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Abstract -Closed form solutions for the 50% delay, rise time, circuit, permitting more exhaustive simulations to be performed for
overshoots, and settling time of signals in arRLC tree are only the critical paths. Also, the Elmore delay is widely used as a
presented. These solutions have the same accuracy characteristics delay model for the synthesis of VLSI circuits such as buffer
as the Elmore delay model forRC trees and preserves the  insertion inRC trees and wire sizing [15]-{23]. The wide use of the
simplicity and recursive characteristics of the Elmore delay. The ~ Elmore delay model as a basis for design methodologies is primarily
solutions introduced here consider all damping conditions of an ~ because the Eimore delay model has a high degrieebfy [15]: an

RLC circuit including the underdamped response, which is not optimal or near-optimal solution ach!eved by a deS|gn methodology
considered by the classical Elmore delay model due to the non- Paseéd on the Eimore delay model is also near-optimal based on a
monotone nature of the response. Also, the solutions have MOr€ accuratee(g., SPICE-computed [19]) delay model for routing

A : construction [20] and wire sizing optimization [18]. Simulations [21]
significantly improved accuracy as compared to the Elmore delay ;
for an overdamped response. The solutions introduced here for have demonstrated that the clock skew derived under the Elmore

RLC trees can be practically used for the same purposes that the dela;_/l_rrrodel has a high correlation with SPICE-derived skew data.
Elmore delay is used forRC trees. _ e popularl_ty of the Elmore delay model is mainly due to the
existence of a simple tractable formula for the delay [24] that has

. recursive properties [22], making the calculation of the circuit delays
I. Introduction . ~ highly efficient even in large circuits. However, no equivalent

It has become well accepted that interconnect delay dominategyrmula for delay calculation has been determinedRIo€ trees. The
gate delay in current deep submicrometer VLSI circuits [1]-[7]. With ahsence of a good delay model RIrC trees is primarily due to the
the continuous scaling of technology and increased die area, thigact that the Elmore delay does not consider non-monotone responses
situation is expected to become worse. In order to properly d?s'g’FlS] which can occur irRLC circuits. The focus of this paper is
complex circuits, more accurate interconnect models and signagherefore the introduction of a simple tractable delay formulRE
propagation characterization are required. Initially, interconnect hagrees that preserves the useful characteristics of the Elmore delay
been modeled as a single lumped capacitance in the analysis of thgodel while maintaining the same accuracy characteristics. The rise
performance of on-chip interconnects. Currer®g; models are used  time of the signals in aRLCtree is also characterized as well as the
for high resistance nets and capacitive models are used for lessvershoots and the settling time (for an underdamped response).
resistive interconnect [8], [9]. However, inductance is becoming  This paper is organized as follows. Background describing the
more important with faster on-chip rise times and longer wire delay of RC trees and an analysis of the relative accuracy of the
lengths. Wide wires are frequently encountered in clock distributiongimore delay model are provided in section II. In section Ill, an
networks and in upper metal layers. These wires have low resistancgyuivalent second order approximation ofRIrC tree is developed.
and can exhibit significant inductive effects. Furthermore, closed form solutions for the 50% delay, rise time, overshoots, and
performance requirements are pushing the introduction of newkettling time of the signals within aRLC tree are introduced in

materials for low resistivity interconnect [10]. Inductance is therefore section Iv. Finally, some conclusions are offered in section V.
becoming an integral element in VLSI design methodologies, see

&9 ,[B\Sr]l i[r%tle]rlc[c}r?r]l.ect line in a VLSI circuit is in general a tree rather Il. Background and Accuracy of Elmore Delay
. ) - . A survey of the primary methods for calculating the delay of an
than a single line. Thus, the process of characterizing S|gnah . . . .
: X . - . C tree is provided in subsection A. The accuracy of the Elmore
waveforms in tree structured interconnect is of primary |mportance.delay is chgracterized in subsection B. It is shownythat the Elmore

One of the more popular delay models used within industrR@r S
g - . ' delay for bothRC andRLC trees is highly accurate for balanced trees
trees is the Elmore delay model [13], [14]. Despite not being highly and ?looses accuracy as the tree begonges more unbalanced.

