Design Challenges in
High Performance Three-Dimensional Circuits

Prof. Eby G. Friedman
University of Rochester

www.ece.rochester.edu/~friedman

January 15, 2010

D43D: System Design for 3D Silicon Integration Workshop




An Increasing Interest in 3-D ICs
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Break Through the Interconnect Wall

Greater speed, lower power
dissipation, lower noise
levels

Exploit improvements from
device scaling

| Anovel solution |
is required

High functional capacity Offer inherent heterogeneity

Presentation Outline

* Three-dimensional (3-D) integration
— Opportunities for 3-D ICs




3-D Integration

Maximum wirelength reduction
2 planes ~30%
4 planes ~50%
-l

L
' 7 e _
e Area = [? %z /125

* Corner to corner distance = 2L ¢ prag =12

e Corner to corner distance zﬁL

Advantages of 3-D Integration

e Integration of disparate technologies
— No yield compromise
— Greater functionality

e Number and length of global
interconnects are reduced
— Reduction in interconnect power

e Dedicated NoC plane for IP block
level communication

M. Koyanagi, et al., “Future System-on-Silicon LSI Chips,”
IEEE Micro, Vol. 18, No. 4, pp. 17-22, July/August1998.
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* Three-dimensional (3-D) integration

— Forms of 3-D integration

Forms of 3-D Integration

* Wire bonded die e Contactless 3-D circuits

* 3-D ICs - Fine grain
interconnects




Cross-Section of a 3-D Integrated Circuit

e Different plane bonding styles *Bonding process involves

*Bonding materials - Wafer thinning
Through silicon vias (TSV)

Intraplane

Interconnects
Adhesive
polymer

Intraplane

Interconnects
Adhesive
polymer

Deices Bulk CMOS

*R. J. Gutmann et al., “Three-Dimensional (3D) ICs: A Technology Platform for Integrated Systems and Opportunities
for New Polymeric Adhesives,” Proceedings of the Conference on Polymers and Adhesives in Microelectronics and
Photonics, pp. 173-180, October 2001

1st plane
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* Three-dimensional (3-D) integration

— Challenges for 3-D ICs




Spectrum of Challenges in 3-D ICs

Manufacturing

* Plane alignment and bonding
* Through silicon vias

Testing

* Pre-bond testing
= Post-bond testing

Design

* Interconnect design techniques
8| * Thermal management techniques
@ * Physical design techniques
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* MIT Lincoln Laboratories 3-D Technology




3D Integration for Integrated Circuits and
Advanced Focal Planes

Craig Keast, Brian Aull, Jim Burns, Nisha Checka, Chang-Lee Chen, Chenson Chen,
Jeff Knecht, Brian Tyrrell, Keith Warner, Bruce Wheeler, Vyshi Suntharlingam, Donna Yost

keast@LL.mit.edu
MIT Lincoln Laboratory

*Thls work was sponsorsd by the Defense Advanced Research Projects Agency under Air Force contract #FA8721-05-C0002. Opinions,
ns, ct 1S, and r are those of the authors and are not necessarily endorsed by the United States Government .
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Motivation for
3-D Circuit Technology
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Reduced
Interconnect Delay
High Bandwidth Exploiting Different
u-Processors Process Technologies

Advanced Mixed Material
Focal Planes System Integration
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Pad-Level “3D Integration”
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Die Stacking

Stacked-Die Wire Bonding Stacked Chip-Scale Packages

1mm WOE27mm

ChipPAC, Inc. Tessera, Inc.

- MIT Lincoln Laboratory ==
In Production!

