was realized by the proposed
technique. Consequently, the initial SNR equal to 11.893 756 was
changed to 15.602 459 atl = 30. Here,l stands for the number of
normalized iterations, i.e.,l = m=MN = m� 10�4 wherem is the
number of iterations. The output image produced by the 2-D adaptive
line enhancer atl =30 is shown in Fig. 5.

The 2-D adaptive state-space filter presented here was compared to
the 2-D adaptive FIR filter reported in [7] with the ordern = 6 and
the step size parameter� = 1.2 �10�8. Applying the 2-D adaptive
FIR filter, the initial SNR equal to 11.943 223 became 15.453 219 at
l = 30. In other words, the proposed 2-D adaptive state-space filter

Fig. 3. Original image.

Fig. 4. Image degraded by additive noise.

Fig. 5. Result processed by the 2-D adaptive line enhancer.

yields higher SNR than the 2-D adaptive FIR filter presented in [7].
Notice that the number of the coefficients of the transfer function
of the adaptive state-space filter is equal to 29. Alternatively, the
adaptive FIR filter has 36 coefficients.
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IV. CONCLUSION

Based on the Fornasini–Marchesini second model, a technique has
been developed for implementing 2-D adaptive state-space filters.
This has been done by using the LMS algorithm. To obtain all the
gradients required for adapting a 2-D state-space filter, new systems
related to the intermediate functions have been presented. Finally, an
illustrative example has been given to demonstrate the effectiveness
of the proposed technique.
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Efficient Polyphase DFT Filter Banks with Fading Memory

Annamária R. Várkonyi-Kóczy

Abstract— In this brief, new composite polyphase filter banks are
presented for the implementation of the recursive Fourier transformation
and some of its generalizations. These structures can be operated both
in sliding window and block recursive modes with a computational
complexity in the order of the fast algorithms. The parallelization applied
enables very high speed and also a considerably higher sampling rate.
Based on this structure almost all issues of the so-called transform-domain
digital signal processing can be reconsidered.

Index Terms—Discrete transforms, fading memory effect, fast algo-
rithms, IIR digital filtering, polyphase filterbanks, recursive filters, trans-
form domain analysis.

I. INTRODUCTION

The discrete Fourier transformation (DFT) of a sequence ofN
samples can be defined as

Xm =
1

N

N�1X

n=0

x(n)e�j(2�=N)mn (1)

where x(n) denotes thenth input sample,Xm is the mth DFT
component (n the discrete “time” indexn = 0, 1, � � � ; N � 1 or
running;m is the discrete “frequency” index,m = 0, 1, � � � ; N�1).
The factor of1=N is a simple normalizing factor. The recursive
version of the DFT is a sliding-window technique for calculating the
Fourier coefficients and/or components [1]. For its implementation
an observer structure [2], [3] proved to be efficient [4], [5].

Recently a new technique has been developed for the implemen-
tation of the recursive DFT based upon the concepts of polyphase
filtering and the fast Fourier transformation (FFT) [14]. The novelty
of this approach is a decomposition of a larger size single-input
multiple-output (SIMO) DFT filter-bank into a proper parallel com-
bination of smaller ones similarly as it is made in the nondestructive
zoom technique applied in the case of larger scale data blocks (see
e.g., [6]).

A DFT of sizeN can be evaluated asL separate DFT’s of size
M (N = ML) as it is illustrated in Fig. 1. (forM = N=2 and
L = 2) together with a “phase compensation.” The 2-point DFT
blocks operate on complex values and are preceded by a “phase
compensation” which is unavoidable due to the delayed reference
positions of theN=2-point DFT blocks. The overall decomposition
scheme on the input side follows the “decimation-in-time” (see
e.g., [7]) while on the output side the “decimation-in-frequency”
principles.

Obviously for every smaller size recursive DFT block a similar
decomposition is possible if their sizeM and/orL are not prime
numbers. A “total” decomposition corresponds to the structure of
the FFT (see e.g., [5]), but operates recursively and has remarkable
features with respect to other techniques of similar complexity [8],
[9].
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Fig. 1. Polyphase decomposition forM = N=2 andL = 2.

(a)

(b)

Fig. 2. 2-point DFT structure versions. (a) Tree structure version. (b) Res-
onator-based version.

This recursive FFT technique is well suited to system identification
problems where periodic, multifrequency (e.g., multisine) perturba-
tion signals [10] are applied. If the actual frequency components
of the perturbation signal directly correspond to the discrete fre-
quency locations of the FFT, then the systematic error of frequency-
component measurements can be avoided.

Section II presents the implementation of the radix-2 case for
the recursive DFT while Section III is a generalization toward IIR
applications like recursive DFT with fading memory [11].

II. THE BASIC BUILDING BLOCKS

In the radix-2 case a total decomposition results in 2-point DFT’s.
In Fig. 2 two possible versions are presented. In case of complex
inputs such blocks are required both for the real and for the imaginary
parts. Fig. 2(a) shows the simplest tree-structure version which due to
its “pipelined” nature meets the requirements of real-time execution.
Fig. 2(b) presents the so-called resonator-based version [4], [5]
which can play an interesting role in the generalizations toward IIR
applications.

The decomposition described above can be directly utilized even
in the case of DFT filter-banks. The DFT filter-banks produce the
Fourier components instead of the Fourier coefficients. For many
applications this fact has real practical advantages. With a slightly
different “phase compensation,” i.e., with the proper combination of
the complex demodulation-modulation and the phase compensation,
the DFT filter-bank version can also be generated. For this case the
corresponding 2-point DFT filter-bank forms are given in Fig. 3.

III. RECURSIVE DFT FILTER BANK WITH FADING MEMORY

As it is well known from the literature (see e.g., [1]) the averaging
effect in (1) can have an interesting frequency-domain interpretation.

(a)

(b)

Fig. 3. 2-point DFT filter-bank versions. (a) Tree structure version. (b)
Resonator-based version.

