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Abstract1- A methodology is presented in this paper for
determining an optimal set of clock path delays for designing high
performance VLSI/ULSI-based clock distribution networks. This
methodology emphasizes the use of non-zero clock skew to
reduce the system-wide minimum clock period. Although
choosing (or scheduling) clock skew values has been previously
recognized as an optimization technique for reducing the
minimum clock period, difficulty in controlling the delays of the
clock paths due to process parameter variations has limited its
effectiveness. In this paper the minimum clock period is reduced
using intentional clock skew by calculating a permissible clock
skew range for each local data path while incorporating process
dependent delay values of the clock signal paths.

Graph-based algorithms are presented for determining the
minimum clock period and for selecting a range of process-
tolerant clock skews for each local data path in the circuit,
respectively. These algorithms have been demonstrated on the
ISCAS-89 suite of circuits. Furthermore, examples of clock
distribution networks with intentional clock skew are shown to
tolerate worst case clock skew variations of up to 30% without
causing circuit failure while increasing the system-wide maximum
clock frequency by up to 20% over zero skew-based systems.

1. INTRODUCTION

Clock skew occurs when the clock signals arrive at
sequentially-adjacent storage elements at different times.
Although it has been shown that intentional clock skew can be
used to improve the clock frequency of a synchronous circuit [1,
2, 3, 4, 5, 6], clock skew is typically minimized when designing
the clock distribution network, since unintentional clock skew due
to process parameter variations may limit the maximum frequency
of operation, as well as cause circuit failure independent of the
clock frequency (i.e., race conditions). In [1,2], it is demonstrated
that double clocking (the effect of the same clock pulse triggering
the same data into two adjacent storage elements) can be
prevented when the clock skew between these storage elements
satisfies TSkewij ≥ - TPDmin, where TPDmin is the minimum
propagation delay of the path connecting both storage elements.
Furthermore, it is also shown in [1,2] that zero clocking (the data
reaches a storage element too late relative to the following clock
pulse) is prevented when TSkewij ≤ TCP - TPDmax, where TCP is the
clock period and TPDmax is the maximum propagation delay of the
data path connecting both storage elements. The limits of both
inequalities, TSkewij(min) = -TPDmin and TSkewij(max) = TCP - TPDmax,
define a region of valid clock skew for each pair of adjacent
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storage elements, called the permissible range [7] or certainty
region [8], as shown in Figure 1. A violation of the lower bound
leads to circuit failure while a violation of the upper bound limits
the clock frequency of the circuit. Based on these observations,
the process variation tolerant optimal clock skew scheduling
problem can be divided into two sub-problems: determining a
minimum clock period that defines a valid permissible range for
any two storage elements in the circuit, and determining a
minimum width for each permissible range such that unacceptable
variations in the target clock skew remain within the bounds of a
permissible range. In this paper, a solution for this problem is
presented.
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Figure 1: Permissible range of a local data path.

The problem of determining a minimum clock period has
been previously solved [1, 3-6] in which a set of timing equations
is used to determine the optimal clock period and the clock delay
to each register in the circuit, thereby defining the local clock
skews. However, in order to better control the effects of process
parameter variations, it is advantageous to determine the
permissible range of each local data path, select a clock skew
value that allows a maximum variation of skew within the
permissible range and, finally, determine the clock delays to each
register.

This paper is organized as follows: in Section 2, a localized
clock skew schedule is derived from the effective permissible
range of the clock skew for each local data path considering any
global clock skew constraints and process parameter variations. In
Section 3, techniques for determining the set of clock skew values
that are tolerant to process parameter variations are presented. In
Section 4, these results are evaluated on a series of benchmark
circuits, thereby demonstrating performance improvements and
immunity to process parameter variations. Finally, some
conclusions are drawn in Section 5.

