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Abstract - Closed form expressions are presented to accu-
rately describe the delay characteristics of RC tree networks.
The Penfield-Rubinstein-Horowitz approach to estimating the
step function response of RC trees has been extended to consider
ramp inputs, This improves timing accuracy by considering the
shape of the input waveform driving each individual intercon-
nect tree while maintaining computational simplicity for use in
the automated timing analysis of complex VLSI circuits.

I. INTRODUCTION

The RC trec analysis approach originally presented by
Penfield and Rubinstein [1,2] has been applied to structures of
the form shown in Figure 1 in which a section of a uniform
resistance-capacitance (URC) line of total series resistance R
and total shunt capacitance C, can be represented by an unbal-
anced w network of m series resistors of value R /m and m+1
shunt capacitors of value C /m+1 connected to ground from the
input and output nodes of the section of line and the junctions
between the series resistors. The Penficld-Rubinstein analysis
as originally reported and subsequently applied describes re-
sults for step function input signals, although it was noted
explicitly that one might apply convolution to deal with other
inputs. In this paper, an equation has been derived for the
approximating function used in the RC tree analysis on the
assumption of a ramp input, and upper and lower bounds
corresponding to the same input waveform are presented. The
ability to deal with ramp input signals of varying slope is viewed
as a more realistic approach to practical problems of interest
rather than limiting consideration to a step function excitation.

In section II, the original RC tree analysis and its extension
to deal with ramp input signals are considered. The principal
results are presented in tabular form both for convenience and to
save space. The calculations involved are illustrated in section
III by a specific example having the form of Figure 1. Some
concluding remarks are made in section IV.

II. TIME RESPONSES IN THE RC TREE NETWORK
A convenient basis for outlining the problem to be analyzed
isprovided in Figure 1. The input signal is assumed to be a unit
ramp function, normalized to V,,,, which beginsat ¢ = 0. After
modification by passage through a section of distributed RC
interconnect, the signal appears at anode along the tree. From
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Figure 1: Distributed RC tree network

the Penfield-Rubinstein approach, the signal may be written as
a simple exponential change from 0 to 1 volts, starting at ¢ = 0.
For convenience in determining the signal at its output (leaf
node), the input signal is replaced by an equivalent ramp
defined in terms of aramp slope of k, volts per second and a time
at which the equivalent ramp waveform begins, assumed
initially to be at t = 0. The objective of the analysis is to
determine the time after t = 0 at which the waveform at a
particular output node reaches the level of 0.50 normalized
volts. Thus, the desired solution is obtained by computing the
time response at the output of a section of interconnect repre-
sented by an RC network whose input is a normalized ramp
function changing from 0 to 1.0 volts.

Calculations of the response of the sections of interconnect
are made based on the work of Penfield, Rubinstein, and
Horowitz (PRH) [1,2], Horowitz [3], and Wyatt and collabora-
tors {4-9]. For a unit step function input, the work reported
shows that one can approximate the time response at anode i in
a tree of RC interconnect as [8]

-

T
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Here T, is given by [2]
Tpi= 2RuCi . @

R,, is defined as the resistance of that portion of the unique path
between the signal source and node i that is common with the
unique path between the signal source and node k. C, is the
lumped capacitance between node k and ground. Furthermore,
in the references cited, upper and lower bounds on the time
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response (for a step function input) were developed and are
given as (3) through (7) in Table 1.

The quantities T, [2] and T, [9] which appear in the
equations in Table 1 are defined as
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where R, (R,,) isthe resistance along the unique path between the
signal source and node i (node k). A leaf node is that node which
represents a final destination of the RC tree; inthe resistance tree
it is a node that has only one resistance connected to it.

Wyatt and Standley [9] have shown that replacing 7, in the
original PRH bounds by T, gives tighter bounds on the time
response. They also noted that v(z) perforce lies between the
upper and lower bounds. Due to this last fact, it is important to
calculate the upper and lower bounds to determine how well (1)
approximates the desired response.

