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Abstract. A cascode bridge circuit for monolithic switching DC-DC converters operating at high input voltages
is proposed in this paper. The proposed circuit can also be used as an I/O buffer to interface circuits operating at
significantly different voltages. The circuit technique permits the full integration of the active and passive devices
of a switching DC-DC converter with a high voltage conversion ratio in a standard low voltage CMOS technology.
The cascode bridge structure guarantees the reliable operation of deep submicrometer MOSFETSs without exposure
to high voltage stress while operating at high input and output voltages. With the proposed circuit technique,
steady-state voltage differences between the terminals of all of the MOSFETs in a switching DC-DC converter
are maintained within a range imposed by a target low voltage CMOS technology. High-to-low DC-DC converters
operating at input voltages up to three times as high as the maximum voltage that can be directly applied across
the terminals of a MOSFET are described. An efficiency of 79.6% is achieved for 5.4 volts to 0.9 volts conversion
assuming a 0.18 um CMOS technology. The DC-DC converter operates at a switching frequency of 97 MHz while

supplying a DC current of 250 mA to the load.

Key Words: low voltage DC-DC converters, monolithic voltage regulators, low voltage CMOS technology,

MOSFET reliability issues, high voltage stress

1. Introduction

Supply voltage scaling is an essential step in the tech-
nology scaling process. Two primary reasons for scal-
ing the supply voltage are to maintain the power density
of an integrated circuit below a limit dictated by avail-
able cost effective cooling techniques and to guaran-
tee the long term reliability of manufactured devices.
Microprocessors, with increased power consumption
and reduced supply voltages, demand greater amounts
of current from external power supplies, creating an
increasingly significant power generation and distri-
bution problem (both on-chip and off-chip) with each
new technology generation [1, 2, 4]. Energy efficient,
low noise power delivery has become increasingly
challenging with the advancement of integrated circuit
technologies.

*This research was supported in part by a grant from Intel
Corporation.

Voltages significantly higher than current board level
voltages will become necessary to efficiently deliver
greater levels of power to future high performance in-
tegrated circuits [1]. Distributing power at a higher volt-
age to the input pads of an integrated circuit reduces
the supply current. At a reduced supply current, re-
sistive voltage drops and parasitic power dissipation
of the off-chip power distribution network is reduced,
thereby enhancing the energy efficiency and quality of
the distributed voltage [1-3]. Once the required energy
reaches the input pads of a microprocessor, a lower
supply voltage for the microprocessor circuitry can be
generated by a monolithic DC-DC converter on the
same die as the microprocessor, as shown in Fig. 1.

Monolithic DC-DC conversion on the same die as
the load provides several desirable aspects [1, 2]. In a
typical non-integrated switching DC-DC converter (as
shown in Fig. 2), significant energy is dissipated in the
parasitic impedances of the circuit board interconnect
and among the discrete components of the regulator
[1, 2]. As microprocessor current demands increase,



232 Kursun et al.

Printed Circuit Board

AC-DC
Converter Voo

=

AV e S

oooooo

O0O000000000000d

Microprocessor

oood

Monolithic
DC-DC Converter I v
DDz

e

Ooooooooooon

OO0000000o00gooo

Fig. 1. High voltage off-chip power delivery and on-chip DC-DC conversion.
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Fig. 2. A standard off-chip buck converter circuit (Vpp1 < Vmax)-

the energy losses of the off-chip power generation in-
crease, further degrading the efficiency of the DC-DC
converters. Integrating both the active and passive de-
vices of a DC-DC converter onto the same die as a
microprocessor improves energy efficiency, enhances
the quality of the voltage regulation, and decreases the
number of I/O pads dedicated for power delivery on the
microprocessor die. Furthermore, by employing an in-
tegrated circuit technology, the reliability of the voltage
conversion circuitry can be enhanced, area can be re-
duced, and overall cost of the DC-DC converter can be
decreased as compared to a discrete DC-DC converter
[1,2].

