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Abstract— This paper considers the problem of deter-
mining an optimal clock skew schedule for a synchronous
VLSI circuit. A novel formulation of clock skew schedul-
ing as a constrained quadratic programming (QP) problem
is introduced. To evaluate the reliability, a quadratic cost
function is introduced as the Euclidean distance between a
specified ideal schedule and a feasible clock schedule. Un-
like previous work, the algorithms presented here can be
employed to obtain specified target values of the clock de-
lays/skews within a circuit, such as for example, the clock
delays/skews for the I/O registers. An eflicient mathe-
matical algorithm is derived for the solution of the QP
problem with O{r?) run time complexity and G(r?) stor-
age complexity, where r is the number of registers in the
circuit. The algorithm is implemented as a C++ program
and demonstrated on the ISCAS’89 suite of benchmark
circuits as well as on a number of industrial circuits. The
research described here yields additional insights into the
correlation between circuit structure and circuit timing
by characterizing the degree to which specific signal paths
limit the overall performance and reliability of a circuit.
This information is therefore applicable to logic and archi-
tectural synthesis.

I. INTRODUCTION

This paper addresses the task of determining & non-
zero clock skew schedule that satisfies the tighter timing
constraints of high speed, VLSI complexity systems. The
primary objective of the clock skew scheduling algorithm
presented in this paper is {o maximize the tolerance of
the circuit to process parameter variations. The con-
cept of a permissible range, or a valid interval, for the
clock skew of each local data path is key to the approach
presented here. From a reliability perspective, the ideal
clock schedule corresponds to each clock skew within the
circuit being at the center of the rospective permissible
range. However, this ideal clock schedule is net prac-
tically implementable because of limitations imposcd by
the connectivity among the registers within the circuit.

The development of a clock schedule in the approach
described here is accomplished by first choosing an objec-
tive clock skew value for each local data path. A consis-
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tent clock skew schedule is determined by application of
the optimization algorithm described in this paper. This
algorithm minimizes the least square error between the
computed clock skew schedule and the objective clock
skew schedule. As in previous work [1-5], a secondary
objective of the clock skew scheduling algorithm is to in-
crease the system-wide clock frequency.

The paper hegins with reviewing the circuit graph
model in Section IT. The formulation of the clock skew
scheduling problem as a quadratic programming prob-
lem is discussed in Section III along with the mathemat-
ical procedures used to solve the QP problem. Results
based on ISCAS benchmark and industrial circuits are
presented in Section TV and some conclusions are briefly
offered in Section V.

II. BACKGROUND

Certain properties of a fully synchronous digital sys-
tem are outlined in this section. Specifically, the timing
propertles of these systems are described in Section [I-A
and the graph model used to represent these systems is
described in Section II-B.

A. Timing properties of a synchronous system

An abstract view of a fully synchronous system is
shown in Fig. 1. All signal propagation paths within the
Combinational Logic are from the input to the outpus. Al-
ternatively, no purely combinational paths exist through

data in —31 Combinational Logic [ data out

Clocked Logic

[CIock Distribution Networkl

Fig. 1. A fully synchronous system

the Clocked Logic—all incoming signals pass through one
or mare registers before reaching the input of the com-
binational logic. The Clocked Logic does not necessarily
consist only of discrete registers. Consider a clocked in-
tellectual property (IP) block, for example, where the IP
internal structure is hidden but each input signal of the
IT block is known to latch into a register. With sufficient
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timing information—a) the setup and hold times for the
latched inputs, and (b) the delays of the paths starting
at an internal register and ending at an output—such IP
blocks can be viewed as ‘generalized registers’ and suc-
cessfully used without exposing the internal circuitry of
these blocks.