By convolving the step function response v(¢) with the
derivative of a ramp input of slope k, starting at = 0 and ending
at¢, = 1/k, the expression for the approximating function y(z) to
the response produced at node i by a ramp input signal can be
obtained. The result is

-~
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Vi) = =2 (1-€) for 1<, (10)
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yi(t) = 1- TD‘(eTD‘ I)eTD‘ for 121, an

Before proceeding further, however, it is of interest to note
that the same convolution process applied to (1) to produce (10)
and (11) for the ramp input can also be used on the upper and
lower bounds to the step function response. The results are
corresponding upper and lower bounds for the response to a
ramp starting at¢ = 0 with slope defined by k¢, = 1. These results
are given as (12) through (21) in Table 1.

The derivative of the approximating function dy/dt evalu-
ated at the value of time for which y () = 0.50 is the slope which
can be used in the representation of the waveform shape of the
signal at the output of the interconnect by an equivalent input
ramp of slope k. The slope relationships are given below:
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where ¢, is the amount of time greater than ¢, (where ¢, = 1/k)).
To determine the value of 1 = ¢ at which y(t) = 0.50, it is
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convenient to introduce the normalized time u = /T,,. Then the
value of u at which y,(1) = 0.50 is given by the solution of

fw)=u-1+e* (24)
with

fw) =5 (25)

For values of f{u) > 3.5, a good approximation to u = u_ which
satisfies the equation is

1
o = 14 5T 26)
and
= _I_ 4
to= Toitho = Tpi+ 3 = Tty @7

is the value at which y (1) = 0.50.

When the numerical values do not permit this approxima-
tion, an alternative approach is suggested by Figure 2. The
abscissa shows values of the normalized time variable u = /T ,,.
The left ordinate is the normalized variable f(u) = y(t)/kT,,,
while the right ordinate is the normalized variable f(u) = (1/
k)(dy/dt). Thus, for an arbitrary value of normalized value y(1)
and known values of the slope of the input ramp (k) and
interconnect characteristic T, the transcendental equation (24)
can be solved directly by iteration or by the use of Figure 2.
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Figure 2: Normalized response of ramp driven interconnect

The slope of the equivalent ramp signal at the output of the
section of interconnect k, (which mightbe ataleaf node)is given
by dy(t)/dt evaluated at y(¢) = 0.50. Thus,

ko=ki(1-€) fort<i, (28)

where u_ satisfies (24). This equivalent ramp starts at a time
delay from the start of the input ramp to the interconnect of
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amount

1
Tic=u, Ipi| 1 - —————
fc=Ho [ 2kiTor(1 - € )] (29)
For values of f{u) given by (24) > 3.5, the last two results become
k, =k (30)
Te = Ty, (31)

III. ILLUSTRATIVE EXAMPLE

To illustrate the application of these results, delay calcula-
tions are presented for the RC tree network shown in Figure 3.
Nodes i, j, and k represent leaf nodes of the RC tree. Other
assumed element and parameter values are indicated in Figure
3. The upper and lower bounds and the approximate delay from
the signal source to node i are plotted in Figure 4. Further, these
curves are compared to the exact solution derived from circuit
simulation defined at the 50% point.
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Figure 3: RC tree network example

IV. CONCLUSIONS

In this paper, the Penfield, Rubinstein, and Horowitz
algorithm (PRH) has been extended to handle ramp as well as
step function inputs and utilizes enhancements by Standley and
Wyatt which tighten the bounds on the time response. The
approximating function y 1), the upper and lower bounds, and
the output ramp dy(t)/dt are developed for an RC tree with a
ramp input. Thus, this paper provides a more accurate, system-
atic approach for developing and analyzing RC tree networks in
high performance applications.
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Figure 4; Upper and lower bounds and approximate solution
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circuit simulation
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