Due to the advantages of high voltage power delivery
on a circuit board and monolithic DC-DC conversion,
next generation low voltage and high power micropro-
cessors are likely to require high input voltage, large
step down DC-DC converters monolithicly integrated

onto the same die. The voltage conversion ratios attain-
able with standard non-isolated switching DC-DC con-
verter circuits are, however, limited due to MOSFET
reliability issues. In a standard buck converter circuit,
as shown in Fig. 2, the input voltage Vpp, is limited
to the maximum voltage Vi.x that can be directly ap-
plied across the terminals of a MOSFET in a specific
fabrication technology. Provided that a DC-DC con-
verter is integrated onto the same die as a microproces-
sor (fabricated in a low voltage deep submicrometer
CMOS technology), the range of input voltages that
can be applied to a standard DC-DC converter circuit
is further reduced. A standard non-isolated switching
DC-DC converter topology such as the standard buck
converter circuit shown in Fig. 2 is, therefore, not suit-
able for future high performance integrated circuits.
High efficiency monolithic switching DC-DC convert-
ers that can generate very low operating voltages from
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Fig. 3. Cascode bridge circuit operating at an input supply voltage of Vpp1 = 3Vinax(Vbp3 = 2Vmax and Vppa = Vinax)-

a significantly higher board level distribution voltage
in a scaled nanometer CMOS technology are highly
desirable.

A cascode bridge circuit that can be used in a mono-
lithic switching DC-DC converter providing a high
voltage conversion ratio is proposed in this paper. The
proposed circuit can also be used as an I/O buffer to in-
terface circuits operating at significantly different volt-
ages. The cascode circuit, when used as part of a voltage
regulator, ensures that the voltages across the terminals
of all of the MOSFETs in a DC-DC converter are main-
tained within the limits imposed by an available low
voltage CMOS technology. With the proposed circuit
technique, high-to-low non-isolated switching DC-DC
converters have been designed based on a 0.18 pum
CMOS technology. An efficiency of 79.6% is demon-
strated for a voltage conversion from 5.4 volts to 0.9
volts while supplying 250 mA of DC current.

The paper is organized as follows. The cascode
bridge circuit is described in Section 2. The operation
and simulation results of the two voltage converters
based on the proposed circuit technique are described
in Section 3. Finally, some conclusions are offered in
Section 4.

2. Cascode Bridge Circuit

A cascode bridge circuit is described in this sec-
tion. The circuit can operate at input voltages higher

than the maximum voltage (Vinax) that can be ap-
plied directly across the terminals of a MOSFET in
a deep submicrometer low voltage CMOS technol-
ogy. The proposed cascode bridge circuit is shown in
Fig. 3.

The cascode bridge circuit generates an output sig-
nal swinging between ground and Vpp; (Vppr >
Vmax) from an input control signal swinging between
ground and Vpps. The cascode bridge circuit guar-
antees that the voltages applied between the gate-to-
source, gate-to-drain, gate-to-body, drain-to-body, and
source-to-body terminals of the MOSFETSs do not ex-
ceed the maximum voltage difference Vi,.x permitted
in a CMOS technology. As shown in Fig. 3, the input
supply voltage Vpp; can be as high as three times Vi«
while complying with steady state voltage constraints
across the terminals of all of the MOSFETs.

In Flg 3, VDDl = 3Vmax, VDDS = 2VmaXa and
Vbps = Vmax. The number of inverters that drive Nodeg
is even while the number of inverters that drive Nodeg
and Nodejo is odd. The proposed circuit behaves in
the following manner. When the input control signal
transitions low, Nodeg is pulled down to Vi,a.x. Nodeg
is pulled up to 3 Vinax, turning off P;. Nodeq is pulled
up to Viax, turning on N;. The output transitions low
through N3, N,, and N;. Node, and Node; are dis-
charged t0 Vipax + | Vip| and 2Viax + | Vip |, Tespectively.

When the input control signal transitions high,
Nodeg is pulled up to 2Vj,.x. Nodejg is pulled down
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Fig. 4. Proposed DC-DC converter circuit operating at an input supply voltage of Vpp1 =3 Vimax(Vbp3 =2 Vmax, VDD4 = Vinax, and Vppa <

Vbp1)-

to ground, cutting off N;. Nodes is pulled down to
2Vimax, turning on P;. The output is pulled up to
3Viax through P;, P,, and P;. Node, and Nodes are
charged to 2Viax — Vin and Vipax — Vi, respectively.
The source and body terminals of P,, P3, N,, and
N3 are shorted to ensure that the maximum permit-
ted source-to-body and drain-to-body junction reverse
bias voltages and the maximum permitted gate-to-body
voltage are not exceeded. With the proposed circuit
technique, voltage differences between the terminals
of all of the MOSFETs satisfy the steady-state voltage
constraints dictated by a low voltage process technol-
ogy while operating at high input supply and output
voltages.