2. OPTIMAL CLOCK SKEW SCHEDULING

A synchronous digital circuit C can be modeled as a finite
directed multi-graph G(V,E). Each vertex in the graph, vj ∈ V, is
associated with a register, circuit input, or circuit output. Each
edge in the graph, eij  ∈ E, represents a physical connection
between vertices vi and vj, with an optional combinational logic
path between the two vertices. An edge is a bi-weighted
connection representing the maximum (minimum) propagation
delay TPDmax (TPDmin) between two sequentially-adjacent storage
elements, where TPD includes the register, logic, and interconnect
delays of a local data path [7]. A local data path Lij is a set of two
vertices connected by an edge, Lij = {vi, eij, vj} for any vi, vj ∈V. A
global data path P v vkl k

p
l=  → is a set of alternating edges and

vertices {vk, ek1, v1, e12, ..., en-1l, vl}, representing a physical
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connection between vertices vk and vl, respectively. A multi-input
circuit can be modeled as a single input graph, where each input is
connected to vertex v0 by a zero-weighted edge. Also, Pl(Lij) is
defined as the permissible range of a local data path and Pg(Pkl)
the permissible range of a global data path. Finally, the clock
skew of a local data path is defined as TSkewij(Lij) = TCDi - TCDj,
where TCDi and TCDj are the clock signal delays of vertices vi and
vj. The clock skew is described as negative if TCDi precedes TCDj

(TCDi < TCDj) and as positive if TCDi follows TCDj (TCDi > TCDj).

2.1 Timing Constraints

The timing behavior of a circuit C can be described in terms
of two sets of timing constraints, local constraints and global
constraints. The local constraints ensure the correct latching of
data into the registers of a local data path, i.e., to prevent double
and zero clocking. The local timing constraints are represented by
the following equation [1-6] to prevent zero clocking,

T L T TSkew ij Holdj PD ij( ) (min)≥ − + ζ        ,                (1)

and the following equation to prevent double clocking,

T L T TSkew ij CP PD( ) (max)≤ −            ,                 (2)

where ζij is a safety term introduced in [7] to prevent race
conditions due to process parameter variations, as described in
Section 3. Satisfying the permissible range of each local data path
Pl(Lij), however, does not guarantee a race-free circuit,
particularly when there are multiple parallel and feedback data
paths between two vertices. Two paths with common vertices are
said to be in parallel when the signal data flows in the same
direction in both paths. Likewise, a path is a feedback path when
the data signal flows in a direction that is the reverse direction of
the data signal flowing from the input of the circuit to the output
of the circuit.

To illustrate this situation, consider a circuit composed of
several global data paths connecting two common vertices vo and
vl, as shown in Figure 2. The vertices vo and vl represent two
registers, each register driven by a single clock signal, where the
clock skew between vo and vl is unique and independent of the
path connecting vo to vl. A valid clock skew between vo and vl

only exists if the clock skew is common to all the global data
paths connecting vo and vl. Since the clock skew between vertices
vo and vl is also the sum of the clock skew of each cascaded local
data path connecting vo to vl [9], the resulting sum is independent
of the global path between vo to vl. Alternatively, the permissible
range of each of the paths connecting the vertices vo and vl is the
sum of the permissible range of each cascaded local data path
(lighter-shaded regions in Figure 2) between vo and vl,
independent of the path between vo and vl. Therefore, a clock
skew between the vertices vo and vl exists if the intersection of the
permissible ranges of the paths connecting vo and vl form a non-
empty set (darker-shaded regions in Figure 2) [9].
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Figure 2: Example of matching permissible ranges in a circuit
with parallel and feedback paths

From the example in Figure 2, in order to prevent circuit
failures at the global level, circuits with parallel and feedback

paths must have a non-empty permissible range composed of the
intersection or overlap among the permissible ranges of each
individual parallel and feedback path. Therefore, a new set of
global timing constraints are required and formalized below. The
concept of permissible range overlap of a global data path Pkl can
be stated as follows:

Theorem 1: Let Pkl ∈ V be a global data path within a circuit C
with m parallel and n feedback paths. Let the two vertices, vk and
vl ∈ Pkl, which are not necessarily sequentially-adjacent, be the
origin and destination of the m parallel and n feedback paths,
respectively. Also, let Pg(Pkl) be the permissible range of the
global data path composed of vertices vk and vl. Pg(Pkl) is a non-
empty set of values iff the intersection of the permissible ranges of
each individual parallel and feedback path is a non-empty set, or
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Proof ⇒⇒: The clock skew between vertices vk and vl, TSkewkl, is
unique and independent of the number of paths connecting the
two vertices. Also, the clock skew TSkewkl of a single path that
connects both vertices is the sum of the clock skew of each local
data path along the path. Assuming that a value of clock skew
exists between vertices vk and vl, this value is always the same
independent of the path connecting vk and vl. Furthermore, for
each path connecting vertices vk and vl, the minimum (maximum)
clock skew value is the sum of the minimum (maximum) clock
skews of each local data path along the path defining the
permissible range of the global path. Therefore, a valid clock
skew between vertices vk and vl must be within the permissible
range of clock skew of each and every path connecting both
vertices. In other words, the intersection of permissible ranges
must be a non-empty set.
⇐⇐: Assume that Pg(Pkl) = ∅ and there exists a valid clock skew
value between vertices vk and vl. If this value of clock skew exists,
it must be contained within the permissible range of all the paths
connecting the vertices vk and vl. If a clock skew value exists for
all the paths, the result of the intersection of all the permissible
ranges cannot be an empty set. Therefore the valid value of clock
skew contradicts the initial assumption.  �

Similar to the permissible range of a local data path, the
permissible range of a global data path is bounded by a minimum
and maximum clock skew value. These values, the upper and
lower bounds of the permissible range Pg(Pkl), can be determined
as a function of the upper and lower bounds of the permissible
ranges of each independent parallel or feedback path connecting
vertices vk and vl.

Lemma 1: Let the two vertices, vk and vl ∈ Pkl, be the origin and
destination of a global data path with m forward and n feedback
paths. If Pg(Pkl) ≠ ∅, the upper bound of Pg(Pkl) is given by
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and the lower bound of Pg(Pkl) is given by
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Observe that both bounds of a clock skew region given by (3)
are dependent on the clock period in the presence of feedback
paths between vertices vk and vl. This recursive characteristic is
used to increase the tolerance of the clock distribution network to
process parameter variations, as explained in Section 3. For a
non-recursive data path (either local or global), the lower clock
skew bound is independent of the clock period, as shown in (1).



2.2 Optimal Clock Period

Without exploiting intentional clock skew, the minimum
clock period is determined from (2) for the local data path with
the maximum propagation delay. However, applying intentional
clock skew to a local data path permits the circuit to operate at
higher clock frequencies. The minimum clock period of a circuit
operating with intentional clock skew must simultaneously satisfy
(1), (2), and (3) for every local data path.

The minimum clock period to safely latch data through a local
data path Lij can be determined by the differences in propagation
delay of the combinational logic block within Lij, assuming that
the timing parameters of the registers (TSet-up, THold, and TC-Q) are
zero or constant. When the maximum possible negative clock
skew [2] is applied to Lij, the clock period is the difference
between the propagation delays, since the maximum negative
clock skew is the minimum propagation delay within Lij. The
maximum negative clock skew defines the lower bound of the
clock period of Lij. The upper bound of the clock skew can be any
value defined by the minimum clock period. Similarly, the clock
period of a circuit is bounded by two values, TCPmin and TCPmax,
determined from the differences in propagation delay within the
local data paths of the circuit as shown below and independently
demonstrated by Deokar and Sapatnekar [6]. The lower bound of
the clock period, TCPmin, is the greatest difference in propagation
delay of any local data path Lij ∈ C,
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and the upper bound of the clock period, TCPmax, is the greatest
propagation delay of any local data path Lij ∈ G,
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The second term in (6) and (7) accounts for the self-loop
where the output of a register is connected to its input through an
optional logic block. Since the initial and final registers are the
same, the clock skew in a self-loop is zero and the clock period is
determined by the maximum propagation delay of the path
connecting the output of the register to its input. Observe that a
clock period is equal to the lower bound in circuits without
parallel and/or feedback paths. Furthermore, the permissible
ranges determined with a clock period equal to the upper bound
TCPmax will always satisfy (3) since the permissible range of any
local data path in the circuit contains zero clock skew. Although
(7) satisfies any local and global timing constraints of circuit C, it
is possible to determine a minimum clock period that satisfies (3)
while including intentional clock skew. This transformation leads
to the optimal clock period problem which is stated in the
following theorem:

Theorem 2: Given a synchronous circuit C modeled by a graph
G(V,E), there exists a clock period TCP satisfying (3) and bounded
by TCPmin ≤ TCP ≤ TCPmax. The clock period is a minimum if the
permissible range resulting from (3) contains only a single value
of clock skew.
Proof: For a local data path, if the clock period increases
(decreases) monotonicaly, the upper bound of the permissible
range always increases (decreases) monotonicaly due to the linear
dependency between the clock skew and the clock period. The
lower bound does not change since it is independent of the clock
period. Therefore, starting with TCP = TCPmax and progressively
reducing the clock period is equivalent to constraining the
permissible ranges to narrower regions. In the limit, the minimum
clock period is determined when a single value of clock skew

within the permissible range is reached, since, due to
monotonicity, a further reduction in the clock period would result
in an empty permissible range, violating (3).   �

A graph-based algorithm is presented in Figure 3 to determine
the minimum clock period that ensures that each of the
permissible ranges in the circuit satisfy (3). The initial clock
period is given by (6) and, for each pair of registers in the circuit
C, the local and global permissible ranges are calculated, as
illustrated in Figure 3 in the lines 4-13. The content of the
permissible range is evaluated (line 14) and if empty, the clock
period is increased (line 25), otherwise the clock period is
decreased (line 26). A binary search is performed on each new
clock period within the algorithm Intercept until the minimum
clock period has been reached.

1. Intercept( G(V,E), TCP)
2.   for each vx ∈ V do
3. for each vy ∈ V and vy ≠ vx do
4.    for  i  ← 1 to m do (intersection of m parallel paths)
5.        calculate the bounds of the permissible range Pg(Pxy

i)
6.        if  Setparallel = ∅ then Setparallel = Pg(Pxy

i)
7.   else  Setparallel = Setparallel ∩ Pg(Pxy

i)
8.    for  j  ← 1 to n  do (intersection of n feedback paths)
9.         calculate the bounds of the permissible range Pg(Pxy

j)
11.         if  Setfeedback = ∅ then Setfeedback = Pg(Pxy

j)
12.     else  Setfeedback = Setfeedback ∩ Pg(Pxy

j)
13.    Pg(Pxy) = Setparallel ∩ Setfeedback

14.   if  Pg(Pxy) = ∅ then
15.        return  “permissible ranges do not intercept”
16.   else if  |TSkew[Pg(Pxy)max] - TSkew[Pg(Pxy)min] | < C1

17.     then return  “permissible range too small”
18.        else  return  “success”
19. end Intercept

20. Optimal_TCP( C )
21. lower = TCPmin;  upper = TCPmax;
22. while (upper - lower) > ε
23.      TCP = (upper - lower)/2 ;
24.      Intercept( C, TCP);
25.      if   “no success”  then lower = TCP;   
26.       else  upper = TCP;
27. end

Figure 3: Pseudo-code of algorithm for determining the
minimum clock period based on permissible range overlap

The order of the algorithm in Figure 3 is O(V2). This order is
similar to other clock scheduling algorithms referenced in the
literature [5,6], since the number of edges E is approximately of
the same order as the number of vertices V by a linear
transformation, or E = O(V).

Example: An example illustrating how the clock period is
determined is presented in Figure 4. The circuit is composed of
three registers symbolized by vi, v1, and vf with combinational
logic within each local data path. It is assumed for simplicity that
the timing parameters of each register (TSet-up, THold, and TC-Q) are
zero.

The minimum clock period TCPmin is determined from (6) and
is 7 tu (time units), which is the difference in propagation delay
within the logic block of the local data path v1-vf . The maximum
clock period TCPmax is the maximum propagation delay through a
logic block in the circuit, which is 12 tu. Starting with TCPmin, the
permissible ranges of each local data path are used to calculate the
permissible range of each global data path connecting vertices vi

to vf . Since a unique clock skew must exist between vertices vi

and vf, this value of clock skew must exist within the permissible
range of each global data path connecting both vertices.
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Figure 4: Example of selecting the clock period TCP

From Figure 4 with TCP = 7 tu, the permissible ranges do not
intersect, thus no clock skew value exists that will permit the
circuit to function correctly. Increasing TCP to 9 tu permits the
permissible ranges of the global data paths vi-v1-vf and vi-vf to
intersect, but the permissible range of the path vi-v1-vf does not
intersect with the permissible range of the path vf-vi. Therefore,
the clock period is again increased. In the example shown in
Figure 4, the clock period is increased beyond the optimal clock
period to 11 tu to illustrate the existence of a permissible range
for vertices vi and vf that allows choosing more than one value of
clock skew between vertices vi and vf. A single value permissible
range is obtained using the algorithm in Figure 3, determining a
minimum clock period for this example of 9.67 tu.

