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Abstract - A closed form expression for the propagation delay of a
CMOS gate driving a distributed RLC line is introduced that is
within 5% of dynamic circuit simulations for a wide range of
RLC loads. It is shown that the traditional quadratic dependence
of the propagation delay on the length of an RC line approaches a
linear dependence as inductance effects increase. The closed form
delay model is applied to the problem of repeater insertion in
RLC interconnect. Closed form solutions are presented for
inserting repeaters into RLC lines that are highly accurate with
respect to numerical solutions. An RC model as compared to an
RLC model creates errors of up to 30% in the total propagation
delay of a repeater system. Considering inductance in repeater
insertion is also shown to significantly save repeater area and
power consumption. The error between the RC and RLC models
increases as the gate parasitic impedances decrease which is
consistent with technology scaling trends. Thus, the importance
of inductance in high performance VLSI design methodologies
will increase as technologies scale.

I. Introduction
It has become well accepted that interconnect delay dominates

gate delay in current deep submicrometer VLSI circuits [1]-[5].
Currently, inductance is becoming more important with faster on-
chip rise times and longer wire lengths. Wide wires are frequently
encountered in clock distribution networks and in upper metal layers.
These wires are low resistance wires that can exhibit significant
inductive effects. Furthermore, increasing performance requirements
are pushing the introduction of new materials for low resistance
interconnect [6]. With these trends it is becoming more important to
include inductance when modeling on-chip interconnect. Criteria to
determine which nets should consider on-chip inductance have been
described in [7] and [8].

The focus of this paper is to provide an accurate estimate of the
propagation delay of a CMOS gate driving a distributed RLC line as
well as to develop design expressions for optimum repeater insertion
to minimize the delay of a signal propagating along a distributed
RLC line. The paper is organized as follows. In section II, a simple
yet accurate propagation delay formula describing a CMOS gate
driving a distributed RLC load is presented. In section III, the
propagation delay formula is used to develop design expressions for
optimum repeater insertion to minimize the propagation delay of a
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distributed RLC line. Some conclusions are offered in section IV. A
proof of the expressions for optimum repeater insertion in an RLC
line is provided in the appendix.

II. Propagation Delay of a CMOS Gate Driving an
RLC Load

An arbitrary CMOS gate driving an RLC transmission line
representation of an interconnect line is shown in Fig. 1. Rt, Lt, and
Ct are the total resistance, inductance, and capacitance of the line,
respectively. The parasitic impedances Rt, Lt, and Ct are given by Rt

= Rl, Lt = Ll, and Ct = Cl, respectively, where R, L, and C are the
resistance, inductance, and capacitance per unit length of the
interconnect and l is the length of the line. Rtr is the equivalent
output resistance of the gate driving the interconnect. CL is the input
capacitance of the following gate at the end of the interconnect
section. A minimum size buffer has an output resistance R0 and an
input capacitance C0. The input voltage Vin is a fast rising signal that
can be approximated by a step signal. Vout is the far output voltage at
the end of the interconnect section.

Fig. 1. A CMOS gate driving an RLC transmission line.

From the basic principles of a transmission line [12], the voltage
transfer function Vout(S)/Vin(S) at the end of a lossy transmission line
with a source resistance zs and a load impedance zL is given by
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where γ is the propagation constant and z0 is the characteristic
impedance which are given by
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For a CMOS gate driving another CMOS gate at the end of the line,
zs = Rtr and zL =  1/SCL. A time scaling is applied by substituting t’ /
ωn for each t where
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From the characteristics of the Laplace transform, the complex
frequency S is substituted by ωnS’. With this time scaling, the
variables γ, z0, and zL are transformed to γ’, z’0, and z’L, respectively,
which can be evaluated by substituting ωnS’ for each S. If the
exponential functions in the transfer function in (2) are replaced by a
series expansion, the transfer function becomes
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Substituting for γ’ l, z’0, and z’L, the transfer function Vout(S’)/Vin(S’)
is a function of only three variables: ζ, RT, and CT which are
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The first few terms of the series expansion in S’ are
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Thus, for a unit step input function, the output voltage waveform
Vout(t’)  = / 

-1{(1/S)* Vout(S’)/Vin(S’)} is also a function of the three
variables ζ, RT, and CT. The scaled 50% propagation delay t’ pd can be
calculated by solving Vout (t’pd,ζ,RT,CT) = 0.5 which means that t’ pd is
only a function of ζ, RT, and CT. Thus, the propagation delay of an
RLC line with a source resistance Rtr and a load capacitance CL has
the form,
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Note that this solution is characteristic of an RLC line and that no
approximations have been made in deriving the result.