One of the typical characterizations is thez-domain transfer function
of the averager

1

N

1� z�N

1� z�1
: (2)

This transfer function is present in every sliding DFT channel that
produces the linear average of the lastN (properly demodulated)
input samples. A very similar characterization is valid for the DFT
filter-bank

1

N

1� z�N

1� zmz�1
; zm = ej(2�=N)m

m = 0; 1; � � � ; N � 1; (3)

which operates as an “averager” at themth frequency position.
The extension of the recursive DFT to a fading memory version,
as it is motivated in [11] and [12], can be easily solved with the
application of recursive building blocks producing also certain poles
for the overall transfer function. Due to implementational reasons the
resonator-based approach is applied which proved to be advantageous
also for higher-order blocks. If in Fig. 3(b) the coefficientsr0 and
r1 are not fixed as 1/2 we can implement the transfer function of
the channels:

H0(z) =
r0z

�1(1 + z�1)

1 + (r0 � r1)z�1 + (r0 + r1 � 1)z�2
; (4)

H1(z) =
�r1z

�1(1� z�1)

1 + (r0 � r1)z�1 + (r0 + r1 � 1)z�2
: (5)

The fading memory effect described in [11] and in [12] with an
other interpretation, requires uniformly distributed poles within the
unit circle. The characterization of this modified DFT system can be
given if (2) is replaced by

1� a

N

1� z�N

1� az�N
1

1� z�1
(6)

where the poles, which are theN th roots ofa are responsible for the
fading memory effect. If we consider the behavior of the polyphase
structures [13], it turns out that these poles can be generated for the
radix-2 case in such a way that the first stage of the overall structure
consisting ofN=2 2-point DFT blocks is realized using blocks of
Fig. 3(b) with

r0 = r1 =
1� a

2
: (7)
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Fig. 4. Magnitude characteristics of the DFT filter-banks with differenta >
0 parameters. (a)a = 0. (b) a = 0.4. (c)a = 0.6. (d)a = 0.8.

The effects of these poles can be illustrated with the corresponding
magnitude and phase characteristics. Fig. 4 presents the magnitude
behavior for differenta > 0 values. From this figure it turns out
that in the case of synchronized sine-waves higher selectivity can be
achieved, i.e., this simple modification can really serve the multisine
perturbation approaches. Fig. 5. shows the phase characteristics for
different a values.

If not only the first stage of the radix-2 structure is replaced with
the block of Fig. 3(b), but also some others, further poles can be
introduced.

The proposed DFT structure together with this possibility to
introduce poles can serve also as an alternative solution for signal
processing problems to be solved in the transform-domain. This
means the generalization of the frequency sampling concept (see,
e.g., [1]) related to the sliding DFT and the introduction of arbitrary
pole-sets by setting ther0, r1 parameters properly within the last
stage of the overall system. Obviously this latter can be combined
with the fading memory effect of (6), as well.

IV. CONCLUSIONS

In this brief new polyphase DFT filter bank versions has been
reported. The parallelization applied enables decimation and the use
of more (in the radix-2 case up toN=2) parallel A/D converters and
thus a considerably higher sampling rate can be achieved with the
very same resolution and accuracy. By applying recursive building
blocks within the structure the recursive DFT with fading memory can
also be implemented. This latter has real importance in such system

Fig. 5. Phase characteristics of the DFT filter-banks with differenta param-
eters. (a)a = 0. (b) a = 0.4. (c) a = 0.6. (d)a = 0.8. (e)a = �0.2. (f)
a = �0.5. (g) a = �0.8.

identification problems where periodic, multifrequency perturbation
signals [10] are applied or the Kalman filtering approach [12] is
utilized. In this brief the details are given only for the radix-2 case,
however, the ideas are quite general, the extension to other cases is
straightforward.
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Implementations of Adaptive IIR Filters
with Lowest Complexity

Geoffrey A. Williamson

Abstract—The problem of implementing adaptive IIR filters of mini-
mum complexity is considered. The complexity used here is the number
of multiplications in the implementation of the structures generating both
the adaptive filter output and the sensitivities to be used in any gradient-
based algorithm. This complexity is independent of the specific adaptive
algorithm used. It is established that the sensitivity generation requires a
minimum of N additional states, whereN is the order of the filter. This
result is used to show a minimum complexity of3N + 1 multiplications
for an order N filter. Principles to use in the construction of such lowest
complexity implementations are provided, and examples of minimum
complexity direct-form, cascade-form, and parallel-form adaptive IIR
filters are given.

Index Terms—Adaptive filtering, adaptive IIR filters, sensitivity func-
tions.

I. INTRODUCTION

For several realizations of adaptive IIR filters, most notably the
cascade-and lattice-forms, computational complexity has been prohib-
itively large. To implement gradient descent based algorithms such as
the least mean square (LMS) and the Gauss-Newton (GN) algorithms,
one must generate output sensitivity functions with respect to the
adapted parameters, and these computations must be included in the
implementation complexity. For lattice-form adaptive IIR filters [1],
[2], the computational burden of sensitivity generation is formidable,
though complexity reduction from the original algorithm is possible
[3]. Cascade-form adaptive IIR filters [4] also engender complicated
sensitivity generation, but reconfigurations of the cascaded filter
structure can reduce the complexity of the sensitivity generation
[5]. The same holds true for adaptive FIR filters implemented in
cascade-form [6].

These issues raise the question of what is the minimal level of
computation, including that of sensitivity function generation, that is
needed to implement anN th-order adaptive IIR filter. We use as a
measure of complexity the total number of multiplications required
to compute, at iterationk, the adaptive filter output together with the
sensitivities with respect to all adapted parameters. We demonstrate
in this brief that the minimal complexity in this sense is3N + 1
multiplications. Of these,2N + 1 correspond to multiplications in
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Fig. 1. Composite output and sensitivity generation.

the generation of the filter output: one multiplication for each of
N + 1 degrees of freedom in the numerator of the filter’s transfer
function, and one multiplication for each ofN degrees of freedom
for the denominator. OnlyN additional multiplications are required
to obtain sensitivities that are not already generated in the process of
obtaining the filter output.

