Design Challenges in High Performance Three-Dimensional Circuits

Prof. Eby G. Friedman University of Rochester

www.ece.rochester.edu/~friedman

January 15, 2010

D43D: System Design for 3D Silicon Integration Workshop

- Three-dimensional (3-D) integration
- MIT Lincoln Laboratories 3-D Technology
- Physical design issues in 3-D integration
- 3-D networks-on-chip
- The Rochester cube
- Near and long-term research problems
- Conclusions

- Three-dimensional (3-D) integration
 - Opportunities for 3-D ICs
 - Forms of 3-D integration
 - Challenges for 3-D ICs
- MIT Lincoln Laboratories 3-D Technology
- Physical design issues in 3-D integration
- 3-D networks-on-chip
- The Rochester cube
- Near and long-term research problems
- Conclusions

Forms of 3-D Integration

• Wire bonded die

Stacked 3-D circuits

• Contactless 3-D circuits

• 3-D ICs – Fine grain interconnects

10

- Three-dimensional (3-D) integration
 - Opportunities for 3-D ICs
 - Forms of 3-D integration
 - Challenges for 3-D ICs
- MIT Lincoln Laboratories 3-D Technology
- Physical design issues in 3-D integration
- 3-D networks-on-chip
- The Rochester cube
- Near and long-term research problems
- Conclusions

- Three-dimensional (3-D) integration
- MIT Lincoln Laboratories 3-D Technology
- Physical design issues in 3-D integration
- 3-D networks-on-chip
- The Rochester cube
- Near and long-term research problems
- Conclusions

- Three-dimensional (3-D) integration
- MIT Lincoln Laboratories 3-D Technology
- Physical design issues in 3-D integration
- 3-D networks-on-chip
- The Rochester cube
- Near and long-term research problems
- Conclusions

- Three-dimensional (3-D) integration
- MIT Lincoln Laboratories 3-D Technology
- Physical design issues in 3-D integration
- 3-D networks-on-chip
- The Rochester Cube
- Near and long-term research problems
- Conclusions

43

Performance Comparison for 3-D NoC Topologies 18 2D ICs - 2D NoCs Dense networks with small 2D ICs - 3D NoCs 16 3D ICs - 2D NoCs PE areas favor 3-D NoCs 3D ICs - 3D NoCs 14 and 2-D ICs 12 Latency [ns] – Due to large number of hops and short busses Small networks with large 6 PE areas favor 3-D IC and 2-D networks – Due to small number of Number of nodes log₂N 11 10 hops and long busses • $A_{PE} = 4 \text{ mm}^2$ • Improvement = 36.2%, *N* = 256 *V. F. Pavlidis and E. G. Friedman, "3-D Topologies for Networks-on-Chip," Proceedings of the IEEE International SOC Conference, pp. 285-288, September 2006 48

- Three-dimensional (3-D) integration
- MIT Lincoln Laboratories 3-D Technology
- Physical design issues in 3-D integration
- 3-D networks-on-chip
- The Rochester cube
- Near and long-term research problems
- Conclusions

49

Clock Distribution Networks

- Clock signal is the "heart" of synchronous circuits
- VDSM technologies
 - Increasing frequencies
 - Greater process variations
 - Clock skew, jitter should be carefully managed
- Hierarchical clock
 distribution networks
 - Global networks
 - H-tree, X-tree
 - Local networks
 - Meshes

Local clock distribution network

Clock Signal Distribution for 3-D ICs

- Multiplane system
 Process variations
- Different forms of 3-D integration
 - System-in-Package (SiP)
 - 3-D ICs (high density vias)
- Clock signal distribution under pronounced thermal effects

Design Issues Related to the 3-D MITLL Fabrication Process

- CAD support from NCSU
 - Cadence design framework
 - Design rule checking
 - Automated synthesis and place and route
- Limitations
 - Electrical rule checking
 - Full 3-D visualization
 - Impedance extractionParticularly for 3-D vias
 - Bugs included!!! 🙂

 Sophisticated CAD tools for 3-D ICs remain an important challenge

61

- Three-dimensional (3-D) integration
- MIT Lincoln Laboratories 3-D Technology
- Physical design issues in 3-D integration
- 3-D networks-on-chip
- The Rochester cube
- Near and long-term research problems
- Conclusions

- Three-dimensional (3-D) integration
- MIT Lincoln Laboratories 3-D Technology
- Physical design issues in 3-D integration
- 3-D networks-on-chip
- The Rochester cube
- Near and long-term research problems
 - 3-D power delivery
 - Heterogeneity / optical interconnect
- Conclusions

Effective Power Distribution and Delivery Will be Essential

/dd2

/dd3

- All but one of the planes are located next to the P/G pads
 - TSVs convey current to other planes
- Decoupling capacitance can be placed within or on a nearby plane
- Multiple power levels will be a necessity
 - Due to thermal issues
 - Heterogeneous technologies
 - Lower power consumption

Distributed On-Chip Rectifier

- Exploits rectifier portion of buck converter
 - Generates and distributes power supplies in 3-D integrated circuits
 - Eliminates need for on-chip _ inductors
- Rectifier is composed of transmission lines
 - Terminated with lumped capacitances
- Inter-plane structure is connected by 3-D TSVs
- Low pass behavior
 - *RC*-like characteristics
 - Sharp roll-off
 - Due to distributed nature

edings of the IEEE Inter sium on Qualitv Ele nal Svr

Power Delivery Test Circuit

- Lincoln Lab 3-D CMOS process
- 150 nm FDSOI
- Three physical planes
- Three metal layers per plane
- Back side metal on top two planes
- Each wafer is separately processed

- Three-dimensional (3-D) integration
- MIT Lincoln Laboratories 3-D Technology
- Physical design issues in 3-D integration
- 3-D networks-on-chip
- The Rochester cube
- Near and long-term research problems
 - 3-D power delivery
 - Heterogeneity / optical interconnect
- Conclusions

Design Methodologies for Heterogeneous 3-D Integrated Systems

- Integrate processing and sensing within a multi-plane system
- Develop design methodologies to prevent processing planes disturb sensor planes
- Develop general purpose processing planes
 - Compatible with
 - Different types of sensors
 - Disparate communication schemes

- Three-dimensional (3-D) integration
- MIT Lincoln Laboratories 3-D Technology
- Physical design issues in 3-D integration
- 3-D networks-on-chip
- The Rochester cube
- Near and long-term research problems
- Conclusions

Conclusions

- Three-dimensional integration is a promising solution to expected limits of scaling
- Interplane through silicon vias (TSVs) are the key
- Advanced and novel 3-D architectures are now possible
- We've demonstrated a 3-D circuit operating at 1.4 GHz
 - 3-D power delivery test circuit currently in manufacture
 - More to come from many sources
- 3-D integration is a likely next step in the evolution of semiconductor technology