accurate, the Elmore delay is widely used by industry for fast delay
estimation. With IC’s composed of tens of millions of gates it is
impractical to use time consuming methods to accurately evaluate thé- Background ,

delay at each node in a circuit. The Elmore delay model is therefore N 1948, Elmore [13] introduced a general approach for

used to quickly estimate the relative delays of different paths in thecalculating the propagation delay of a linear system given its transfer
function. If the transfer function of the systenGi), the normalized

transfer functiorg(s) is G(s)/G(0), which can be generally described
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Corporation, and Intel Corporation. wherea andb, are real andn > n. For a monotone response, all the

poles ofg(s) should be real and for a stable system all the poles
should lie on the negative real axis. The unit step response of the
normalized transfer function is stf(s). In the time domain the
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is monotonically increasing which makes the area uegrequal to



one and makes'(t) always positive. Thus, Elmore defined the 50% This single pole first order approximation of the transfer

propagation delay (the time whesft) is equal to 0.5) as function can be inaccurate in certain cases where arbitrary initial

w conditions can create a low frequency zero, thereby violating one of

T, = J’te' (t)dt. ) Wyatt's assumptions [25]. For this reason, Horowitz approximated

3 the voltage across the capacitors in the circuit with a two pole one

which is the centroid of the area unaé(t). By noting thae'(t) for a zero transfer_ function by ma_ltchlng k_)oundary conqmons [26]. Pllla_ge

step input is simplg(t), the transfer functiog(s) is extended thls concept by |ntroduq|ng asymptotic wave evaluation
o o 2w (AWE), which depends on matching the figtmoments of the

g(s) :Ie- (Hes'dt=1- SIte- (tH)dt+ S—Itze'(t)dt— @) transfer function [27]-[29] rather than only the first moment as Wyatt

3 3 24 and Elmore did. This concept allows arbitrary accuracy by including

Thus, if the normalized transfer function is expanded in the powers oftdditional moments. The normalized transfer funciyte) can be
s, the 50% delay can be determined directly as the coefficiest of €xPanded in the powers ss
From (1), the propagation delayTs = b, - a, which is the definition g(s) =1+ ms+ n1232 +..... , (8)
of the Elmore delay. , , wherem is thei” moment of the transfer function [27]. The firgf 2
In 1987, Wyatt [14] used the relationships thainda, are moments of the transfer function include the necessary information to
w1 d w1 calculate the firs| poles and the residues of these poles. Numerical
b, = 2; an - zi’ (4) methods have been developed [28]-[30] to efficiently calculate the
o =T 4 moments, poles, and residues. However, the Elmore (Wyatt) delay is
respectively, wherg, andz are the poles and zeros of the transfer g widely used within industry since it is computationally fast to
function, respectively. Thus, Wyatt treatdd = b, - &, as the  gyajyate.” Also, due to the existence of a closed form tractable
reciprocal of the dominant pole (the pole that has the smallesiqytion, the Elmore delay is amenable to VLSI-oriented design and

absolute value) of the system. This approximation is accurate fogynthesis methodologies. Asymptotic wave evaluation is mainly used
systems that can be modeled by a single dominant pole and has g analyze those networks that require high accuracy while

low frequency zeros near the dominant pole. Using this;qngjgering monotone and non-monotone responses.
approximation, the step response of the system is given by

®) For theRC tree depicted in Fig. 2, if the tree is balanded, R,
=R, andC, = C,, the Elmore (Wyatt) delay accurately describes the
signal waveform as shown for output node 2 in Fig. 3. The analytical
solution is given by (5) withT,, calculated according to (7). The
transfer function at output node 2 has three poles (there are three
g(s) — 1 capapi@ors .in the circuit) and one finite zero. T.he other two zeros are
SRC+1 ' (6) at infinity since there are two shunt capacitors in the path between the
input and output node 2. Thus, the transfer function is a third order
function with one finite zero. However, for a balanced tree, the zero
cancels one of the poles and a second order system with no finite
zeros remains. This characteristic can be observed by noting that the
output at node 3 is the same as the output at node 2 due to the
symmetry in the tree. Thus, tRC tree shown in Fig. 2 is equivalent
’\/Q/F to the reduced ordd®C ladder circuit shown in Fig. 4, which can be
J_ derived by shunting the two branches at nodes 2 and 3. The transfer
I function at node 2 of this ladder circuit is a second order function
I with two zeros at infinity and no finite zeros. In general, the
= equivalent ladder circuit for aRC tree has capacitors equal to the
number of levels in the tree. For example, if the tree has a binary
branching factor andh levels, the order of the equivalent ladder