Note that this result gives only a lower bound on the implemen-
tation complexity ofN th-order adaptive IIR filters. For a particular
realization, there is the possibility that the lower bound cannot be
achieved. Furthermore, we exclude algorithm complexity from the
measure. To implement GN algorithms requires a significant number
of additional multiplications, so that the complexity from signal
generation may be small in comparison. However, all gradient descent
based algorithms require the sensitivities, so our work establishes
minimum complexity levels for this aspect of adaptive filter imple-
mentation. Furthermore, when employing the LMS algorithm, the
potential for complexity reduction is significant.

In addition to establishing the main result, we also motivate general
techniques for reducing the implementation complexity. We then
indicate lowest complexity realizations for direct-form, cascade-form,
and parallel-form adaptive IIR filters.

II. L OWEST COMPLEXITY ADAPTIVE IIR FILTERS

Fig. 1 shows the general form for the composite system(G;S)
generating both the filter output (via subsystemG) and the sensitivi-
ties (via subsystemS) when the filter is parametrized via parameters
a1; . . . ; am. The structure ofG andS can be related: each sensitivity

@y

@ai

may be generated by replicating inS the filter structureG, and
exciting this replication with a signal taken fromG [2].

We rely in the exposition on a feedback gain model (FGM)
representation forS. A system representable by an FGM is one
in which the adjustable parameters all appear as internal feedback
gains. Most of the usual direct-, parallel-, cascade-, and lattice-form
parametrizations of adaptive filters possess such a representation.1 In
an FGM with parametersa1; . . . ; am, the dependence on parameterai
is as shown in Fig. 2. The dimension ofI appearing in the feedback
block of the figure indicates the number of times thatai appears as a
gain in the filter.2 The transfer functionsGi

jk(z) have no dependence
on ai, but may depend ona`; ` 6= i. This framework encompasses
treatment of multi-input, multi-output systems, but in this brief we
view u and y as scalar signals.

Bingulac et al. studied the generation of sensitivity functions
with respect to parameters in a finite dimensional, linear, time-
invariant system [9]. They showed conditions under which sensitivity

1For an exception, see the lattice-form realization of [7].
2Typically, each parameter will appear only once. However, in IIR lattice

models [8], the reflection coefficients appear twice.

1057–7130/97$10.00 1997 IEEE
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Fig. 2. Feedback gain model for parameterai.

functions for all parameters in anN th-order, single input systemG
may be simultaneously generated by augmenting the system with
N additional states inS. Hence the composite system(G;S) has
dimension2N . Below we show that when allN poles of the system
depend upon the adjustable parameters,N is a lower bound on the
number of additional states necessary to generate sensitivities for all
the parameters.

Theorem 1: Let G be representable as an FGM all of whoseN
poles depend upon the values of the parameters. Then to generate the
sensitivity functions for all parameters, one must augmentG with a
systemS having at leastN states.

Proof: Let p be a pole of

Y (z)

U(z)

the u to y transfer function ofG, that is influenced by the value
of a. By assumption,G is representable in the form of Fig. 2. For
convenience of notation, we drop thei-dependence inGi

jk, xi and
ai as given in that figure. One may show that

x = [I � aG22]
�1
G21u (1)

y = G11u+ aG12[I � aG22]
�1
G21u: (2)

Using results from [2], one may establish that

@y

@a

is generated as shown in Fig. 3. We see that

@y

@a
= G12[I � aG22]

�1
x (3)

= G12[I � aG22]
�1[I � aG22]

�1
G21u: (4)

As p is a pole of

Y (z)

U(z)

depending ona, and eachGjk does not depend ona, we see from
(2) thatp must be a pole of[I � aG22]

�1. Then from (4), we may
conclude that the transfer function generating

@y

@a

from x must of necessity havep appear with twice the multiplicity
it has in

Y (z)

U(z)
:

Therefore, S must containp with at least multiplicity one, to
complement the occurrence ofp in G. Since the above fact holds
true for all polesp1; � � � ; pN of

Y (z)

U(z)

Fig. 3. Sensitivity generation for parametera.

Fig. 4. Filter with feedforward parameterbi.

the systemS must have at leastN poles, and henceN states. �

Theorem 1 gives a lower bound on the additional states needed for
sensitivity generation. Note that it does not state that this lower bound
is achievable, and there may be situations where the minimum number
of additional states that are required can exceedN . Furthermore, we
are here interested in thecomplexityof the sensitivity generation, and
not simply the dimensionality of the system.

Theorem 2: Let G be given by an FGM that can model an arbitrary
N th-order transfer function

Y (z)

U(z)

by choice of parametersa1; � � � ; am. Then(G;S) requires a minimum
of 3N + 1 multiplications.

Proof: In order to set the2N+1 degrees of freedom in anN th-
order transfer function, we require that the number of parameters
m satisfiesm � 2N + 1. Eachai necessitates a multiplication in
the implementation ofG. By Theorem 1,S must have at leastN
poles. The minimal number of additional multiplications required to
implement these isN , yielding the total of3N + 1 multiplications
as a minimum for(G;S). �

We say thatG has lowest complexity if there is anS such that
(G;S) contains only3N + 1 multiplications, whereN is the order
of G and assuming that the poles ofG all have a dependence on the
parameters. In such a case,(G;S) is termed a lowest complexity
implementation. The following development establishes structural
requirements onG for it to have lowest complexity.

First, we examine necessary conditions on the way feedforward
parameters enterG for it to have lowest complexity.

Lemma 1: Let G be an orderN filter having feedfoward pa-
rametersb1; . . . ; bN+1, wherebi is a feedforward parameter if the
dependence ofG on bi is representable as shown in Fig. 4. ThenG
has lowest complexity only if for eachi = 1; . . . ;N+1, F i

2 contains
no multiplications and hence has no parametric dependence.

Proof: Suppose that(G;S) is a lowest complexity implementa-
tion. Let ( �G; �S) be the structure obtained by settingbi = 1 for each
i in (G;S). Since �G retainsN parameter dependent poles,�S hasN
multiplications. Thus,S has the same number of multiplications as
�S, and therefore cannot depend onfb1; . . . ; bN+1g.

