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Ramp Input Response of RC Tree Networks
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Abstract. Closed form expressions are presented to accurately describe the delay characteristics of RC tree networks.
The Penfield-Rubinstein-Horowitz approach to estimating the step function response of RC trees has been extended
to consider ramp inputs. This result improves timing accuracy by considering the shape of the input waveform
driving each individual interconnect tree while maintaining computational simplicity for use in the automated timing

analysis of complex VLSI circuits.
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I. Introduction

RC trees are common structures in digital integrated
circuits within both the control and the data portions
of a circuit; for example, the clock distribution net-
work and the network connecting the logic gates driv-
ing multiple fanout. The RC tree analysis approach
originally presented by Penfield and Rubinstein [1, 2]
has been applied to structures of the form shown in Fig-
ure 1. A section of a uniform resistance-capacitance
(URC) line of total series resistance R, and total shunt
capacitance C, can be represented by an unbalanced
m network of m series resistors of value R,/m and
m + 1 shunt capacitors of value C,/m 4+ 1 connected
to ground from the input and output nodes of the sec-
tion of line and the junctions between the series re-
sistors. The Penfield-Rubinstein analysis as originally
reported and subsequently applied describes results for
step function input signals, although it was noted ex-
plicitly that one might apply convolution to deal with
other inputs. Non-step inputs, such as aramp input [3],
have been considered when evaluating the delay char-
acteristics of URC lines, but have not until now been
considered in RC trees [4]. In this paper, an equation
has been derived for the approximating function used
in the RC tree analysis on the assumption of a ramp in-
put, and upper and lower bounds corresponding to the
same input waveform are presented. The ability to deal
with ramp input signals of varying slope is viewed as a
more realistic approach to practical problems of inter-
est rather than limiting consideration to a step function
excitation.

In section II, the original RC tree analysis and its ex-

tension to deal with ramp input signals are considered.
The principal results are presented in tabular form for
convenience. The calculations involved are illustrated
in section III by a specific example having the form
of Figure 1. Some concluding remarks are made in
section I'V.

I1. Time Responses in the RC Tree Network

A convenient basis for outlining the problem to be an-
alyzed is provided in Figure 1. The input signal is as-
sumed to be a unit ramp function, normalized to Vpp,
which begins at ¢t = 0. After modification by pas-
sage through a section of distributed RC interconnect,
the signal appears at a node along the tree. From the
Penfield-Rubinstein approach, the signal may be writ-
ten as a simple exponential change from 0 to 1 volts,
starting at ¢ = 0. For convenience in determining the
signal at its output (leaf node), the input signal is re-
placed by an equivalent ramp defined in terms of aramp
slope of k; volts per second and a time at which the
equivalent ramp waveform begins, assumed initially to
be at r = 0 (see Figure 2). The objective of the analy-
sis is to determine the time after ¢ = 0 at which the
waveform at a particular output node reaches the level
of 0.50 normalized volts. Thus, the desired solution
is obtained by computing the time response at the out-
put of a section of interconnect represented by an RC
network whose input is a normalized ramp function
changing from 0 to 1.0 volts.

Calculations of the response of the sections of in-
terconnect are made based on the work of Penfield,
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Fig. 2. Input ramp function.

Rubinstein, and Horowitz (PRH) [1, 2], Horowitz [5],
and Wyatt and collaborators [6-11]. For a unit step
function input, the work reported shows that one can
approximate the time response at a node i in a tree of
RC interconnect as [10]

vi(t) =1 —eTor . (1)
Here Tp; is given by [2]

Tpi=) RuCe (2)
k

R;; is defined as the resistance of that portion of the
unique path between the signal source and node i that
is common with the unique path between the signal
source and node k. Cy is the lumped capacitance be-
tween node £ and ground. Furthermore, in the refer-
ences cited, upper and lower bounds on the time re-
sponse (for a step function input) were developed and
are given as (3) through (7) in Table 1.

The quantities Tg; [2] and Tp; [11] which appear in
the equations in Table 1 are defined as
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where R;; (Ry) is the resistance along the unique path
between the signal source and node i (node k). A leaf
node is that node which represents a final destination
of the RC tree; in the resistance tree it is a node that
has only one resistance connected to it.