3. Large Step-Down Non-Isolated Switching
DC-DC Converter

A step-down DC-DC converter based on the cascode
bridge circuit is presented in this section. The oper-

ation of the DC-DC converter circuit is described in
Section 3.1. Simulation results characterizing the max-
imum efficiency circuit configurations are presented in
Section 3.2. A charge recycling mechanism in the cas-
code bridge circuit that significantly reduces the energy
overhead of the proposed circuit technique is discussed
in Section 3.3.

3.1. Operation of the DC-DC Converter

A high-to-low DC-DC converter operating at an input
supply voltage of 3V, is shown in Fig. 4. The op-
eration of the DC-DC converter circuit behaves in the
following manner. The pull-up (P, P>, and P;) and
pull-down (N, N;, and N3) network transistors pro-
duce an AC signal at Nodes by a switching action con-
trolled by a pulse width modulator. The AC signal at
Nodes is applied to a second order low pass filter com-
posed of an inductor and a capacitor. The low pass filter
passes the DC component of the AC signal at Nodes



to the output. A small amount of high frequency har-
monics (assuming the filter corner frequency is much
smaller than the switching frequency f; of the DC-
DC converter) generated by the switching action of the
MOSFETs also reaches the output due to the nonideal
characteristics of the output filter.

The output voltage Vppy(t) is

Vop2(t) = Vo2 + Viipple(t), (1

where Vpp; is the DC component of the output voltage
and Viippie(t) is the voltage ripple waveform observed
at the output due to the nonideal characteristics of the
output filter.

The DC component of the output voltage is

1 T;
Vbp2 = 7/ Vs(t)dt = DVppy, ()
s JO

where V(¢) is the AC signal generated at Nodes and 7,
D, and Vpp, are the period, duty cycle, and amplitude,
respectively, of V,(¢). As given by (2), any positive DC
output voltage less than Vpp; can be generated by the
proposed DC-DC converter by varying the switching
duty cycle D of the pull-up and pull-down network
transistors.

3.2. Simulation Results

Two high-to-low DC-DC converters have been de-
signed based on the cascode bridge circuit. The max-
imum voltage that can be applied across the terminals
of a MOSFET (Vjax) for a specific 0.18 um CMOS
technology is 1.8 volts. The DC-DC converter shown
in Fig. 4 provides 5.4 volts (3 Viyax) t0 0.9 volts (Vinax/2)
conversion while supplying 250 mA per phase DC cur-
rent to the load.

Another DC-DC converter circuit has been designed
for 4.5 volts (2.5 Vjpax) t0 0.9 volts (Via/2) conversion
using a similar circuit topology as shown in Fig. 4. For
the 2.5Vax to Vimax/2 conversion, Vpps and Vppy are
1.7Vmax and 0.8 Vinax, respectively, in order to enhance
the gate drive of P, P, and P; and to further reduce
the voltage stresses across the terminals of Ny, N;, and
Ns.

Both DC-DC converters have been simulated assum-
ing a 0.18 um CMOS technology. Circuit parameters
are optimized to maximize efficiency while satisfying
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Table 1. Circuit characteristics of the maximum efficiency DC-
DC converters.

2.5Vimax —> Vinax/2  3Vmax —> Vinax/2

Conversion ratio 51 6:1)
Vbp1 (volts) 4.5 54
Vbp2 (volts) 0.9 0.9
Vbps (volts) 3.0 3.6
Vbp4 (volts) 1.5 1.8
Lour (MA) 250 250
Max n(%) 79.4 79.6
fs (MHz) 97 97
C (nF) 3 3
L (nH) 14.8 15.5
Wn1 (mm) 52 5.3
Wp; (mm) 7.2 4.8
Total transistor 41.3 34.1
width (mm)
Iypps (LA) 7.6 —178
Iypps (LA) 205 —186

the output voltage and current requirements. The effi-
ciency of a DC-DC converter is

Pload

n=100x —=
P load + P, internal

3

where P4 1S the average power delivered to the load
and Pineernar 1S the average power dissipated in the inter-
nal parasitic impedances of a DC-DC converter. The
optimized circuit configurations offering the highest
efficiency are listed in Table 1.