. . circuit is n for a tree that has"™A branches. This exponential
What has made the Elmore (and Wyatt) delay particularly appea“ngreduction of the order of the transfer function at the oFL)Jtputs of a

for RC trees is the introduction of a simple closed form solution for ) .
balanced tree makes a first order approximation more accurate as

the time constanTD_ -[24]' For theRC tree shown in Fig. 2, the time compared to the case of an unbalanced tree. Also, since all the finite
constanfl, at nodd is ) . .
oi zeros cancel, Wyatt's assumptions of no low frequency zeros is

t .
e(t) =1- eXp(_T_)’ B. Analysis of the Accuracy of the Elmore (Wyatt) Delay
D

which indicates a 50% propagation delay equal to 0.6&8her than
T, as anticipated by Elmore. For example, the sinipd& circuit
shown in Fig. 1 has the transfer function,

Thus, according to Elmore the propagation deldGsand according

to Wyatt the propagation delay is 0.682 Note that Wyatt's
solution is exact for this simple circuit. In general, Wyatt's solution is
more accurate than Elmore’s solution. Wyatt's modification of the
Elmore model is still usually referred to as the Elmore delay.

Fig. 1. SimpleRCcircuit.

Ty = ZCK R, . (7) correct, which again makes Wyatt's solution more accurate at the
output nodes of alRLC tree. However, the reduced order transfer
wherek is an index that covers every capacitor in the circuitRyrid function and the cancellation of all of the finite zeros are not the only
the common resistance from the input to the nddesd k. For reasons for the high accuracy of the Elmore (Wyatt) delay for
example, for theRC tree shown in Fig. R,, =Rl andT,,= CR, + balanced trees. Another important reason is that of_ the few remaining
C(R+R)+CR. R, poles, only one low frequency pole is dominant while all of the other
2 poles are high frequency poles that barely affect the response. This
| behavior can be illustrated by a closer investigation of Wyatt's
R 1 ICZ approximation and the moments of RE tree. According to Wyatt
—\/W—_I_— = and using the value fof, in (7), the transfer function at node
c (assumed to be an output node) is
1" Rs _ 1 .
L 3 90 = cro ©)
v | SZ C.R, +1
GCs
:__l: Expanding this function into powers gfthe moments of this transfer

Fig. 2.RCtree. function are



shown in Fig. 5. The more unbalanced the tree, the greater the error
encountered by the Elmore (Wyatt) delay. In general, it is found that

gi(s):l_SZCkRik +52§ZCkRik§_---:1+miS+mizsz+ ----- ' (10)
the sensitivity of the second order approximation to an inbalance in

Thus the™ moment is given by

m} :E_ZCkRiké'

(11)

anRLCtree decreases as the tree size increases.
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R, —R,. For a balanced treR, —R, is equal to zero for mogtandk

due to symmetry. Thus, the first order Wyatt approximation provides
a value for the second moment that is very close to that of the second Fig. 5. Time domain response of tRE tree shown in Fig. 2 at
moment Of an Output nOde Of a balanced tree. In a Similar faShiOn, Output node 2. AS/X [31] Simu|ations are Compared to Wyatt’s
higher order moments of Wyatt's approximation are close to the approximation. The tree is unbalancB= 1R,
corresponding moments of an output node of a balaR@dree.

This aspect indicates that one of the remaining poles is dominant and

the other poles are high frequency poles that can be neglected withoyy second Order Approximation for RLC Trees

a large error. For example, if all the resistances and capacitances IN" g mentioned in section Il. the Elmore (Wyatt) delay does not
the tree shown in Fig. 2 are equal to one (capacitors are in units gf,ohery characteriz&LC networks due to the possibility of a non-
pF, resistors in units of(k and time in units of ns), the two poles of yonotone response of @RLC network. To illustrate this point,

the reduced order tra}nsfer function at output node 2 are —0.2679 anghnsider the simple single sectiBhC circuit depicted in Fig. 6. This
—3.732. Thus, there is a factor of 14 between the two poles and thgircyit has a second order transfer function that is given by

high frequency pole (-3.732) can be safely neglected. For larger trees, 1
the single pole approximation is more accurate since the ratio of the a(s) =
number of node paisandk for whichR, — R, is zero increases as ~ STLC+sRC+1 '

Note that the coefficient of is RC, which does not include the

compared to the pairs for whid® — R, is nonzero. This situation ! ! nt :
makes the moments of the first order approximation moreinductancel. This coefficient of the Elmore time constant (and thus

representative of the balance@ tree. the Wyatt approximation) does not depend on the inductance.
However, inductance can have a significant effect on the response of

Time (ns)

(14)

V.