Wyatt and Standley [11] have shown that replacing
Tp in the original PRH bounds by Tp; gives tighter
bounds on the time response. They also noted that v; (£)
perforce lies between the upper and lower bounds. Due
to this last fact, it is important to calculate the upper and
lower bounds to determine how well (1) approximates
the desired response.

By convolving the step function response v; (¢) with
the derivative of a ramp input of slope k; starting at
t = 0 and ending at t; = 1/k;, the expression for the
approximating function y; () to the response produced
at node i by a ramp input signal can be obtained. The
result is

t Tpi

3ty = — = (1 =)

fort <. (10)
n 1

Tde’ AL e
yi)=1- 2™ —De™  fortzn. (1)
|

Before proceeding further, however, it is of interest
to note that the same convolution process applied to (1)
to produce (10) and (11) for the ramp input can also
be applied to the upper and lower bounds to the step
function response. The results are corresponding upper
and lower bounds for the response to a ramp starting
at t = 0 with slope defined by k;1; = 1. These results
are given as (12) through (21) in Table 1.

The derivative of the approximating function dy; /dt
evaluated at the value of time for which y; (1) = 0.50 is
the slope k, which can be used to represent the wave-
form shape of the signal at the output of the intercon-
nect by an equivalent input ramp of slope k;. The slope
relationships are given below:

ayi(t)

o =k =kl —eT™)  fort<t, (22)
dyi(t o
};,r( ) =k, =ki(1 —eT™i)e™ forr =1, (23)

where f; is the amount of time greater than #; (where
= 1/k).
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Table 1. Time Response Through RC Tree Network.
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To determine the value of ¢t = ¢, at which y; (1) =
0.50, it 1s convenient to introduce the normalized time
u = t/Tp;. Then the value of u at which y;(t) = 0.50
is given by the solution of

fwy=u—-1+e" (24)

with

fu) = (25)

2kiTp;

For values of f(u) > 3.5, a good approximation to
u = u, which satisfies the equation is

1
2k;i Tp;

(26)

u, =1+

and

: 1 5|
to = Tpitte = Tp; + 2%, = Tpi + 2
is the value at which y; () = 0.50.

When the numerical values do not permit this ap-
proximation, an alternative approach is suggested by
Figure 3. The abscissa shows values of the normal-
ized time variable u = ¢/Tp,;. The left ordinate is
the normalized variable f(u) = y;(t)/k;Tp;, while
the right ordinate is the normalized variable f'(u) =
(1/ki)(dy;/dt). Thus, for an arbitrary value of nor-
malized value y;(¢) and known values of the slope of
the input ramp (k;) and interconnect characteristic Tp;,
the transcendental equation (24) can be solved directly
by iteration or by the use of Figure 3.

(27

The slope of the equivalent ramp signal at the output
of the section of interconnect ko (which might be at a
leaf node) is given by dy; (f)/dt evaluated at y; (1) =
0.50. Thus,

ko = ki(1—e™)

fort <1, (28)

where u,, satisfies (24). This equivalent ramp starts at
a time delay from the start of the input ramp to the
interconnect of amount

Tic = u,Tp; {1

1
e o I

For values of f(u) given by (24) > 3.5, the last two
results become

(30)

Tic = Tp;

(3D

III. IMustrative Example

To illustrate the application of these results, delay cal-
culations are presented for the RC tree network shown
in Figure 4. Nodes i, j, and k represent the leaf nodes
of the RC tree. Other assumed element and param-
eter values are indicated in Figure 4. The upper and
lower bounds and the approximate delay from the sig-
nal source to node i are plotted in Figure 5. Further,
these curves are compared to the exact solution derived
from circuit simulation defined at the 50% point.
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Fig. 3. Normalized response of ramp driven interconnect.
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Fig. 4. RC tree network example.

IV. Conclusions

In this paper, the Penfield, Rubinstein, and Horowitz
algorithm (PRH) has been extended to handle ramp as
well as step function inputs and utilizes enhancements
by Standley and Wyatt which tighten the bounds on the
time response. The approximating function y; (t), the
upper and lower bounds, and the outputramp dv; (¢) /dt
are developed for an RC tree with a ramp input. Thus,
this paper provides a more accurate, systematic ap-
proach for analyzing RC tree networks in high perfor-
mance applications for use in the automated analysis
of complex VLSI circuits.
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Fig. 5. Upper and lower bounds and approximate solution for node
i as compared to the exact solution derived from circuit simulation.
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