The scaled propagation delay t’ pd is dimensionless since ωn has
the units of 1/time. t’ pd is a function of only three variables which is
the canonical number of variables to describe t’ pd. There are several
ways to select these three variables. The three variables chosen here
are RT, CT, and ζ since these variables are physically intuitive. The
variables RT and CT characterize the relative significance of the gate
parasitic impedances with respect to the interconnect parasitic
impedances. Increasing RT and CT demonstrates that the gate
parasitic impedances further affect the propagation delay. The third
variable ζ is the coefficient of S1 in the denominator of the transfer
function. ζ is chosen as the third variable since the 50% delay is
primarily dependent upon the coefficients of S1 in the denominator
and the numerator [13]. This characteristic is used to reduce the
number of variables that affect the propagation delay from three to
one (ζ). Note that the three variables RT, CT, and ζ are not
independent since ζ is a function of RT and CT.

Fig. 2. Comparison of the accuracy of (9) to AS/X [14] simulations
of the time scaled 50% propagation delay t’ pd of an RLC transmission
line with a source resistance Rtr and a load capacitance CL. The
propagation delay is plotted versus ζ for different values of RT and
CT.

AS/X [14] simulations of the time scaled 50% propagation
delay of a gate driving an RLC transmission line t’ pd as a function of

ζ, RT, and CT are shown in Fig. 2. Note in Fig. 2 that the propagation
delay is primarily a function of ζ. The dependence on RT and CT is
fairly weak. This characteristic does not imply that the transistor
driving the interconnect and the load capacitance has a minor effect
on the propagation delay since ζ includes the effects of RT and CT.
Note also that this effect is particularly weak in the range where RT

and CT are between zero and one. This range is most important for
global interconnect and long wires in current deep submicrometer
technologies. Thus, the propagation delay is primarily a function of
ζ, which collects the five impedances that affect the propagation
delay, Rt, Lt, Ct, Rtr, and CL, into a single parameter. A curve fitting
method is used to minimize the error when RT and CT are between
zero and one, as illustrated in Fig. 2.

Using this approach, the propagation delay in the linear region
can be modeled by the following function,

npd et ωζζ /)48.1(
35.19.2 += − . (9)

AS/X [14] simulations of the propagation delay of an RLC
transmission line as compared to tpd in (9) are shown in Table 1.
Note that the solution exhibits high accuracy (the error is less than
5%) for a wide range of interconnect (Rt, Lt, and Ct) and gate
impedances (Rtr and CL). Note also that the simulation data listed in
Table 1 include those cases where the response is underdamped and
overshoots occur (high inductive effects), and those cases where the
response is overdamped (low inductive effects). All of these
operating modes are described by one continuous equation, (9).

Table 1. Comparison of tpd in (9) to AS/X simulations characterizing
the propagation delay of a CMOS gate driving an RLC transmission
line. Ct = 1 pF and Rtr = 500 Ω.