2
(volts) z» -

Fig. 3. Time domain response of the balanR€iree shown in Fig.
2 at output node 2. AS/X [31] simulations are compared to Wyatt's
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approximation.

a circuit. To better observe the effect of inductance, the transfer

function of a circuit can be reconfigured as

0)2

S) = n ,
9= a0 7o as)

where
_1 RC 1

= and W, =—- (16)
24LC
The poles of the transfer function are

P, =w,[-{ +/{? -1]. 17)

Note that if{ is less than one, the poles are complex and oscillations
occur in the response which violates the monotone response
condition of the Elmore delay. In this case, the response is
underdamped and overshoots occuf] i§ greater than one, the poles
are real and the response is an overdamped respogss. dfjual to

one, the response is a critically damped respodse. called the
damping factor of the system. From (16), as the inductance increases,

R R/2 2 ich Vi - -
m 1 ANA— { decreases which violates the assumption of a monotonic response.
1 1 L R
Icl Izcz e B R R VAVAVE +
= = Vi, C=—/— V,
Fig. 4. Reduced ord&Cladder circuit which is equivalent to tRC - 1

tree shown in Fig. 2 if the tree is balanced. =

If the tree shown in Fig. 2 is unbalanced by makRg Fig. 6. SimpleRLCcircuit.

10R,, errors occur in the accuracy of the derived signal waveform as



At least a second order approximation is required to characteriz k.
a non-monotone response,gglause a non-mqonotone response Note that V(9(l, = 1, and thatdy(9/ds], = My since
involves complex poles which appear in conjugate pairs in a reaV, (s) = g, (S) =1+ m;s+mjs® +..... Thus, the first and second
system. Thus, a second order system such as (15) is used here dpyments of a generRLCtree at nodéare
approximate a system with a nhon-monotone response. It is therefore ml _ _Z C R
- k ' Nk

necessary to determirgand w, in order to make the second order
m, = Z zCkRijRkj - ZCkLik'
]

approximation as accurate as possible as compared to the exact (24)
ince the Elmore (Wyatt) model approximates the first terrmyw

transfer function. The transfer function in (15) can be expanded in
powers ofs where the first two moments of the transfer function are
equated to the first two moments of the system which are assumed
bem, andm,. The expansion of the transfer function in (15) is

IO g = S R e 9l B . g o o
g(s)=1-s S w? a=lems+m,st o (18) by C,R, O, a similar approximation is used here. Thus, the
n n D

The parameters that characterize the second order approximation of a . .
. . second moment is approximated by
non-monotonic systeny and w, can be calculated in terms of the

moments of the non-monotonic system and are m, = EZ C.R, g ) ch L, - (25)
_—m 1 _ 1 0
(F % Tm—— ad e ———" (g
m —-m, m -m,
Hence, for a system with a non-monotonic response a second ord
approximation can be found if the first and second moments of th
system are known.

Substituting the first and second moments of a gefdr@ltree
into (19),¢ andw), that characterize a second order approximation of
e transfer function at nodere

CR
_}Z R 1 . (29

) 2 Z Ck I‘ik and wni i Z Ck I_ik

Note the analogy witlf andw), for a singleRLC section in (16). The

time constantRC and +/LC are replaced by the summations of the
equivalent time constants in the tree. Note also that (26) becomes
(16) for a single section. This second order approximation has the
same accuracy characteristics as that of the Elmore (Wyatt)
approximation for arRC tree. For a step input and a supply voltage
of V., the time domain response at nad#erived from the second
order approximation is
S =vy, + Voo PPENCE D] eplont4 —VEI D (7)
271 - +y7 -1 - —y¢t-1 H
The closed form solution is compared to AS/X [31] simulations
of theRLC tree shown in Fig. 7 at output node 7 ¥gr = 2.5 volts.
The simulations are shown in Fig. 8 for a balanced tree with several
values of¢, (the equivalent damping factor at node 7). The Elmore
(Wyatt) solution is also shown for comparison. Note the accuracy
that the solution exhibits as compared to the AS/X simulations for the
case of a balanced tree. The error in the propagation delay is less than
3% for this balanced tree example. In general this solutioRIifG
trees has the same accuracy characteristics as that of the Elmore
For the generaRLC tree shown in Fig. 7, the voltage drop at (Wyatt) delay with respect tRC trees. The accuracy of the solution
any node as compared to the input voltage is introduced here deteriorates as the tree becomes more asymmetric.
_ To quantify the error between the closed form solution introduced
Vin () ~Vi(9) = Z CV(9)9Ry + L8] (20) here and the AS/X simulations, analytic solutions and simulations for
If the input is a unit impulseé/, (s) is equal to 1.0 and the voltages at