With reference to Fig. 4, we observe that the sensitivity function
for bi isF i

2xi, so thatF i
2xi must be available from(G;S) by virtue of

(G;S) being lowest complexity. ClearlyF i
2xi is not available inG

unlessF i
2 = 1, in which caseF i

2 has no parametric dependence.
Suppose instead thatF i

2xi is in S, implying that F i
2 has been
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Fig. 5. Filter structure for lowest complexity implementations.

implemented withinS. We reason that in this caseF i
2 cannot depend

on any parameters. First, ifF i
2 depends on a feedforward parameter,

thenS has such a dependence, which is not possible. Second, suppose
F i
2 depends on a parameter that determines a pole location. The

sensitivity with respect to that parameter will require replication of
the pole that it influences, and will also be proportional tobi. These
two conditions together are incompatible withF i

2 being in S: to
avoid duplication of multiplications (which would result in excess of
N multiplications inS), the replication of the pole must occur within
the realization ofF i

2 producingF i
2xi, which forces a multiplication

by bi to occur inS. �

Remark 1: In most filter configurations, the only interestingF i
2

satisfying the requirements of Theorem 1 isF i
2 = 1. In that case,

y(k) =
N+1X

i=1

bixi(k) + y�b(k); (5)

wherey�b(k) does not depend on any of thebi parameters. In situations
wereF i

2 6= 1, it is always possible to modify the implementation to
incorporateF i

2 into F i
1, leaving the newF i

2 in the modification equal
to unity. Also, in most cases,y�b(k) = 0.

Theorem 3: If G is representable as shown in Fig. 5, thenG is
lowest complexity if and only if eachBij andFij satisfy the follow-
ing conditions. EachBij depends only on feedforward parameters,
is linear in those parameters, and contains no further multiplications.
EachFij depends only on feedback parameters, assembled in the
vector aij , and has minimum complexity. Furthermore, there must
exist a minimum complexity implemention forFij such that the
sensitivity ofzij with respect toaij is generated asSijzij.

Proof: First we address sufficiency. As per Lemma 1, the
conditions on eachBij make available the sensitivities with respect
to the feedforward parameters directly withinBij, as for instance
the xi values in (5), or from signals withinBij but without addi-
tional multiplications. The sensitivities with respect to the feedback
parameters inFij may be constructed asSijyij, with the number of
multiplications inSij equal to the dimension ofaij . This yields a
lowest complexity implementation.

For necessity, we begin by noting that Lemma 1 establishes that
all feedforward parameters inG must appear within theBij transfer
functions in Fig. 5 and that the required conditions onBij must be
satisfied. So, eachFij must depend only on feedback parameters.
If someFij is not lowest complexity, then neither isG. We further

Fig. 6. Recursively nested lowest complexity structure.

(a)

(b)

Fig. 7. Structures without the lowest complexity property. (a) Feedforward
across pick-off point. (b) Feedback around pick-off point.

argue that the sensitivities with respect toaij must be available as
Sijzij as claimed. LettingTij denote the transfer function between
zij andyij in Fig. 5, we see that the sensitivity ofy with respect to
aij must includeTij as a factor. To avoid replication ofTij in S, one
must exploit the availability ofTij in G, and this is possible only if
the sensitivity ofzij with respect toaij is available asSijzij. This
allowsSijyij to implement the sensitivity with respect toy, with Tij
appearing in the generation ofyij . �

The question then arises as to whether structures other than that
of Fig. 5 have lowest complexity. Technically, the answer is yes. For
instance, one possibility is the arrangement of Fig. 6, whereH is
a system of the form of Fig. 5 with the properties demanded by
Theorem 3. The key property of Fig. 5 that is preserved in this
variation is that the effects of a given set of feedback parameters
are isolated in one signal available inG, and that the sensitivities
with respect to those parameters can be obtained from that signal
in a lowest complexity fashion. For instance, in Fig. 6, the effects
of parameters inFi are isolated inyi; i = 1; 2, and the effects of
parameters inH remain isolated from those inF2 due to the parallel
construction.

Some structures that are not lowest complexity are shown in Fig. 7.
Here, the feedforward connectionF3 in Fig. 7(a) mixes the effects of
bothF2 andF3 in y2, and the feedback connectionF3 in Fig. 7(b)
mixes F1; F2, and F3 in y1. Connections such as these in the
lattice filter of [1] and [2] prevent their being lowest complexity
implementations.
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Fig. 8. Filter with cascaded feedback section.

III. CONSTRUCTING LOWEST COMPLEXITY IMPLEMENTATIONS

In order to construct lowest complexity implementations, we must
first isolate the feedforward parameters in theBij transfer functions
of Fig. 5. This is in general simplest to do by letting eachBij be a
tapped delay line of the form

NX

`=0

b`q
�`: (6)

We then need to develop lowest complexity building blocks to
implement theFij in Fig. 5. For this purpose, we identify two key
principles.

Cascaded Feedback ParametersSuppose that parametera enters
G in the fashion shown in Fig. 8. Such a parameter appears within
feedback that is in cascade with the remainder of theua to ya
transfer function. To relate Figs. 2 and 8, we haveG11 = F4F2F1;
G12 = F4F2; G21 = F3F2F1, andG22 = F3F2. It is straightforward
to show that

ya =
G11

1 + aG22

ua: (7)

Using (1) and (4), we have

@ya
@a

=
G12G21

(1 + aG22)2
ua: (8)

Noting that in this situationG11G22 = G12G21, and taking into
account (7), (8) becomes

@ya
@a

=
G22

1 + aG22

ya: (9)

Compare (3) to (9). In both we generate

@y

@a

from a signal obtained fromG passed through a transfer function, but
in (9) this transfer function depends only upon the local dynamics
G22 = F3F2, while (3) depends as well onG21 = F4F2, which
includes a potentially complex termF4. Furthermore, the sensitivity
generation of (9) is accomplished by filtering the output. If the system
of Fig. 8 represents one of theFij blocks in Fig. 5, then this manner
of sensitivity generation satisfies one of the requirements of Theorem
3.