As listed in Table 1, an efficiency of 79.6% is
achieved with the proposed DC-DC converter circuit
for 5.4 volts to 0.9 volts conversion. The circuit oper-
ates at a switching frequency of 97 MHz. The filter ca-
pacitor and inductor of this maximum efficiency circuit
configuration are 3 nF and 15.5 nH, respectively. Simi-
larly, an efficiency of 79.4% is observed for 4.5 volts to
0.9 volts conversion. The parasitic energy dissipation
within the DC-DC converter is greater as the parasitic
series resistances of the MOSFETs increase when the
input supply voltage Vpp, is reduced from 5.4 volts to
4.5 volts. The efficiency achievable with the proposed
DC-DC converter circuit is, therefore, slightly reduced
when the conversion ratio is decreased from 6:1 to 5:1.
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3.3. Charge Recycling Mechanism

These high efficiencies achieved for such high volt-
age conversion ratios (6:1 and 5:1) are attributed to a
charge recycling mechanism that exists in the cascode
bridge circuit. At any time during a state changing tran-
sition of the pulse width modulator output (irrespec-
tive of the direction of the transition), a portion of the
charge required by the inverters to drive Nodeg orig-
inates from discharging the parasitic capacitances of
the gate drivers of P; rather than from the power sup-
ply Vbps. Similarly, a significant portion of the charge
required by the gate drivers of N; for a low-to-high
output transition originates from discharging the out-
put parasitic capacitances of the gate drivers of P; and
N3 rather than from the power supply Vpps. Most of the
charge drawn from Vpp; during the low-to-high output
transition of the buffers driving P; is initially recycled
for use inside the buffers driving Nodeg. This charge is
eventually recycled for use within the buffers driving
N before finally being discharged to ground.

As listed in Table 1, the average current drawn from
Vbps and Vppy is significantly smaller than the load
current. The energy overhead of the two extra refer-
ence voltages required to properly operate the cascode
bridge circuit is, therefore, small. Vpp3 and Vppy can be
generated by simple integrated linear regulators with-
out significantly affecting the overall efficiency of the
DC-DC converters. For 5.4 volts to 0.9 volts conver-
sion, the average current supplied by Vpp3 and Vppg are
negative, meaning that the two extra power supplies es-
sentially sink rather than supply current. For 4.5 volts
to 0.9 volts conversion, the average current supplied by
Vops and Vppg are 7.6 1A and 205 pA, respectively.
The primary purpose of Vppz and Vppy4 is, therefore,
to maintain the voltages at Node; and Nodeg at 2V«
and Vipax (1.7 Vinax and 0.8 Vi« for 4.5 volts to 0.9 volts
conversion), respectively, rather than supplying current
to the switching gate drivers.

4. Conclusions

A cascode bridge circuit for use in a monolithic switch-
ing DC-DC converter with a high voltage conversion
ratio is proposed in this paper. The circuit can also
be used as an I/O buffer to interface circuits operat-
ing at significantly different voltages without creating
any MOSFET reliability issues due to the high voltage
stress. The proposed circuit, when used as part of a

voltage regulator, ensures that the voltages across the
terminals of all of the MOSFETs in a monolithic DC-
DC converter are maintained within the limits imposed
by available low voltage CMOS technologies.

High-to-low DC-DC converters have been designed
based on the cascode bridge circuit. Reliable operation
of the DC-DC converters operating at an input supply
voltage up to three times as high as the maximum volt-
age (Vimax) that can be directly applied across the ter-
minals of a MOSFET is verified assuming a 0.18 um
CMOS technology. The energy overhead of the pro-
posed circuit technique is low due to a charge recycling
mechanism in the MOSFET gate drivers. An efficiency
of 79.6% is demonstrated for a voltage conversion from
5.4 volts to 0.9 volts while supplying 250 mA of DC
current.
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