several asymmetric trees are shown in Fig. 9. The paraasters
o introduced to measure the relative asymmetry irRag tree. For
the nodes of the tree are the unit impulse responses of these nodee§< y y
Thus, the normalized transfer functig(s) at node is given byV,(s)

¢

Fig. 7. GeneraRLCtree.

ample, whemsymis equal to two, the impedance of the left branch
is twice the impedance of the right branch. The higimm the

and is , _ higher the asymmetry in the tree. The error in the propagation delay
o} (S):l—ZCka(S)S[Rki +LgS =1+ mis+m,s® +... (21) can reach 20% for highly asymmetric trees and the error in the
) ] waveform shape is even higher as compared to AS/X simulations.
The first and second moments at nodan be found from However, these traits are typical accuracy characteristics for the
i _dg(s) . 1d%g;(s) Elmore (Wyatt) approximation foRC trees as discussed before.
T ds and M, T g (22) Thus, this approximation can be used WRhC trees for the same
. o . Lo s purposes that the Elmore (Wyatt) approximation is used Rih
Differentiating (21) with respect ®and substituting = 0, trees. Note also that the solution in (27) tends to the Elmore (Wyatt)
m = —Z CRV, (S)|s:0 approximation for large ¢ (low inductance effects), which
(23) demonstrates that the general solution introduced here f&Lan
i dv, (s) tree includes the special case ofRdtree {.e., zero inductance).
m, =_ZCkRikT -ZCkLika(S)L:O'
s=0




by w,. The time scaled 50% delay and rise time can be calculated by
i /A@\—AS/X RLCtree J equatingS’ (t) to 0.5/, 0.1V, and 0.¥_, respectively. The time

.v (27)\/ =

scaled 50% delay at nodend the rise time are only functions of one
Wyatt approximation |

variable {. The 50% delay and the rise time calculated for several
values of{ are plotted as functions @f in Fig. 10. A curve fitting
method is applied to characterize the time scaled 50% delay and rise
time as functions of, and these functions are

ol s P chand ese !

n.:m Juulou zuu‘on 300‘,00 400‘,00 t pdi - 1'047e ’ + 1'3%i ! (29)
Zi1435 Zi1425

= t =6017 % —5e 64 +4.397,, (30)

wheret’ , andt’ are the time scaled 50% delay and rise time at node
i, respectively. The 50% delay and rise time at nodean be
determined by dividing , andt’, by @, and are

(I T T A Y

v toq = (L047e %5 +1.39C,)/ w, (31)
u::“ 0. :)D ’Iﬁlﬂﬁ 4'1\00 Sﬁlﬂﬁ ) 0.00 20.00 40.00 60.00 80.00 —ﬁ —ﬂ
Time (ns) t; =(6.017e °4 —5e %% +43%;)/w,. (32)

) ) ] Note that the 50% delay and the rise time at riathn be described
Fig. 8. AS/X simulations as compared to (27) for several valugs of g

The Elmore (Wyatt) solution is also shown. a
t,a = (L.047e %)/ +O.69SZ C.R,: (33)

| ASIX RLétreé: o R
t, =(6.017% °4 -5e %)/ +2-195ZCkRk . (34)

125
Zl

1(27) For large ¢ (low inductance effects), these solutions become the

w | asym=2 4L . Elmore (Wyatt) ap.proxi.mation. of thg 50% delay and the rise time for

w | O asym=10 an RC tree at nodeé. This relationship demonstrates that the general
Errorint, =2.1% e - Errorint,=13.4% |  solutions for the 50% delay and the rise time introduced here include

I . ‘ ‘ . ) ] the Elmore (Wyatt) delay for the special case oR&rtree. Note also

000 o000 0@ oo 500 that the general solutions introduced here include all types of