CT = 0.1 CT = 0.5 CT = 1.0
RT Lt

H (9) ASX Error (9) ASX Error (9) ASX Error

10-5
3389 3287 3.3% 3893 3782 2.9% 4469 4344 2.8%

10-6
1062 1071 0.8% 1277 1328 3.8% 1553 1627 4.5%

10-7
532 552 3.6% 848 881 3.7% 1248 1269 1.6%

0.1

10-8
508 496 2.4% 850 883 3.7% 1239 1261 1.7%

10-5
3397 3304 2.8% 4086 3940 3.8% 4504 4518 0.3%

10-6
1145 1108 3.3% 1489 1509 1.3% 1946 2030 4.1%

10-7
854 861 0.8% 1297 1300 0.2% 1812 1830 1.0%

0.5

10-8
841 850 1.0% 1277 1283 0.5% 1811 1825 0.8%

10-5
3397 3291 3.0% 3897 3773 3.3% 4496 4383 2.6%

10-6
1070 1076 0.6% 1323 1345 1.6% 1712 1702 0.6%

10-7
634 609 4.1% 930 910 2.2% 1297 1281 1.2%

1.0

10-8
630 622 1.2% 936 913 2.5% 1294 1271 1.8%

An interesting special case is when the gate parasitic
impedances (CL and Rtr) are neglected. This case is particularly
important since it describes the propagation delay characteristics of a
distributed RLC line without the distortion of the gate impedances.
For the limiting case where L → 0, (9) reduces to 0.37RCl2. This
expression is the same formula for the propagation delay of a
distributed RC line as described in [3] and [11]. Also note the well
known square dependence on the length of the wire. For the other
limiting case where R → 0, the propagation delay is given by LCl .
Note the linear dependence on the length of the line. Thus, the
traditional quadratic dependence of the propagation delay on the
length of an RC line approaches a linear dependence as inductance
effects increase.

III.  Repeater Insertion in RLC Interconnect

Traditionally, repeaters are inserted into RC lines to partition an
interconnect line into shorter sections, e.g., [9]-[11], thereby

CT = RT =5

CT = RT =1

CT = RT = 0
Eq. (9)

ζ

t’ pd
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0
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reducing the total propagation delay. Applying the same idea to the
general case of an RLC line, repeaters are used to divide the
interconnect line into k sections as shown in Fig. 3. The buffers are
each uniformly the same size and h times larger than a minimum size
buffer. The buffer output impedance Rtr is R0/h and the input
capacitance of the buffer CL is hC0.

Fig. 3. Repeaters inserted in an RLC line to minimize the
propagation delay.

The total propagation delay of a repeater system is the sum of
the individual propagation delays of the k sections and is a function
of h and k for a given interconnect line. The values of h and k at
which the total delay tpdtotal is a minimum are determined by
simultaneously solving the following two differential equations,
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For the special case of an RC line (Lt → 0), the solution for
these equations is
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These equations are the same as described by Bakoglu in [11].
Solving (10) for the general case of an RLC line is analytically

intractable. However, as described in the appendix, hopt and kopt for
an RLC line have the form,
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where h’(TL/R) and k’(TL/R) are error factors that account for the effect
of the inductance and TL/R is
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The closed form solution for the propagation delay in (9) is used to
characterize the delay of the repeater system shown in Fig. 3 as
described in the appendix. The resulting expression is partially
differentiated with respect to h and k and the two derivatives are
equated to zero. The resulting two equations are solved numerically
for the optimum values of h and k. Numerical solutions for hopt and
kopt in (10) for different values of TL/R are plotted in Fig. 4.

Fig. 4. Numerical solutions of (10) as compared to eqs. (14) and
(15). a) hopt as compared to (14). b) kopt as compared to (15).
Numerical solutions are shown by the solid line while (14) and (15)
are shown by the dashed line.

Curve fitting is employed to determine a function that
accurately characterizes hopt and kopt. These functions are
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These closed form expressions are highly accurate with an error of
the total propagation delay of the repeater system of less than 0.05%
as compared to numerical analysis. These formulae can therefore be
considered exact for all practical purposes.

Upon examination of (14) and (15), hopt and kopt are equal to
hopt(RC) and kopt(RC) in (11) for the special case of an RC impedance
when Lt → 0 (or TL/R → 0). Note that the error between the two cases
increases as TL/R increases. This behavior is understandable since
inductance effects are more significant as TL/R increases (which
increases the error of neglecting Lt). Also note that as TL/R increases
(or the inductance effects increase), the number of sections kopt

decreases. The improvement achieved by partitioning the line into
shorter sections in the RC case is primarily due to the quadratic
dependence of the propagation delay on interconnect length. In the
other extreme case of an LC line, the propagation delay is linear with
interconnect length and therefore no speed improvement is achieved
by partitioning the line into shorter subsections. Actually, adding
repeaters in this case would only increase the total propagation delay
because of the additional gate delay of the repeaters. Thus, as
inductance effects increase, the optimum number of repeaters to
insert to minimize the total interconnect delay decreases.