Delay: If for two parametersai andaj we havexj(k) = xi(k�
�), then

@y

@aj
(k) =

@y

@ai
(k��):

In S, we need implement only

@y

@ai

and construct
@y

@aj

as a delayed version of

@y

@ai

Fig. 9. Direct-form II filter,G andS portions.

.
One may construct a prototypical building blockFij exploiting

these two features as follows. Let theua to ya transfer function of
Fig. 8 be

1

1�
PN

`=1
a`q�`

: (10)

With respect to Fig. 8, leta = a1; F1 = 1; F2 = 1=
PN

i=2 aiq
�i;

F3 = q�1, andF4 = 1. We then have

@ya
@a1

(k) =
F3F2

1 + a1F3F2
ya(k) =

q�1

1�
PN

i=1
aiq�i

ya(k) (11)

requiring N multiplications to implement. Fori = 2; � � � ;N , we
exploit the delay relationships and set

@ya
@ai

(k) =
@ya
@a1

(k � i+ 1)

.
In the context of Fig. 5, withFij given by (10), then the sensitivity

of y with respect to the parameters inFij is generated in the same
way, but with the operator in (11) acting onyij in Fig. 5, as discussed
in the proof of Theorem 3.

Thus, if eachFij in Fig. 5 is of the form of (10), and eachBij is
of the form (6), we then have a lowest complexity implementation.

IV. EXAMPLES

Lowest complexity implementation of direct-form, cascade-form,
and parallel-form are demonstrated below. As noted previously, the
lattice-form is not known to admit a lowest complexity implemen-
tation. Other implementations can be checked for the possibility of
lowest complexity sensitivity generation by comparing them with the
form of Fig. 5.

A. Direct-Form

A direct-form II implementation of anN th-order IIR filter is shown
in Fig. 9. This filter is essentially the configuration of Fig. 5 with
only F11 and B11 as nonzero transfer functions, and with these
implemented as (10) and (6), respectively. The prototypical sensitivity
generation for the denominator (feedback) parameters is shown in
Fig. 9. Note the total of3N + 1 multiplications in(G;S).

The direct-form I implementation, which is that typically given in
adaptive filtering texts, requires filtering of the inputs by the same
operator appearing in (11) in order to construct sensitivities for the
numerator parameters. The total number of multiplications becomes
4N + 2 (again exploiting delay relationships). By collapsing the
states of direct-form I into direct-form II, we obtain linearity in
the numerator parameters, as required, and the consequent lowest
complexity property follows.
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Fig. 10. Cascade-form filter,G-portion only.

Fig. 11. Tapped cascade-form filter.

Fig. 12. Tapped cascade,ith section with sensitivitygeneration.

B. Cascade-Form

In [5], Rao proposed the cascade-form implementation of Fig. 10.
We can interpret this via Fig. 5 by noting that theith second-order
section implementing two poles corresponds toF1i, with B

1;N
2

the
(N + 1)-order tapped delay and all otherB1i = 0. The sensitivities
with respect to theaij parameters are implemented in a fashion
similar to S in Fig. 9, with

@y

@ai1
(k) =

q�1

1� ai1q�1 � ai2q�2
y(k):

Noting that

@y

@ai2

is obtained from
@y

@ai1

via the delay relationship, we see that sensitivity generation for this
section requires two multiplications. The same is true for the other
(N=2) � 1 sections, for a total ofN . With the tapped delay line
implemented at the end of the cascade, its parameters enter linearly,
so no additional multiplications are need to yield those sensitivities.
The total of the multiplications comes to3N +1, indicating that this
is a lowest complexity adaptive IIR filter structure.

C. Parallel-Form

A lowest complexity parallel-form realization may be readily
constructed from a parallel combination of lowest complexity direct-
form II implementations of second-order sections. With respect
to Fig. 5, we would implementFi1 as (10) with N = 2, and
B11 = b10 + b11q

�1 + b12q
�2 and Bi1 = bi1q

�1 + bi2q
�2 for

i = 2; . . . ;N=2. All Fij andBij with j � 2 are set to zero, so we
have a basic parallel connection in Fig. 5. The output is of course
linear in the numerator parameters of all stages, so their sensitivities
are available inG. The sensitivities of the denominator parameters
for each parallel section are computed as for the direct-form II.
Each section thus contributes four multiplies to implement, plus two
multiplies for sensitivity generation, for a total of six. Multiply by
N=2 to sum the multiplies for all sections, and add one multiply
for the one direct feedthrough parameter, for a total of3N + 1
multiplications.

D. Tapped Cascade-Form

A novel implementation structure having lowest complexity can
be developed from Fig. 5 as follows. Let

Fi1(q
�1) =

(
q�1

1�ai1q
�1
�ai2q

�2
; i = 1

q�2

1�ai1q
�1
�ai2q

�2
; i = 2; . . . ;M

(12)

and

Bi1(q
�1) = bi0 + bi1q

�1
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and assume thatBij(q
�1) = 0 for j > 1. The principles of Section

III indicate that such a structure has lowest complexity. These choices
interpret Fig. 5 as a tapped cascade of second-order sections, as
shown in Fig. 11. It is shown in [10] that such a structure is able
to represent an arbitrary strictly proper transfer function of order
2M . A proper transfer function may be realized by including a tap
directly betweenu and y.

To implement theith section, consisting ofFi1 and the subsequent
“tap” transfer functionBi1, in lowest complexity form, we apply the
concepts given in Section 3. In particular, the sensitivities for the
parameters inBi1 will be available in its tapped delay line, while the
sensitivities for the parameters inFi1 can be constructed as discussed
below (10). One must be careful, however, to apply the filtering
operation of1=(1� ai1q

�1 � ai2q
�2) that is used in the sensitivity

generation only to the part of the outputy that is influenced by the
parameters in thei section. This is the reason why the signals from
the taps are summed from right to left in Fig. 11 (as is done for the
outputs ofBij in Fig. 5).

The resulting structure showing both theith section itself and
also its associated sensitivity generations is given in Fig. 12. Note
that the additional delays present inFi1 in (12) do not modify
this construction. Notice also that only two additional multiplies
occur in the sensitivity generation, indicating the lowest complexity
characteristic.