An example of a local data paih [3] (a scquentially-
adjacent pair of registers) delimited by the registers R;
and R; is shown in Fig. 2. Such local data paths are
characterized by a minimum and a maximum signal prop-
agation delay from Q; to Dy. The clock signals C; and Cy

Register R; Register Ry
DT, Q; Dy b Q Q
Data In Data Logic Data Data Qut
C C
A A

Clock C;t Clock C¢t

Fig. 2. A local data path

are delivered to R; and Ry with delays #i, and tf;, respec-
tivaly, where the algebraic difference, tly — th, is known as
the clock skew [1,4,5]. Note that depending on the path
direction and #, and tf;, the clock skew as defined above
may be negative, zero, or positive (8]

The precise temporal relationships among the C, D,
and @ signals in a local data path depend on many fac-
tors, including the particular types of registers employed
(for an in-depth treatment see [5,6])- In the majority of
cases, however, these timing relationships may be trans-
lated into an interval of values which the clock skew may
assume [1,5]. A permissible range (7] is associated with
each local data path—a clock skew schedule is feasible
if each local clock skew is within the path specific per-
missible range. Note that the permissible range of each
local data path is guaranteed to include the zero clock
skew value although this clock skew value may be non-
optimal [8]. Thus, most synchronous circuits are designed
to satisfy global zero clock skew. A great deal of effort
has been applied in the design of clock distribution net-
works which maintain global zero clock skew across the
circuit [5].

B. Circuit model

The research described in this paper is based upon
a conmected undirected graph [9,10] model of a syn-
chronous circuit. Formally, the graph Gc of a circuit C
with r registers and p local data paths is the six-tuple
Ge = (V(@), E©) A@) 1O 1O 1), where VIO =
{v1,...ur}y E©) = {e,...ep}, and A0 = [aéf)]rw are
the set of vertices, set of edges, and symmetric adjacency
matrix of ¢, respectively. Each vertex from V4O rep-
resents a generalized register of C, i.e., either a discrete
register or any block with an individually controlled clock
signal, Each edge from E(©) corresponds to a local data

path from one generalized register to another register.
The mappings, h§C) s BlO s R and hffj) - E©) oy R,
to the set of real numbers R assign the lower and upper
clock skew bounds, Ik, ur € R, respectively, for ex € E.
The edge labeling h&o) defines a direction of signal prop-
agation for each edge ve, ez, Uy such that the clock slkew
is 8, = t} — . For brevity, the superscript () is omit-
ted for the remainder of the paper unless a circuit must
be explicitly indicated, while the terms, register /vertex
and edge/local data path, are used interchangeably. A
simple example of the graph ¢ of a circuit with r = 5
registers and p = 6 local data paths is shown in Fig. 3—
note the permissible range [/, u] and the direction of the
arcow labeled on each edge.

Fig. 3. A circuit graph—edges from the spanning tree are thicker

A graph is built based on a circuit by adding a vertex
per register and a properly labeled cdge per local data
path with two notable exceptions. By construction, G has
no loops or parallel edges, i.e., G 18 a simple graph [10].
Loops Vg, €y, Yy are discarded except for asserting that
gero clock skew is within the loop permissible range
[ty,u,]. Multiple edges are eliminated by using the graph
transformations depicted in Fig. 4. Specifically, two-edge

lz’ z!
[ » W ] lz.,uz:]ﬂ[—uz”a_lz”]

[Iz” s "u,zn]

{a) Graph transformation rule to climinate two-edge cycles

Loy sy

[Lors 2] N
Nomi

Loy pim]

@

(b) Graph transformation rule to eliminate multiple edges

Fig. 4. Graph transformations rules for building a circuit graph

cycles—such as vy, €4, Uy, €2, Vs shown i Fig. 4(a)—are
collapsed into a single edge vy, €z, Uy with an arbitrarily
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chosen direction and the corresponding permissible range
(here, the convention is that the edge direction is away
from the vertex with the smaller index). Multiple edgesin
the same direction between two vertices arc represented
in § by a single edge as shown in Fig. 4(b)-—the edge
direction is preserved and the permigsible range is such
that, all permissible ranges are simultaneously satisfied.

III. CLoCK SKEW SCHEDULING AS A QP PROBLEM

The formulation of clock skew scheduling as a quadratic
programying (QP) problem is described in this section.
The linear dependencies among the clock skews and the
kernel of cycles are introduced in Section IIT-A. The QP
problem is formulated and solved in Section III-B. Mod-
ifications to the QP problem to handle certain critical
requirements are analyzed in Section III-C.