The per cent increase in tpdtotal caused by neglecting inductance
and treating an RLC line as an RC line as compared to including
inductance based on (14) and (15) for hopt and kopt, respectively, is
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(tpdtotal)RC is calculated by substituting the solution for hopt(RC) and
kopt(RC) in (11) into tpdtotal. (tpdtotal)RLC is calculated by substituting
the solution for hopt and kopt in (14) and (15), respectively, into tpdtotal.
The resulting solution is a function of TL/R only and can be accurately
approximated by
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Note that (tpdtotal)RC is larger than (tpdtotal)RLC as TL/R increases. For
TL/R = 3, tpdtotal increases by 10%, for TL/R = 5, tpdtotal increases by
20%, and for TL/R = 10, tpdtotal increases by 30%.

The total area of the buffers in the repeater system is given by
ARLC = hopt*kopt*Amin and ARC = hopt(RC)*kopt(RC) *Amin for the RLC
and the RC case, respectively. Amin is the area of a minimum size
buffer. The per cent area increase %AI is characterized by 100*(ARC-
ARLC)/ARLC and is

( )[ ] ( )[ ]{ } .  116.0118.01 100%
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3.0 3
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The per cent area increase for TL/R = 3 is 154% and for TL/R = 5 is
435%. From the impedance values described in [7], it can be shown
that TL/R = 5 is common for a current 0.25 µm technology. Thus,
neglecting inductance not only increases the total delay of the
repeater system but significantly increases the buffer area as well.
This trend is expected since treating the interconnect as an RC line
and neglecting inductance requires more repeaters. These additional
repeaters add to the total delay and buffer area without reducing the
line delay because significant inductance makes the dependence of
the delay on the length of the interconnect become sub-quadratic.
Note that TL/R increases as R0C0 decreases. This relation means that
as the gate delay decreases, inductance becomes more important.
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Thus, the effects of inductance in next generation design
methodologies will become fundamentally important as technologies
scale.

IV. Conclusions
Closed form solutions for the propagation delay of a CMOS

gate driving a distributed RLC load are presented that are within 5%
of AS/X simulations. It is shown that the traditional quadratic
dependence of the propagation delay on the length of an RC line
tends to a linear dependence as inductance effects increase. This
behavior is expected to have a profound effect on future high speed
CMOS technologies.

Closed form solutions are presented for inserting repeaters into
RLC lines that are highly accurate with respect to numerical
solutions. Inserting repeaters based on an RC model into RLC lines
as compared to applying a distributed RLC impedance model of the
interconnect increases the propagation delay by up to 30%, and the
repeater area by up to 435% for common VLSI interconnect. The
power consumption of the repeater system is also expected to be
much less in the case of an RLC model as compared to an RC model
due to the increased repeater area for the RC case. Thus,
incorporating inductance into the interconnect impedance model is of
crucial importance for accurately estimating the propagation delay of
on-chip interconnect as well as for minimizing the propagation delay.
This importance is expected to increase as the gate parasitic
impedances decrease and as technologies increase in speed.

Appendix
Optimum Repeater Insertion in RLC Lines

As shown in section II, the propagation delay of a gate driving a
single section of interconnect with an impedance of Rt, Ct, and Lt has
the form given by (8). If repeaters are inserted to partition the line
into k sections and each repeater is h times greater than a minimum
size inverter, the total propagation delay of the system is the
summation of the propagation delays of each of the individual
sections. Since the sections are each equal, the total delay can be
expressed as tpdtotal = ktpdsec, where tpdsec is the propagation delay of a
single section. Each section has an interconnect impedance equal to
Rt / k, Ct / k, and Lt / k. Since each repeater is h times larger than a
minimum size buffer, each repeater has an output resistance Rtr = R0 /
h and a load capacitance of CL =  C0h. Thus, the total propagation
delay of the repeater system is
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Guided by the solution of h and k for the special case of an RC line,
the solution for an RLC line is in the form of
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where h’ and k’ are error factors that incorporate the existence of
inductance and approach one as the inductance approaches zero.
Substituting these values for h and k into (20), (21), and (22), the
variables RTsec, CTsec, ζsec, and ωnsec become
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where TL/R is given by
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Thus, the total propagation delay has the form,
),,( / RLttpdtotal TkhfCLt ′′⋅= .

(28)
Determining the values of k’ and h’ that minimize the total
propagation delay requires the simultaneous solution of the
following two differential equations,
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The solution of these equations demonstrates that h’ and k’ are only
functions of TL/R. Thus, the optimum number of sections kopt and the
optimum repeater size hopt for an RLC interconnect is
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Note that this solution is characteristic of an RLC line and that no
approximations have been made in deriving this result.
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