V. CONCLUSION

We have examined in this brief the problem of implementing
adaptive IIR filters with lowest complexity, as measured by the
number of multiplications used to generate the filter output and
additionally the sensitivities with respect to all adapted parameters.
We have shown that for an orderN filter, the minimum number
of such multiplications is3N + 1. We outlined some strategies for
obtaining a lowest complexity implementation, and applied these to
direct-, cascade-, and parallel-form implementations.
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On the Common Mode Rejection Ratio in Low Voltage
Operational Amplifiers with Complementary

N–P Input Pairs

Fan You, Sherif H. K. Embabi, and Edgar S´anchez-Sinencio

Abstract—Low voltage op amps with complementary N–P input differ-
ential pairs are known to suffer from low common mode rejection ratio
due to mismatch errors and the tail current switching between the N
and P input stage. To understand the contribution of the systematic and
the random common mode gains to the overall common mode rejection
ratio (CMRR) we studied three op amp topologies, which use N–P
complementary input differential pairs. A detailed small signal analysis
for each of them has been performed to compare their systematic and
random CMRR. The analysis shows that random CMRR caused by
mismatch does not depend on the topology, while the systematic CMRR
is topology dependent. It is also concluded that the CMRR of low voltage
op amps with N–P complementary input pairs will be ultimately limited
by the process mismatch and that the random CMRR will determine the
overall CMRR.

Index Terms—Common mode rejection ratio (CMRR), low voltage,
operational amplifier.

I. INTRODUCTION

There is a strong demand for lowering the supply voltage of analog
circuits including op amps. To increase the signal to noise ratio of
low voltage op amps, it is highly desirable to have a rail-to-rail input
voltage swing. N–P complementary pairs have been widely used in
the input stage of low voltage op amps to achieve a rail-to-rail input
voltage swing [1]–[8]. An advantage of using N–P complementary
differential pairs is that the op amps can be implemented in a standard
digital process. Fig. 1 shows a typical structure of a low voltage
op amp with N–P differential pairs. Using N–P complementary
input pairs will, however, degrade the common mode rejection ratio
(CMRR). This occurs while the tail current switches between the P
and N pairs. A CMRR as low as 40–55 dB has been reported in [4],
[6], and [7]. This brief presents a rigorous analysis of the CMRR of
low voltage op amps with N–P differential pairs. Three illustrative
topologies have been considered here. In Section II, a derivation of
the CMRR of the three op amp topologies with complementary N–P
pairs is presented. In Section III, we compare the systematic and
random CMRR of the different topologies. The random CMRR is
compared with the systematic CMRR in Section IV, to find which
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Fig. 1. An N–P complementary input stage with common mode cancellation
proposed in [1]—Topology I.

of them determines the overall CMRR for each of the topologies
under consideration. Finally, we verify the results of the analysis
with simulation and study the CMRR as a function of frequency.

II. DERIVATION OF COMMON MODE

GAIN OF THE LOW VOLTAGE OP AMP

The use of N–P complementary input pairs to achieve rail to rail
input swing may result in a variable transconductance of the input
stage—a property which severely affects the optimal compensation of
the op amp. In order to make the overallgm constant, the tail currents
Isn and Isp (in Fig. 1) are generated using a square-root current
source which maintains the sum of the square root of both currents
constant (

p
Isn+

p
Isp = constant) [1], [4]. If the input devices of the

differential pair operate in the weak inversion region, a current source
which maintains the sum of the two tail currents constant (Isn+Isp =
constant) [5], [6] is used to achieve a constantgm. The tail currents
Isp and Isn are, however, dependent on the common mode input
voltage (Vcm) as illustrated in Fig. 2. Both currents exhibit sharp
changes in magnitude as the tail current switches between the N and
the P pair. Although thegm may be constant, the CMRR is not.
Fig. 2 shows the simulation result of using a constant-gm input stage
with a square-root current source. A drop of at least 35 dB in the
CMRR can be observed. For the N-channel input stage, asVcm is
lowered towardVss, the NMOS which is acting as the current source
is pushed into triode region. This means that the resistance of the
current source decreases and that the common mode gain increases.
If Vcm is further lowered, the N-pair is completely turned off and
it will not contribute to the overall common mode gain. A similar
explanation applies for the P stage, and we will have an increase in
common mode gain when either current source operates in the triode
region.

In the following subsections, we present a detailed analysis of the
small signal differential and common mode gains of three op amp
topologies. All three have N–P complementary differential pairs. The
second stage is different for each topology. The first and the second
topology (Figs. 1 and 5) have been reported in [1]–[3], respectively.
We are proposing a third topology (Fig. 6) which is basically an
improved version of the second topology shown in Fig. 5. For each
circuit, we will derive the systematic CMRR, which is topology
dependent, and the random CMRR, which is a function of the process
mismatching.

Fig. 2. CMRR and tail currentIsn and Isp versusVcm.

Fig. 3. The half of the amplifier of Fig. 1 used for small signal analysis.

A. Topology I

The circuit topology shown in Fig. 1 has a special circuit (M4–M7)
whose function is to cancel the common mode current resulting from
the change of the tail current [1]. For the common mode gain analysis,
we will consider only one input pair as shown in Fig. 3. For the
N–P complementary input amplifiers, the overall small signal gain is
simply the summation of the gains of the two input pairs. The tail
currentIsp in the figure is assumed to be generated by a constant-
gm current biasing circuit. To maintain generality, we use a generic
model for the tail current generatorIsp in the small signal analysis.
Since the value of the tail current is dependent on the common mode
input voltagevcm, we may use a voltage controlled current source
Gmsvcm as its ac model. Note thatGms is a function of the dc
common mode input voltage. The finite output conductance of theIsp
current source is also accounted for through the use ofgos as shown
in Fig. 4. The conductance seen through the source ofM10 andM11

in Fig. 3 has been modeled asgex and gey as shown in Fig. 4. The
conductancegex andgey are fairly low because the resistance of the
loads connected to nodesa andb are very large. It can be shown that
gex and gey are in the order ofgo (1=rds) and notgm as expected
for small load resistance [9].