A. Linear dependence of clock skews

Lincar dependencies among the clock skews [8] are il-
lustrated in the circuit shown in Fig. 3 where, for in-
stance, 84 = 83 + 85. It is generally possible to iden-
tify multiple minimal sets of skews such that (a) the
skews within the sct are linearly independent, and (b)
every skew within the circuit is a linear combination of
skews from the set. A set with these properties is called
here a skew basis—examples of skew bases in Fig. 3 are
{83, 84, 85, 86} and {s1, 83, 85, 3¢ }. Similarly, linear depen-
dencies can be shown among cycles in §—in Fig. 3, the
cycle 81 + 52 — 53 + S5 = 0 i3 a linear combination (the
sum in this case) of s — 84+ 35 =0 and sy — 83 + 484 = 0.
A kernel of G is a minimal set of cycles such that {a)
the cycles are linearly independent, and (b} every cycle
in G is a linear combination of cycles from the set. Note
that a skew basis must not contain a cycle, If the skew
bases did contain a cycle, the basis skews would be lin-
carly dependent. Alternatively, linear independence in
a kernel is guaranteed by choosing the cycles such that
each cycle contains a unique edge from G. From graph
theory [9-11], a spanning tree of the circuit graph G de-
fines a basis of exactly ny = r — 1 edges—an example
is indicated by the thicker edges shown in Fig. 3. The
ne = p — ny edges outside the basis are called chords—
any choice of basis naturally yields a kernel of exactly n,
cycles, each cycle consisting of exactly one chord and the
unique path within the basis between the end vertices of
this chord. Note that certain basis edges—such as ¢g in
Fig. 3—may not belong to any cycle at all (regardless of
basis/kernel choice). Such basis edges are called isolated,
while the rest of the basis cdges are called main—therc
are ny, < np main and n; < np isolated basis edges, re-
spectively, where n., + n; = np. Note that the values of
the basis skews are sufficient to calculate all skews within
G (basis plus chords). Also, the main basis provides the
necessary information to compute the chord skews while

the isolated basis can be scheduled to any values—there
are no consgtraints on these edges since these edges do not
belong to any cycle.

The kernel can be summarized in a compact way by
the ecircuit kernel equation, Bs = 0, where s is an n. +
nm = p'-element vector of all but the isolated skews,
and, each row of the n, x p’ matrix B corresponds to a
cycle. B can be derived from inspection by choosing a
traversal direction of each cycle and including skews along
the cycle with a sign depending upon the edge direction
labeling (note the similarity with Kirchoff’s Voltage Law
loop equations for electrical networks [11]). Assume that
the edges/skews are enumerated as in Fig. 3 such that
the chords s® are first (indices 1 through n,), followed
by the main basis s (indices n, + 1 through p'), and
the isolated basis. If the cycles are pormuted so as to
appear in the order of the chords (i.e., the first row of B
corresponds to e; /sy, and so on), the kernel equation is
Bs = [In, Cn xn,][5] =5°+ Cs® = 0, where I,, is
an identity matrix of dimension n.. The solutions of this
equation comprise the kernel or null space kor{B) of the
linear mapping B : B — R% and s is called consistent
if 8 € ker(B) {12].

B. QP clock skew scheduling problem formulation and so-
lution

Let an objective clock schedule g be chosen according
to certain design criteria (g has p' elements). From a reli-
ability perspective, for example, an ideal, although most
likely not consistent, choice of g is g; = (I; +u;)/2. The
optimization goal is to determine a feasible and consistent
schedule s such that the least square error ¢ = (s — g)?
is minimized:

: P’
mir E= (S - g)z = Zk:l(sk - gk)2 (1)
subject to Bs = 0 and s € [Ig, ] for k€ {1...p'}.