=3/ Approaches to High-Density 3D Integration

(Photos Shown to Scale)

Photo Courtesy of RTI

Bump Bond used to Two-layer stack with  Three-layer circuit using
flip-chip interconnect insulated vias through MIT-LL’s SOl-based vias
two circuit layers thinned bulk Si
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Advantages of Silicon-on-Insulator (SOI)
for 3-D Circuit Integration

&3

SOl Cross-Section l

* The electrically active portion  Bonding Layer

of an integrated circuit wafer

is < 1% of the total wafer LENERIORale L« el el e
thickness

* Buried oxide layer in SOI
provides ideal etch stop for
wafer thinning operation prior
to 3D integration

* Full oxide isolation between transistors allows direct 3D via
formation without the added complexity of a via isolation layer

* SOI’'s enhanced low-power operation (compared to bulk CMOS)
reduces circuit stack heat load

MIT Lincoln Laboratory ==

& 3-D Circuit Integration Flow-1

* Fabricate circuits on SOl wafers
— SOl wafers greatly simplify 3D integration

¢ 3-D circuits of two or more active silicon layers can be assembled

Wafer-1 can be
either Bulk or SOI

MIT Lincoln Laboratory ==
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3-D Circuit Integration Flow-2

* Invert, align, and bond Wafer-2 to Wafer-1

— Wafer bond

* Remove handle silicon from Wafer-2, etch 3D vias, deposit
and CMP damascene tungsten interconnect metal

“Back Metal(s)”

Concentric 3D Via

MIT Lincoln Laboratory ==

& 3-D Circuit Integration Flow-3

* Invert, align, and bond Wafer-3 to Wafer-2/1-assembly,
remove Wafer-3 handle wafer, form 3D vias

* Etch Bond Pads

MIT Lincoln Laboratory ==
IEEE Trans. on Electron Devices, Vol. 53, No. 10, October 2006




€| 3D-Specific Enabling Technologies
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Low temperature oxide-bond process

Precision wafer-wafer alignment High-density 3D-Via
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MIT-LL 3D Via History

(Photos Shown with Same Scale and Drawn 3D Via Size)

o

3 um 2 um 1.75 pm 1.0 um
Oct 2000 Dec 2004 May 2005 Sept 2006

epoxy bond

64 x 64, 50-um Scaled 3D via
pixel LADAR?

64 x 64, 12-ym 1024%1024, 8-um pixel
active-pixel sensor! visible image sensor?

[1] J. Burns, et al., “Three-dimensional integrated circuits for low-power high-bandwidth systems on a chip,” in Proc. Papers IEEE Int. Solid-
State Circuits Conf. Tech. Dig., 2001, pp. 268-269

[2] V. Suntharalingam, et al., “Megapixel CMOS image sensor fabricated in three-dimensional integrated circuit technology,” in Proc. Papers
IEEE Int. Solid-State Circuits Conf. Tech. Dig., 2005, pp. 356-357

[3] B. Aull, et al., “Laser radar imager based on three-dimensional integration of Geiger-mode avalanche photodiodes with two SOI timing-
circuit layers,” in Proc. Papers IEEE Int. Solid-State Circuits Conf. Tech. Dig., 2006, pp. 304-305
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First 3-D IC Multiproject Run
(Three 180-nm, 1.5 volt FDSOI CMOS Tiers)

* Leverages MIT-LL’s established 3D
circuit integration technology

- Low temperature oxide bonding,
precision wafer-to-wafer overlay, high-
density 3D interconnect

* Preliminary 3D design kits developed

- Mentor Graphics — MIT-LL, Cadence —
NCSU, Thermal Models — CFRDC

* Design guide release 11/04, fab start
6/05, 3D-integration complete 3/06

Concepts being explored in run:

3D FPGAs, digital, and digital/mixed-signal/RF
ASICs exploiting parallelism of 3D-interconnects
3D analog continuous-time processor
3D-integrated S-band digital beam former
Stacked memory (SRAM, Flash, and CAM)
Self-powered CMOS logic (scavenging) ol
Integrated 3D Nano-radio and RF tags

Intelligent 3D-interconnect evaluation circuits
DC and RF-coupled interconnect devices

Low Power Multi-gigabit 3D data links

Noise coupling/cross-talk test structures and circuits
Thermal 3D test structures and circuits

omleted 3DL1 Die Phot

o

3DL1 Participants (Industry, Universities, Laboratories)

BAE Lincoln Laboratory  Purdue
Cornell Maryland RPI
Delaware Minnesota Stanford
HRL MIT Tennessee
Idaho North Carolina State UCLA
Johns Hopkins NRL Washington
LPS Pennsylvania Yale
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=/Cross-Section of 3-Tier 3D-integrated Circuit
(DARPA 3DL1 Multiproject Run)