Note that the following analyses are carried out for the range of
Vcm where the tail currents (Isp andIsn) are switching. It is in this
current transition range where the CMRR becomes minimum.

In the CMRR analysis the input voltagesvi1 and vi2 are usually
expressed as functions of the differential and common mode inputs:

vi1 = vcm � 1

2
vdm (1a)

vi2 = vcm + 1

2
vdm: (1b)
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Fig. 4. Low frequency small signal model of the circuit shown in Fig. 3.

To simplify the analytical computation, the small signal model of the
amplifier shown in Fig. 4 is used to derive the nodal equations at
nodesx andy. If the node voltagesvx andvy could be expressed
in terms of the common mode gain (Acm) and the differential mode
gain (Adm) as follows:

vx = Admvdm +Acmvcm (2)

the CMRR can then be obtained by calculating (Adm=Acm). Note
that such a simplification in the small signal model will not affect
the accuracy of the CMRR analysis since the CMRR at output nodes
a or b is the same as the CMRR at nodesx or y. This is due to
the fact that both differential and common mode voltage signals at
nodesx (or y) will be amplified by the gain of the common gate
configuration ofM10 (or M11).

For the circuit topology in Fig. 1, the matching of the differential
pairs and that of the current mirrors are crucial for the performance
of the amplifier. As an example to demonstrate how mismatching
affects the common mode gain, we only consider the mismatching
betweenM1x (or M1y) andM2. Hence, we can make the following
assumptions

gm2 =2(1 + �)gm1x

go2 =2go1x

gm1x = gm1y

go1x = go1y

gm6 = gm7

= 1

2
gm5

gex = gey

go8 = go9:

The mismatching in the output conductance ofM1x (orM1y) andM2

is ignored because of its little significance on the analysis result. The
factor � may account for mismatching in the sizing,VT ; Kp, etc.
Based on (1), (2) and the assumptions above, the differential gain
(Adm) and common mode gain (Acm) can be solved for by using
MAPLE [10]. By ignoring the second order terms in the numerator
and denominator the following expressions forAdm andAcm can
be obtained:

Adm � gm2

2(gex + go1x + go8)
(3)

Acm =Acms +Acmr (4)

where

Acms � (go2 + go3)Gms

4gm4 (gex + go1x + go8)
(5a)

and

Acmr � �Gms

4(gex + go1x + go8)
: (5b)

The first term of (4) will be referred to as Systematic Common Mode
Gain (Acms), since it is independent of the mismatching. The second
term is a function of the mismatching and, hence, will be called
the Random Common Mode Gain (Acmr). Now we can express
the CMRR in terms of the systematic and random common mode
rejection ratios which are given by

CMRRs � 2gm2 gm4

Gms (go2 + go3)
(6)

CMRRr � 2gm2

�Gms

: (7)

The overall CMRR is given by

CMRR=
1

1

CMRRr

+
1

CMRRs

:
(8)

B. Topology II

To reduce the systematic common mode gain of Topology I, one
can use the circuit topology in [2] and [3] which is illustrated in
Fig. 5. This will be discussed in Section III. Following the same
procedure used to analyze the circuit in Fig. 1, we obtained the
following systematic and random CMRR’s:

CMRRs � 2gm2 gm4 gm6

Gms go6 (go2 + go4)
(9)

CMRRr � 2gm2

�Gms

: (10)

C. Topology III

The systematic CMRR of the second topology can be further
improved by introducing an extra gain stageAb, which for example
can be implemented using a simple noninverting amplifier, with
Miller compensation, as shown in Fig. 6. Care should be taken to
insure that this added stage will not degrade the high frequency
performance of the amplifier. It can be proven that the CMRR
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Fig. 5. An op amp with N–P complementary differential pairs [2], [3]—
Topology II.

Fig. 6. A low voltage amplifier with systematic CMRR enhancement—
Topology III.

improves byAb as shown by the following equation:

CMRRs � Ab

2gm2 gm4 gm6

Gms go6 (go2 + go4)
: (11)

The random CMRR, however, remains unchanged and is given by

CMRRr � 2gm2

�Gms

: (12)

III. COMPARISON OF THECMRR OF THE THREE TOPOLOGIES

Although each of the topologies has a scheme for systematic com-
mon mode current cancellation, yet, the accuracy of the cancellation
varies. In the first topology (Fig. 3), the common mode currentI1x
is supposed to be cancelled out throughI2x which is half of the
common mode currentI2. This is only true if all ofI2 is injected
into M4. Due to the finite conductance (go3) of M3, I2x will be
slightly less thanI2=2. Thus the cancellation is not exact even if the
mirror transistorsM5 andM6 are perfectly matched. In the case of
the second topology (Fig. 5), if we assume perfect matching between
M3 andM4, it can be easily seen that the common mode currentI2
will be exactly cancelled by the mirror ofI1. A similar explanation
can be given for Topology III. It is, hence, expected that the common
mode cancellation of Topologies II and III is more accurate than that
of Topology I. This implies that the systematic CMRR of II and III
will be superior to that of I which is confirmed by the analytical
expressions derived in Section II and summarized in Table I.

The similarity of CMRRr of the three different topologies can be
explained by using a more general amplifier model which is illustrated
in Fig. 7. In the figure, the block “I2�I1” is an abstract model for the
cancellation of the common mode current due toGms. A common
mode input (vcm) will generate a tail currentIsp = Gmsvcm.

Fig. 7. A general amplifier model with tail current variation and common
mode cancellation.

Assuming that there is mismatch (�) in the input differential pair
[i.e., gm2 = gm1(1 + �)], the current in the two input transistors
could be expressed asI1 = Gmsvcm=2 andI2 = Gmsvcm(1+ �)=2.
The difference between the currents of the two input transistors due
to Gmsvcm can be written as:�Icm = �Gmsvcm=2. A differential
input vdm will otherwise generate the following current difference:
�Idm = gmvdm, wheregm is the transconductance of the input pair.
Since the differential and common mode output voltages are given by
�IdmRout and�IcmRout, respectively, we can derive the following
generic expression for the random CMRR:

CMRRr =
Adm

Acm

=
2gm
�Gms

which is the same as (7), (10), and (12). This simple analysis confirms
that the CMRRr is topologies independent.