The problem described by (1) is a constrained QP prob-
lem with bounded variables—methods such as active con-
straints exist for solving such problems {13-15]. These
methods are both analytically and numerically challeng-
ing so a two-phase solution process is suggested here such
that a constrained version of problem (1) is solved ini-
tially. If the result is not feasible, a rapidly converging
iterative refinement of the objective g is performed un-
til the feasibility of s is satisfied. Expanding the £ term
in {1} yields

Phase 1 -+ min £ =s's — 2e's +g'g (2)
subject to Bs =0
Phase 2 —  lterative refinement of s,

where Phase 1 is solved using the classical method of
Logrange multipliers (14]). If m is the Lagrange mul-
tipliers vector, the Lagrangian function is £(s,m) =
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s's — 2gts + m'Bs, where the numerical constant g'g
from (2} can be omitted without affecting the solution.
Any extrema of & necessarily is a stafionary point of the
Lagrangian, i.e., a solution of the linear system,

2s + Bfm = 2¢g 2, B] (s I
Bs=0 {B ﬂHm}QQ[U]'(B)

Since B is in row echelon form, ker(Bt) = {0} and the
matrix M = BB® is positive-definite and nonsingular.
Thus, the unique solution of (3} by Gaussian elimination
is

m* = 2M™'Bg

4
s*=g - —;«Btm* = (Iy ~B'M'B)g, @

where s* in (4) is also a global minimizer of & in (2} [15].

The size and inversion of M can make computing (4) a
significant challenge, thereby prompting the need for an
efficient strategy to calculate s*. Specifically, M~ =
I, — CN7!C! where N = I, 4+ C'C (Sherman-
Morrison-Woodburry formula [16]) and similarly to™M,
can be argued to be necessarily nonsingular. The dimen-
sions of N and M are n,, and n., respectively—n,, is
typically an order of magnitude smaller than n, resulting
in significant savings of time and memory. The basis s%*
is

s = [—(L3'Ly )CY L'y e, ()

where Ly is the Cholesky decomposition [16-18) of N,
The chords s°* are determined from the kernel equation
8 = —Cs?*, where the multiplication by C can be cazr-
ried out extremely fast since the elements of C are either
—1, 0, or 1. Finally, the iterative refinement of the ob-
jective clock schedule g in Phase 2 is accomplished as
follows. For lower and upper bound violaticns, move the
objeciive clock skew halfway between its current value
~and the closer of zero and the lower and upper bounds,
respectively, of the permissible range. For paths with no
violation, move the objective clock skew halfway hetween
the current value and the actual value obtained by (5).

The computation in (5) requires §nd,, tnd + Ink +
$nm, 300+ H(5nk +nm — 1), and ayp multiplications to
determine Ly, Ly}, the product L.;*L; ", and s**, respec-
tively. A maximum of n2, floating point storage units is
used during this procedure. N, Tz, and L7 " arc all sym-
metric {only half of the elements must be stored) and can
be computed ‘in place,’ i.e., Ly and Lz—1 replace N and
Ls, respectively, as the matrices are computed. There-
fore, since n,, is of the order of r, the run time and mem-
ory complexity of the described algorithm are O(r%) and
O(r?), respectively.

C. Enhancing clock skew scheduling to satisfy target de-
lays

An important object of clock skew scheduling is to con-
trol certain clock signal delays. Consider, for example,
the ifo registers of a chip. Given the difficulty in know-
ing a priori all timing contexts of an integrated circuit, a
preferred solution may be to require that all i/o registers
are clocked at the same time (zerc skew), All explicit de-
lay requirements fall into one of the following categories:
1. zere skew island, i.e., a group of registers with equal
delay,

2. target delays, i.c., t'ﬂ‘,‘ = 0gyy. e ,ti‘f = 84, ko <1y

3. target skews, i.e., 85, = 04,,...,85, = T4, Jp <1y .
Zero skew islands can be satisfied by collapsing the cor-
responding graph vertices into a single vertex while elim-
inating all edges among vertices from the island. Note
that zero skew is within the permissible range of each
in-island path. Alternatively, the target delays arc con-
verted to target skews (category 3 above) for sequentially-
adjacent pairs or by adding a ‘temporary’ edge. Thus, an
algorithm to handle only target skews is necessary.