3 FDSOI CMOS Transistor Lavers, 10-levels of Metal

— 4« Back Metal

Stacked

v

Tier-1: Transistor Layer —X

Tier-1: 180-nm, 1.5V FDSOI CMOS

Tier-3: 180-nm, 1.5V FDSOI CMOS

Metal Fill

__Oxide Bond
Interface

Interface
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B Second 3D IC Multiproject Run (3DM2)
(Three Tiers of 180-nm 1.5-volt FDSOI CMOS)

* 3DM2 run announced (March 2006) 3DM2 Die Photo

* 3D design kits released (April 2006)
Mentor Graphics (MIT-LL)
Cadence (NCSU)
Tanner Tools

3DM2 Submissions (October 2006)

3D Circuits
FPGA, stacked memory (SRAM & CAM),
asynchronous microprocessor, FFT with on-chip
memory, multi-processor chip with high-speed
RF interconnect, ASIC with DC-DC converter,
reconfigurable AX modulator, decoder with 3-
cube torus network, self-powered and mixed-
signal RF chips

22 mm

3DM2 Participants (Industry, Universities, Laboratories)

3D Imaging Applications -
ILC pixel readout, high-speed imaging FPA, 3D Cornell Minnesota SUNY
adaptive image processor, artificial bio-optical Fermi Lab NCSU Tanner
sensor array, 3D retina, 3D-integrated MEMS Idaho NRL Tennessee
biosensor, sensor lock-in-amplifier Intel Pittsburgh UCLA

3D Technology Characterization Johns Hopkins  RPI Washington
3D signal distribution, 3D interconnect methods, | |Lincoln Lab Rochester Yale
parasitic RF & 3D radiation test structures Maryland Sandia
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Second 3D IC Multiproject Run (3DM2)

(Three Tiers of 180-nm 1.5-volt FDSOI CMOS)
* 3DM2 run announced (March 2006) 3DM2 Die Photo

¢ 3D design kits released (April 2006)
Mentor Graphics (MIT-LL)
Cadence (NCSU)
Tanner Tools

3DM2 Submissions (October 2006)

3D Circuits
FPGA, stacked memory (SRAM & CAM),
asynchronous microprocessor, FFT with on-chip
memory, multi-processor chip with high-speed
RF interconnect, ASIC with DC-DC converter,
reconfigurable AX modulator, decoder with 3-
cube torus network, self-powered and mixed-
signal RF chips

3D Imaging Applications
ILC pixel readout, high-speed imaging FPA, 3D Cornell

SUNY

adaptive image processor, artificial bio-optical Fermi Lab Tanner

sensor array, 3D retina, 3D-integrated MEMS Idaho Tennessee

biosensor, sensor lock-in-amplifier Intel UCLA
Johns Hopkins Washington
Lincoln Lab Yale

Maryland
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= Second 3D IC Multiproject Run (3DM2)
(Three Tiers of 180-nm 1.5-volt FDSOI CMOS)

sasnm

r =
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3-Tier 3DIC Cross-Section
Second DARPA Multiproject Run (3DM2)

K

Two Digital & One RF 180-nm 1.5V FDSOI CMOS Tiers

Transistor Layers

3DM2 Process Highlights

11 metal interconnect levels 2-um-thick RF back metal
1.75-um 3D via tier interconnect Tier-3 W gate shunt
Stacked 3D vias allowed Tier-3 silicide block

Tier-2 back-metal/back-via process

MIT Lincoln Laboratory ==




= 3D Ring Oscillators (3DM2)
Measuring 3D-Via Parasitics

* 93-stage optimized 3D ring oscillator
— Devices in all three tiers; T3,T2,T1,T2,T3 .
— T35 =40.6 ps

3D ring oscillator

* 93-stage spaced 2D RO (T1, T2, & T3)
T,p = 31.6 ps
* 93-stage optimized 2D RO (T1, T2, & T3)
Top = 26.9 ps
* 3D via characteristics
— Resistance ~1 ohm

— Capacitance ~2 fF (roughly equivalent to 10-um long x 0.5-um wide metal interconnect)