IV. COMPARISON BETWEEN SYSTEMATIC

CMRR AND RANDOM CMRR

It is interesting to note that both the systematic and the ran-
dom common mode rejection ratios are reciprocally proportional to
the common mode transconductance (Gms). To compare between
CMRRs and CMRRr , we first need to compare the magnitude of
Gms with that of go ’s and gm ’s. Gms is the rate of change ofIsp
(or Isn) whenIsp andIsn are switching. The expression ofGms is
Imax=(Vdd � Vss)�, whereImax is the maximum value ofIsp (or
Isn) and� is typically 0.5 or less (see Fig. 2). The typical value of
go is in the order of�Imax . Hence

Gms

go
� 1

��(Vdd � Vss)
:

For� = 0:01 andVdd = �Vss = 1:5 V and� = 0:5; Gms=go � 67.
Gms andgm are of comparable magnitudes. So, we may assume that

go < Gms � gm: (13)

Let us first ignore the mismatching. The minimum common mode
rejection is determined by the systematic common mode gain. Using
the inequality (13) we can determine the order of the CMRRs

for all three topologies as shown in Table I. For Topology I, the
CMRRs is in the order ofg2m=Gmsgo (25–35 dB), the CMRRs of
the second topology is in the order ofg3m=Gmsg

2

o (50–70 dB). The
third topology may have a CMRRs of the order of 70–95 dB. For
a typical mismatching factor (�) less than 1% [11], the CMRRr is
close to 40–60 dB.

For all three topologies, we now compare the CMRRs with
CMRRr to evaluate which of the two components limit the improve-
ment of CMRR. The ratios of CMRRs/CMRRr for all topologies is
summarized in Table I. For the first topology (Fig. 1), the ratio is less
than unity, which implies that the overall CMRR will be determined
by the low systematic CMRR. In the case of the second topology,
the CMRRs approaches the CMRRr. As for the third topology, the
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TABLE I
COMPARISON OF RANDOM AND SYSTEMATIC CMRR

CMRR / Topology I II III

CMRRs

2gm2gm4

Gms(go2 + go3)

O

�
g2
m

Gmsgo

�
� 25–35 dB

2gm2gm4gm6

Gmsgo6(go2 + go4)

O

�
g3
m

Gmsg2o

�
� 50–75 dB

2Abgm2gm4gm6

Gmsgo6(go2 + go4)

O

�
Abg

3
m

Gmsg2o

�
� 70–95 dB

CMRRr

2gm2

�Gms

O

�
2

�

�
� 40–60 dB

2gm2

�Gms

O

�
2

�

�
� 40–60 dB

2gm2

�Gms

O

�
2

�

�
� 40–60 dB

CMRRs

CMRRr

�gm2

(go2 + go3)
< 1

�gm4gm6

go6(go2 + go4)
� 1

Ab�gm4gm6

go6(go2 + go4)
> 1

Fig. 8. CMRR versus frequency with and without mismatching.

systematic CMRR exceeds the random CMRR, hence, the overall
CMRR will be determined by the CMRRr.

V. SIMULATION RESULTS

To verify the results of the above analysis, the CMRR of all
the three topologies has been simulated using HSPICE. The three
amplifiers were designed to have the same gain bandwidth product
of 3 MHz with 10 pF of capacitive load and the same low frequency
differential gain. First the systematic CMRR was simulated assuming
no mismatches. The result of the simulations are depicted in Fig. 8.
Note that the curves denoted as CMRRs (I), CMRRs (II), and CMRRs
(III) represent the systematic CMRR for Topologies I, II, and III,
respectively. From these three curves we can make the following
observations. First, the low frequency CMRRs of Topology I is the
lowest with 32 dB, the CMRRs of Topology II is 70 dB, and that
of Topology III is the largest with 84 dB. These numbers agree
with the theoretical analysis (see Table I). The second observation
is that the systematic CMRR of Topologies II and III drops beyond
10 kHz, but is still greater than that of Topology I even at 3 MHz.
The advantage of II and III over I in terms of CMRRs, however,
gradually diminishes as the frequency increase. To study the effect
of mismatching, the simulation was performed with 2% mismatch in
the input pair. The simulated total CMRR, which includes systematic
and random CMRR, is also shown in Fig. 8 as CMRR(I), CMRR (II)

and CMRR (III). It is interesting to note that Topologies II and III
have similar CMRR which is smaller than their systematic CMRR.
This confirms that the CMRR of these two topologies will be limited
by the random CMRR which is equal for all three topologies. As for
the first amplifier, the CMRRs is smaller than CMRRr and therefore
the total CMRR is slightly smaller than CMRRs.

The above theoretical analysis and simulation all confirm that the
systematic CMRR can be improved through topology modification.
By doing that, the random common mode gain becomes the ultimate
factor to determine the overall CMRR. The effect of mismatching on
the simulated CMRR for the circuits in Figs. 5 and 6 is illustrated in
Fig. 9. It is observed that the CMRR of the circuit in Fig. 6 is much
greater than that in Fig. 5, when the mismatching is small (below
0.1%). However, this is hardly realizable in practical amplifiers. The
topology with the systematic CMRR enhancement is useful only if
the transistor matching is very good. It is also observed from the
figure that both circuits have similar CMRR when the matching is
poor since the typical mismatching factor (�) is in the order of 0.1%
or more. It is expected that mismatching will be the dominant factor
in determining the CMRR.

VI. CONCLUSION

In this brief, the CMRR degradation problem in low voltage op
amps with N–P complementary pairs is discussed. A small signal
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Fig. 9. Effect of mismatching on the CMRR.

analysis revealed that the increase of both systematic and mismatch-
ing common mode gain in the low voltage op amp is due to the change
of the tail current of the N–P complementary pairs. The systematic
CMRR degradation can be improved by using suitable topologies.
However the common mode gain due to mismatching remains to be
a dominant factor which limits the CMRR improvement.
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