Note first that target values for only ny < ny skews
can be independently specified. As ny approaches ny, the
freedom to vary all skews decreases and it may become
impossible to determine any feasible s. Given n; < ny,
(a} the basis can be chosen to always contain all target
skews by using a spanning tree algorithm with edge swap-
ping, and (b) the edge enumeration can be accomplished
such that the target skews appear last in the basis. The
problem is now similar to (2} except for the change of the
circuit kernel equation,

C=][C; Cs),

wy

= Bs+Cue =0, (6)

=

Bs=[I C, Cy]

qm)

where B = IC,)a= [:,,] , 8¢ = g%, and &° is s® with the
last ns elements removed. The matrix Cy in (6) consists
of the last ny columns of C, while the target skew vector
& is an ns-element vector of target skews whose elements
are ordered by the target edges. The linear system (3)
hecomes

25 + Bt = 2§

B3 +-\Cga' =0 ()
N 21 B T&] | 28
]:::; 0 m “—CQO' !
with solution
m* = 2M(Bg + Cao)
(8)

g =(1-B'MB)g - BM1Cy0.
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TABLI I
EXPERIMENTAL RESULTS
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1 2 3 4 [ 6] 7| 8| 8| 10[if][1 ] 3 4 5 6| 7 8 9] 10|11
51196 7] 18 20 9 8] 73] 20.8] 5] 3.15] 1|[s526n i 21 117 971 20 0 137 2] 1.26] 2
51238 7| 18 20 g & 3/ 208[ 5| 3.19] 1|[=b378 1] 179] 1147 969 | 158 [20] 28.4(20] 8.79[ 3
513207 ||49| 669| 3068 | 2448 581| 30| 85.612018.02] 5|ls641 1| 19 81 63| 18| 0| 83.6] 5|11.67] [
51423 2 74] 1471 1899 72| 0| 92.2[20] 60.9] 3![s713 1719 81 63| 18| 0| 893 6]12.74] 1
31488 1l Ts| Ti8|T 16 5| 0823 I 0.87| 1|s820 115 10 5141 0] 186] 1| 0.71] 1
51494 1 6 i5 10 5] 0[3281 1] 0.88] 1|[s832 I 5 i0 6 6| i9] 2] 0.661 1]
a16860 || 15| bO7 |14257 13675 | 546| 36| 11610 70.6] 21|{s838.1 || 1| 32 498 65| 31| 0] 244 3] 3.68| 3
s15860.1 (/22| 53410830 [ 10318 478 34| 81.2] 0[31.44[19]|[=0234 3| 528 2476 2281| 222| 3| 75.8(20(16.67| 4|
5208.1 1 8 28 21 T[ 0| 124[ 1| 1.22] 1)(s9234.1| 2| 211| 2343| 2133] 205| 4| 75.6|20] 18.6] 4|
527 1 3 3 I 21 0| 6.6 1] 0.71| 1|[=953 4] 29 135 10| 25| o[ 232 3] 1.93] 2
5208 1| 714 5d 417 121 1 13| 1| £.16] 1|/s1269 1] 37 251 215 36ﬁ 51.2(20(12.73| 2]
5344 1] 715 68 54| T4 0| 27| 4| 491 1|[si612 1| 57 405 J45| 56| 0| 396 4| 4.43| 3
5349 1] 15 68 4| 14| 0 27! 47 491 1|l=3271 i il 789 674( 107] 8] 404 3| 3.64( 5
835932 T(1728] 4187 ) D460 |1727| 0] 34.2[20| 60.4] 27 ||s3330 1| 132 514 383 | 61|70[ 34.8] 4| 3.4| 5
5382 1™ 21] 113 93] 20| 0]14.2| 76| 1.59| 2||s3384 [ 25| 183| 1v58] 1601| 151| 7| 85.2| 5| 165] 7
538417 || 11]1636[28082 |26457 | 1443|182 69 |20]32.35] 31 || 54863 T] 104 ﬁToi 517] 103] O] 812] 8/39.85| 3]
338584 211452115545 [ 14095 | 1400 50 94.2711| 20.1| 29 |[s6669 || 20| 239| 2138| 1819| 218| 1|128.6] 3|20.67| B
5386 I 6 15 10 51770 17.8] 1] 0.82| 1|[=938 || 1] 32 496 465 31] 0] 244 2| 341 2
3400 1] 21| 113 631 206 a[14.2[ &8 1.6 1i[=987 4| 29 135 10! "25|70 206 2| 1.76( 2
54201 1] 16| 120 105| 15| 0] 16.4]20] 1.5 1|/=901 1] 19 51 33| 18| 0] 964 3| 858 1
5444 1 21 113 93] 20| 0(168] 2| Lo5| 1q[1ct 1| 500 {24750 [124251] 499| 0| 8.2 2| 1.51(30
3510 I [ 15 10 5| 0| 16.8] 1] 0.85] 1] 1c2 1| 58 493 435| 58| 0] 10.3) 3| 1.82] 4
5526 1] 21| 117 g7 20| O 13] 2] L.26[ 1|[1c3 |34[1248 | 4322 3108]1155|59] 56| 2| 143] 2
IV. ResuLts spectively [shown as dark columns in Fig. 5(b)]. At the