MIT Lincoln Laboratory ==

3D-Integration with Ill-V Detectors “joe'io™

2006 IPRM

* Enables extension of 3D-
integration technology to
higher density, longer
wavelength focal plane
detectors

— Tight pixel-pitch IR focal
planes and APD arrays

— InGaAsP (1.06-um), InGaAs
(1.55-um)

150-mm-diameter InP wafer with oxide-bonded
circuit layer transferred from silicon wafer

MIT Lincoln Laboratory ==




8 Transferred CMOS-to-InP Integration
(Via-Chain Test Results)

Wafer Die Map of Average 3D-Via
Resistance (Q) for 10,000-via Chains * MIT-LL 3D integration and via
processes successfully
demonstrated on 150-mm InP
wafers

Tungsten plug
Tier 2 metal
Bond interface

Tier 1 metal

Photograph of 150-mm InP Wafer
with Aligned and Bonded Tier

MIT Lincoln Laboratory ==

SEM Cross Section and Thermal
Simulation of 3D Circuit Stack

3
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Tier 2 Tier 3

Tier 1

Ring-Oscillator Cell

—_—Top metal

Tier-3

Tier-2

Tier-1

Si substrate

Simulation of temperature distribution
of ring oscillator in 3D circuit

2007 SOI Conference Papers 6.2 and 6.3 by T.W. Chen, et. al., and C.L. Chen, et. al.
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& Closing Remarks...

* 3D Integration (at least as implemented by MIT-LL) is not cheap...
Application/benefit-gained better justify the cost

— Issues: Alignment, Compounded yield loss, Heat dissipation in the
stack

* Initial technology demonstrations (at MIT-LL) are centered around
advanced focal plane architectures
— This is the “low hanging fruit”
* Full impact of 3D integration is far from being realized, but has the

potential of revolutionizing the design architecture of future
circuits and systems

* Potential application areas include: High-end focal planes, FPGAs,
Dense memory, memory on processor, mixed signal systems,
mixed material systems

— Need to design for 3D from ground-up for maximum benefit
Will need the CAD tools to support the design effort

MIT Lincoln Laboratory ==
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* Physical design issues in 3-D integration




Objectives for 3-D CAD Tools

“New design tools will be required to optimize
interlayer connections for maximized circuit
performance...”

TSVs

* Density / consume silicon area
* Impedance characteristics

Heterogeneity

* Interdie process variations
* Disparate technologies

Interconnectlength
* Longestnetsin a 3-D system
*M. leong et al., “Three Dimensional CMOS Devices and Integrated Circuits,” Proceedings
of the IEEE International Custom Integrated Circuits Conference, pp. 207-213, September 2003

3-D Floorplanning and Placement

.
u@um

e Third dimension greatly
increases the solution
space

* Adopt a two-step Parttioning
solution

Intraplane,..»*~

moves®,

*T. Yan, Q. Dong, Y. Takashima, and Y. Kajitani, “How Does Partitioning Matter for 3D Floorplanning,”
Proceedings of the ACM International Great Lakes Symposium on VLSI, pp. 73-76, April-May 2006




Through Silicon Via (TSV) Placement

* Treat TSVs as circuit Circuit cells
cells

— Use weighted average
distance to determine
final via location

* Place the cells of each
plane separately

— Including vias

W. R. Davis et al., “Demystifying 3D ICs: The Pros and Cons of Going Vertical,” IEEE Design
and Test of Computers Magazine, Vol. 22, No. 6, pp. 498-510, November/December 2005

TSV Characterization / Design

Impedance characterization of TSV
Physical models of TSVs
— Distributed vs. lumped models
— Closed-form expressions
Circuit design techniques
— Repeater insertion before and after via
— Return path requirements to minimize loop inductance
Inductive and capacitive coupling noise between TSVs
— TSV-to-TSV shielding methodologies

I. Savidis and E. G. Friedman, “ Closed-Form Expressions of 3-D Via Resistance,
Inductance, and Capacitance,” IEEE Transactions on Electron Devices (in press).