Time (ns) responses (underdamped non-monotone, critically damped, and
Fig. 9. AS/X simulations as compared to (27) for several asymmetricoverdamped) in one continuous equation, which is useful in

trees. Results are for node 7 shown in Fig. 7. applications such as buffer insertion, wire sizing, and other VLSI-
based design, synthesis, and analysis methodologies.
IV. Signal Characterization in RLC Trees for a Step Input The calculation of; andw, in (26) requires the calculation

The second order approximation of the transfer function of anof the two summations,z C/\R, and ZCk L, - The first
RLC tree at node described by (15) and (26) can be used to
determine the time domain signal at noder an arbitrary input. The ~ summation is the Elmore delay, which can be calculated efficiently
Laplace transform of the input is multiplied by the second orderwith linear complexity by building the solution at a node in a tree
approximate transfer function. The inverse Laplace transform isbased on the solutions at its immediate childean, [22], [27], [29].
calculated for the resulting expression to determine the time domairThe second summation is calculated in precisely the same manner
signal. Note that a piecewise linear input can also be [@8gdAfter with the branch resistances replaced by the branch inductances. Thus,
determining a mathematical expression describing the time domainhe second order approximation introduced here and the expressions
signal at node of an RLC tree, an iterative method is needed to in (31)-(38) preserve the computational properties of the Elmore
calculate the primary parameters characterizing the time domairtdelay, permitting highly efficient algorithms to characterize the
response such as the 50% propagation delay and the 90% rise timsignals within arRLCtree.
However, for the special case of a step input, these parameters can be
calculated directly without applying the aforementioned proceduré
due to the mathematical nature of the time domain signal.
The time domain step response of (27) can be used tg
characterize the 50% delay and the rise time of the signals within aj
RLC tree. The rise time is defined here as the time for the signal t
rise from 10% to 90% of the final value. The overshoots and the
settling time for the case of an underdamped response are als
characterized. In the step response described in (27), note that time1 i
always multiplied byw,. Thus, if time is scaled by, the step

1q- ri |

Numerical

. Solutions
response at nodiewith a supply voltage oWV, volts becomes a
function of only one variablé and is I T T e e I T FER P
O Jt(=¢i +¢: -] v(-¢i—y¢?-o O
§'() =V + 2 0° -e n *® | ¢ | ¢
2Jz? -1 H‘Z' +J72 -1 -z - lz_z _1H Fig. 10. The time scaled 50% delay and rise timeandt’ , versus

where§/'(t) is the time scaled response at nbdedt’ is time scaled ¢ (29) and (30) are also shown.



For the case of an underdamped non-monotone respHrst)(
overshoots and undershoots occur which must also be characterizercd
Another parameter can also be used to characterize non-monoto %'|
responses and is defined as the time when the oscillations about the
steady state are smaller thanof the steady state value. This
parameter is usually called the settling time arisl typically chosen [10]
to be 0.1 [32]. The value of the maximum or minimum oscillations
can be determined by differentiating (27) with respect to time and
equating the result to zero. The values of the maximum or minimunil1]
oscillations at nodeas a percentage of the final value are given by

) 12
%0, :(—1)”*1ELOOexp§~i'ZE n=12.. @ M
0 Vi-4° g

where %O, represents the maximum overshoots forodd and (3]
minimum undershoots far even at nodé The time at which tha"
overshoot occurs at nodés given by [14]
to = nrr 1]
o T —" (36) 15
Wy 1_Zi2
The settling time can be calculated by equatin@, % 100X to [16]

determinen which represents the first overshoot that is less than
times the steady state value. The time of this overshoot is the settling
time and can be calculated by substitutmdrom %O, = 100X in

(37). Thus, the settling time at noiis [17]
t, =), 37)
¢, [18]
Forx=0.1t,is
2.3
= . 38
tSi Ziwni ( ) [lg]
V. Conclusions [20]

A general method to characterize the response of a linear non-
monotone system that is equivalent to the Elmore delay is presented.
The delay expressions foRLC trees have the same accuracy [27]
characteristics that the Elmore (Wyatt) approximation hasRiGr
trees. Simple analytical expressions of signals inRag tree are
provided for the 50% delay, the rise time, overshoots, and settlin
time. These expressions consider both monotone and non-monoto?[ézl
signal responses. The delay expressions are continuous and hence are
useful for optimization, analysis, and synthesis in VLSI-based design

methodologies. [23]
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