The algorithm described in Section ITI-B has been im-
plemented as a C++ program and applied to both the 18-
CAS’89 benchmark circuits and some industrial circuits
{Ic1, IC2, and IC3). The results of the application of the
algorithin to these circuits are summarized in Table I. For
each circuit, the following data is listed—the circuit name
in column 1, the number of disjoint subgraphs in column
2, and the number of vertices r, edges p, chords (cycles)
n¢, main basis n,, and isolated basis n;, and target clock
period Tp in nanoseconds in columns 3 through 8, re-
spectively. The number of iterations to reach a solution
is listed in column 9. The average value of £ in {2), i.e.,
v/e/p, is listed in column 10. The run time in minutes
for the mathematical portion of the program is shown
in column 11 for a 170 MHz Sun Ultra 1 workstation.
For circuits with more than one disjoint subgraph, the
algorithm is applied to cach subgraph scparately.

The results are illustrated in Fig. 5 where a his-
togram of the clock skew distribution within the permis-
sible range is graphically displayed for the specific circuit
83271. After one iteration of (2) with all objective clock
skews set at the center of the permissible range, there
are 82 lower bound and 112 upper bound violations, re-

conclusion of execution—depicted in Fig. 5(c)—no vio-
lations remain. Also shown in Fig. 5(a) is the distribu-
tion of the zero clock skew. Note the difference between
Fig. 5(a) and Fig. 5(c). There is a clear improvement in
that any non-zero clock skew is at least 18% from either
edge of the corresponding permissible range. The major-
ity of the non-zero clock skews are within 5% of the safest
clock skew value at the center of the permissible range.

V. CONCLUSIONS

The problem of clock skew scheduling for improved tol-
erance to process parameter variations is examined in this
paper. A novel formulation of the optimal scheduling
problem from a reliability perspective (a decreased sen-
gitivity to process paramcter variations) is presented as
a Quadratic Programming (QP) problem. In this ap-
proach,

+ the objective clock period is fixed,

+ the objective clock skews for each local data path are
chosen according to any specified design criteria,

» any requirements for explicit specification of the clock
signal delays within & circuit (the target skews) are fully
supported,
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A

{a) Distribution of zero clock skew as a percent-
age of the permissible range

— 112

{b) Distribution of nonr-zero clock skew after one

iteration of (2)—there are 82 Jower bound and
112 upper bound vioiations

68 —r

(c) Distribution of nen-zero clock skew after
all three iterations of (2)—there are no lower
or upper bound violations

Fig. 5. The distribution of clock skew within the permissible range
(as a percentage from 0% to 100%) for the circuit 53271 (note
that height is not drawn to scale). Intervals that are crossed
out contain no skews.

« the least square distance between the objective and ac-
tual values of the clock skew vector over the entire circuit
is minimized.

An efficient computational procedure is introduced to
solve the QP problem via the egquality constrained La-
grange Multipliers method with iterative refinement of
the objective. This procedure—with O(r®) run time com-
plexity and O{r?) memory complexity, respectively—has
been implemented and demonstrated on a number of
benchmark and industrial circuits.
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