TSV Physical Parameters
& - &
L

I Sgnd

* Equations model TSV electrical characteristics
— TSV diameter D and length L
* 0.5 <Aspectratio<9
— Distance of TSV from ground plane S,
— Spacing S to neighboring TSVs
* Capacitive coupling
* Loop inductance

TSV Impedance Models

1. Savidis and E. G. Friedman, “ Closed-Form Expressions of 3-D Via Resistance,
Inductance, and Capacitance,” IEEE Transactions on Electron Devices (in press).

DC Resistance: < 2%
1 GHz Resistance: <4.5%
2 GHz Resistance: <5.5%

——simulation
— Expresson

k-3

Self Inductance L,;: <8%
Mutual Inductance L,;: < 8%*

Mutual inductance (pH)
8

8

Capacitance to ground: <8%
Coupling Capacitance: < 15%*

3 4 5 G
Aspect ratio (L/D)

* Error in mutual inductance and coug %

for smaller aspect ratios and distanjEEEEERPE=TS P
produce small L,; and C, values

Resistance (m!
g

8
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* 3-D networks-on-chip

Evolution of Interconnect Architectures

: IpoT

* Multi-level segmented
buss

* Shared buss
* Segmented

buss

* Buss architecture limitations
— Large buss delays
— Data contention for resources
— Signal integrity




Network-on-Chip (NoC)

e Network-on-chip is another approach to mitigate the
interconnect bottleneck in modern IC design
— Canonical interconnect structure
— Shared interconnect bandwidth
— Increased flexibility

* PEs exchange data packets through the network in an
internet-like manner

* Network routers transfer data within the network
similar to computer networks

Processing element (PE)
Network router g Mesh NOC

NoC Mesh Structure

Router

Source node

Packet, L,

Single hop

Crossbar Switch

Input Buffer

e (/.
L A S S/

Communication

By Destination node




Various Topologies for 3-D Mesh IC-NoC

e Reduced number
of hops

* Reduced number
of hops and buss
length

 Shorter buss length

*V. F. Pavlidis and E. G. Friedman, “3-D Topologies for Networks-on-Chip,” IEEE Transactions
on Very Large Integration (VLSI) Systems, Vol. 15, No. 10, pp. 1081-1090, October 2007

Performance Comparison for 3-D NoC Topologies

. - —25 NoCé
e Dense networks with small 1 -gB mogs
- oCs
PE areas favor 3-D NoCs | -3D NoCs

and 2-D ICs

— Due to large number of
hops and short busses

* Small networks with large
PE areas favor 3-D IC and
2-D networks

— Due to small number of i
h d| b 4 5 6 7 8 9 10 1
Ops and long busses Number of nodes log,N

® Ay =4 mm?
¢ Improvement = 36.2%, N = 256

*V. F. Pavlidis and E. G. Friedman, “3-D Topologies for Networks-on-Chip,”
Proceedings of the IEEE International SOC Conference, pp. 285-288, September 2006
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* The Rochester cube

“15 Minutes of Fame”

Science News & Share o E

3-D Computer Processor: 'Rochester Cube’ Points Way To More
Powerful Chip Designs

Sclencelaily (Sep. 17, 2008) — The next major Ads by Google
advance in computer processors will likely be the

Erster 30-Chip lanciert Den rtenechen 30-Potessor e Wk bt dis nivesiyof

First 3D processor runs at 1.4 Ghz
+34UPAL, My Tind Sapinaha 2008 aw-K in: Science. Te FirstScience News

First 3-D processor runs at 1.4 Ghz on new

architecture
wspm  Notizie Rochester Cube

“ochaster Cub poi

# . 2HE ! : R, = i Un-i.v.e.rsi k c-ub bUpotb
e Dl 11AC News Networ (Free subsnipion)] 160972008
Researchers create ﬁrst true 3D processor, G ¢ - The Universty of Rochester on Noncay announced it Fas 3 warking tiree-dinensional computer
turns chips into cubes _ ; b il e d
by Donld Melanson, o 526 200831 44 - "
US university claims creation of first, true 3D chip

3-1) Processor on New Architecture

Scientists at the University of Rochester have created what the:
processor-and it i nunning at 1.40Hz.

Soptamber 19, 308 Y Commenty

RS, Which




Clock Distribution Networks

Clock signal is the “heart” of
synchronous circuits

VDSM technologies
— Increasing frequencies
— Greater process variations
— Clock skew, jitter should be
carefully managed Clock
Hierarchical clock
distribution networks
— Global networks
* H-tree, X-tree
— Local networks
* Meshes

Local clock distribution network

driver

Clock Signal Distribution for 3-D ICs

* Multiplane system
— Process variations

* Different forms of 3-D
integration
— System-in-Package (SiP)
— 3-D ICs (high density vias)

* Clock signal distribution
under pronounced
thermal effects

3rd plane

15t plane




MIT Lincoln Laboratories
3-D IC Fabrication Process

* FDSOI 180 nm CMOS
process
— Three plane process

— Three metal layers for each
plane

— Back side metal layer for

planes 2 and 3
* Planes one and two

— Face to face bonding
* 1.75um x 1.75 um Cross . planes two and three

section of TSVs — Back to face bonding
— For the 2" 3-D multiproject

"Massachusetts Institute of Technology Lincoln Laboratory, FDSO! Design Guide

— One polysilicon layer

Cross-Section of 3-D Interconnect

e Plane 2

e Interplane via




Block Diagram of the 3-D Test Circuit

IEEELE

» Each block includes
— Identical logic

— Different clock
distribution network

+ Objectives
— Evaluate clock skew

— Measure power
consumption

* Area-3 mm x 3 mm

W)
=y

]
~

w
o

Block A Block C

N
[

N
w«

Block B Block D

N1
w

[25]
10
[22]

~1mm

2]

Logic Circuitry

6x6
Crossbar
switch

Control
logic

* Current loads mimic various switching patterns

4x4-bit counters
4 groups of current

* Control logic periodically changes the connectivity among the
input and output ports




3-D Clock Distribution Networks

plane

nd plane,

27 plane %
2" plane Q

: 1st plane,

* The clock network on the 2" plane is rotated by 90° to
eliminate inductive coupling

local clock
networks

Fabricated 3-D Test Circuit

RF probe

Decoupling capacitor

* Full custom design
* ~ 120K transistors




Clock and Data Waveforms

"avgs = 64

__.anut,q\

\ / \/

- I . 0 e /
[ LJF RN W] \“*"'ﬂ\“

500.0 ps/div 47.0000 ns
current ¥ »
Frequency{l}  1.3995 OHz
Duty cycle(l)  44,6% 2(2) =
U p-pi{i) 255,866 U A B0 al 1

* Output bit at 1 MHz * Clock output at 1.4 GHz
from the 3 plane

*V. F. Pavlidis and E. G. Friedman, “Interconnect-Based Design Methodologies for Three-Dimensional
Integrated Circuits,” Proceedings of the IEEE, January 2009 (in press).

Clock Skew and Power Measurements

260.5 mW

<=7

168.3 mW

Maximum clock skew [ps]
[Mmw] zHD T ® uoldwnsuod Jamod

Topology

*V. F. Pavlidis, I. Savidis, and E. G. Friedman, “Clock Distribution Networks for 3-D ICs,” Proceedings of
the IEEE International Custom Integrated Circuits Conference, September 2008




Design Issues Related to the 3-D MITLL
Fabrication Process

* CAD support from NCSU
— Cadence design framework
— Design rule checking
— Automated synthesis and place and route

* Limitations * Sophisticated CAD tools

for 3-D ICs remain an
important challenge

Electrical rule checking
Full 3-D visualization

Impedance extraction
* Particularly for 3-D vias

Bugs included!!! ©

Presentation Outline

* Near and long-term research problems




3-D Interconnect Design Issues

* Global signaling

— Clock and power
distribution networks

A—— —
A— D —/
=5

— Long distance signaling Vertical

* Noise aware design
methodologies

— Due to the adjacency of
the physical planes

Power distribution network

Presentation Outline

* Near and long-term research problems

— 3-D power delivery




Effective Power Distribution and Delivery
Will be Essential

* All but one of the planes are
located next to the P/G pads
— TSVs convey current to other
planes
* Decoupling capacitance can
be placed within or on a
nearby plane

* Multiple power levels will be
a necessity i 22 L& 27

— Due to thermal issues
— Heterogeneous technologies e
— Lower power consumption

Power Delivery Test Chip
Design Obijectives

e Blocks P1-P3

— Three different power
distribution networks

— Investigate variations in

noise for each power
network

e Block DR

— Distributed rectifier
circuit for application to
DC-to-DC buck
converters




Power Distribution Network Topologies for 3-D ICs

3" plane = : 39 plane =

2" plane St 1 P3: gnd planes on 2" plane™
‘ g plane 2,
1% plane = : I interdigitated on 1 plane
! planes 1 and 3
P1: interdigitated : 1 P2: interdigitated
— 3-Dviason 3 plane < 1

periphery :

— 3-Dviason
periphery and

15t plane “i

1 1
1 1
1 1
2% plane 4 ! 4 through middle
| 1
| 1
I 1

Noise Detection Circuitry

0.27 mm
-
o]
VSA
-

CM = current-mirrors, RO = ring oscillator,
RNG = random number generator, VSA = I_ i 1 1 e
voltage sense amp

» Voltage sense amps are used to detect and measure
noise on each plane for each power distribution topology
— Noise analyzed on both V5 and ground lines




Standard Buck Converter

Generates an output
supply voltage
— Smaller than the input
supply
Power MOSFETSs produce
an AC signal at node A

AC signal is filtered by
rectifier
— Second order low pass
band LC filter
Filter passes the DC
component of the signal
and a residue

— Composed of high frequency
harmonics

Buck converter produces
an output DC voltage at
node B

— Equal to product DV,

Tapered drivers

“/\ i 4 Rectifier
—c
L

Pulse Width Modulator
(PWM)

Control signals

Distributed On-Chip Rectifier

Exploits rectifier portion
of buck converter

— Generates and distributes
power supplies in 3-D
integrated circuits

Eliminates need for on-chip

inductors

Rectifier is composed of
transmission lines
— Terminated with lumped
capacitances
Inter-plane structure is
connected by 3-D TSVs

Low pass behavior
— RC-like characteristics
— Sharp roll-off

¢ Due to distributed nature

Plane A

J. Rosenfeld and E. G. Friedman, “On-Chip DC-DC Converters for Three-Dimensional ICs,”
Proceedings of the IEEE International Symposium on Quality Electronic Design, March 2009.




Schematic Structure of the 3-D Rectifier

—

3-D vias.

Switched current Ioad;

T e
Post-fabrication control and power supply
noise measurement circuits

Physical Layout of the Distributed Rectifier

Plane C (upper) Plane B (middle) Plane A (bottom)

f

Interconnects Ring oscillators and buffers Switched current loads Interconnects

Power supply noise measurement




Power Delivery Test Circuit

Power
distribution
networks _

* Lincoln Lab 3-D CMOS process
— 150 nm FDSOI
— Three physical planes
— Three metal layers per plane
— Back side metal on top two planes
— Each wafer is separately processed

Distributed
rectifier

Presentation Outline

* Near and long-term research problems

— Heterogeneity / optical interconnect




Design Methodologies for Heterogeneous
3-D Integrated Systems

* Integrate processing and
3 g q Sensors  Antenna
sensing within a multi-plane
S /

Develop design

methodologies to prevent
processing planes disturb Ldggd —ti g+
sensor planes 5 -

,,,,, e
Develop general purpose ﬁl—:ti #L-EL‘
processing planes F33- -'—**’_E’—‘
— Compatible with i I I

* Different types of sensors el .

* Disparate communication Substrate Heat Sink

schemes

1/O Pad Array

Presentation Outline

e Conclusions




Conclusions

Three-dimensional integration is a promising solution
to expected limits of scaling

Interplane through silicon vias (TSVs) are the key
Advanced and novel 3-D architectures are now possible

We’ve demonstrated a 3-D circuit operating at 1.4 GHz
— 3-D power delivery test circuit currently in manufacture

— More to come from many sources

3-D integration is a likely next step in the evolution of
semiconductor technology

Thank you for your attention!