The difference between the algorithm described here and
other algorithms described in the literature [4-6] is the process for
verifying whether a timing violation exists. In the approach
offered by Szymanski [4], the existence of positive cycles,
indicating a violation of the timing relationships, is checked with
Lawler’s algorithm [10], where Szymanski also indicates that the
Bellman-Ford algorithm is a more efficient strategy for testing for
positive cycles. This approach is adopted by Shenoy and Brayton
[5] and Deokar and Sapatnekar [6]. Each of these algorithms run
in O(VE) time, where V is the number of registers and E is the
number of edges. Linear programming solutions to this problem
have also been developed by Fishburn [1] and by Sakallah et al.
[3]. The solution of these algorithms produces the clock delay
from the clock source to each register in the circuit, thereby
defining the clock skew of each local data path. However, in order
to better control the effects of process parameter variations, it is
advantageous to determine the permissible range of each local
data path, select a value of clock skew that allows a maximum
variation of skew within the permissible range and, with the clock
skew selected, determine the clock delay to each register.

2.3 Selecting Clock Skew Values

The permissible range of a local data path Pl(Lij) bounded by
(1) and (2) defines the set of valid clock skews for a single local
data path. However, for a circuit composed of multiple local data
paths connected to form parallel and/or feedback paths, not all of
the clock skew values that are valid for a local data path can be

used to satisfy the permissible range of a global data path.
Consider, for example, the path Pi,1,f shown in Figure 4 with
TCP = 11 tu. A clock skew of TSkewi,1 + TSkew1,f = -3 + -5 = -8 tu is a
value of clock skew that is not within Pg(Pif), although the
individual clock skews are within the respective permissible
ranges, Pl(Li1) = [-3,2] and Pl(L1f) = [-5,-1]. This example
indicates that only a sub-set of the permissible range of each local
data path can be used to obtain the permissible range of the global
data paths of the circuit.

Lemma 2: Let Lij be a local data path within a global data path
Pkl. Given a clock period TCP that satisfies (3), the sub-set of
values within Pl(Lij) used to determine Pg(Pkl) is called the
effective permissible range of a local data path ρ(Lij), such that
ρ(Lij) ⊆ Pl(Lij).

Lemma 2 does not define the actual position of an effective
permissible range within each Pl(Lij) since several solutions are
possible, as illustrated in the example shown in Figure 4.
Considering the path Pi,1,f, ρ(Li1) + ρ(L1f) = [-2,2] + [-1,-1] =
[-3,1] and ρ(Li1) + ρ(L1f) = [0,2] + [-3,-1] = [-3,1], two valid
choices exist for the effective permissible range of Li1 and L1f,
respectively, since both choices result in Pg(Pif) = [-3,1]. The
actual choice of the effective permissible range is constrained by
additional criteria, such as reducing the absolute value of the
clock skew [6], or ensuring the largest possible effective
permissible range for each local data path so as to maximize the
tolerance to process parameter variations. Observe that the
possibility of multiple solutions is consistent with the existence of
multiple solutions to the problem of indirectly choosing non-zero
clock skews by calculating a set of clock path delays to satisfy a
valid clock period [1,6]. Therefore, the selection of a specific
value of clock skew for each local data path is performed in two
stages. In the first stage, the effective permissible ranges are
determined for each local data path, while in the second stage, the
specific local clock skews are chosen to maximize the tolerance to
process parameter variations. The assignment of the largest
possible effective permissible range to a local data path begins
with determining the unique solution to the permissible range of
each global data path, as formulated below:

Theorem 3: Given a synchronous circuit C modeled by a graph
G(V,E), let the two vertices, vk and vl ∈ V, be the origin and
destination of a global data path Pkl with m forward and n
feedback paths. Let Pg(Pkl) be determined by (3). If Pg(Pkl) ≠ ∅,
the width of Pg(Pkl) is greatest when the bounds of Pg(Pkl) are
determined by (4) and (5), respectively.
Proof: This theorem is proved by observing that the bounds of
Pg(Pkl) depend directly on the bounds of the permissible range of
each global data path connecting vertices vk and vl. Assume that
the two vertices vk and vl are connected by two parallel paths and
the minimum [maximum] clock skew of the permissible range
between the two vertices is a value smaller than the value given
by (4) [(5)], producing a permissible range with a width larger
than the permissible range obtained with (4) and (5). However,
from Lemma 1 and the property of monotonicity, this assumption
is a contradiction since the larger width can only result from the
interception of larger permissible ranges. Therefore, a smaller
bound indicates that the upper and lower bounds of a particular
global data path have not been constrained by (4) or (5). �

The pseudo-code to determine the clock skew of each local
data path is presented in Figure 5. The algorithm Intercept is first
used to determine the permissible range of each global data path
in the circuit, given a clock period TCP that satisfies (3).

Determining the effective permissible range and selecting the
clock skew value for each local data path are performed as



follows: 1) the permissible range of a global data path Pg(Pkl) is
divided equally among each local data path connecting the
vertices vk and vl (line 5); 2) each effective permissible range
ρ(Lij) is placed as close as possible to the upper bound of the
original permissible range Pl(Lij) (lines 6 and 7), thereby
minimizing the likelihood of creating any race conditions; and 3)
the clock skew is chosen in the middle of the effective permissible
range, since no prior information of the variation of a particular
clock skew value may exist (line 8). From this clock skew
schedule, the minimum clock paths delays are determined [9].

1. Select_Skew( G(V,E), TCP)
2.  Intercept(G(V,E), TCP)
3.  for each Pkl

n ∈ G(V,E) do
4.    for i  ← k to l ∈ Pkl

n do
5. Width[ρ(Lij)] = MAX[Pg(Pkl

i)] - MIN[Pg(Pkl
i)]/ # Lij ∈ Pkl

n

6. Upper bound of ρ(Lij) = MAX[Pl(Lij)];
7. Lower bound of ρ(Lij) = MAX[Pl(Lij)] - Width(ρ(Lij));
8.  TSkewij = MAX[ρ(Lij)] - MIN[ρ(Lij)] / 2;
9.  end Select_Skew

Figure 5: Pseudo-code of algorithm for selecting the non-zero
clock skew of a local data path

3. REDUCED TOLERANCE TO PROCESS PARAMETER

VARIATIONS

A top-down design methodology has been developed for
synthesizing intentionally skewed clock distribution networks
from the timing constraints of the circuit without prior layout
information [7,9], as illustrated in Figure 6. The top-down
synthesis methodology is integrated with a bottom-up verification
phase (darker-shaded region in Figure 6) to ensure that the effects
of process parameter variations on the selected clock skew values
do not violate the bounds of the effective permissible range of
each local data path.

The clock distribution network is primarily composed of
active devices (CMOS inverters) that accurately implement the
clock path delays that enforce non-zero clock skew. The circuit
modeling of the clock tree with active devices is based on the
alpha-power law model [11]. Due to the active devices within the
clock tree, the clock path delay variations are primarily due to the
effects of process parameter variations on the active devices rather
than variations of the interconnect lines within the clock tree [12].

Once the clock distribution network has been designed, each
clock path delay is re-calculated assuming that the cumulative
effects of device parameter variations, such as threshold voltage
and channel mobility, can be collected into a single parameter
characterizing the gain of a CMOS inverter, specifically the
output current IDO [11]. The worst case variation of each clock
skew is determined from calculating the minimum and maximum
clock path delays considering the minimum and maximum IDO of
each inverter within each branch of the clock distribution
network. If a single worst case clock skew value is outside the
effective permissible range of the corresponding local data path,
TSkewij ⊄ ρ(Lij), a timing constraint is violated and the circuit will
not function properly.

This violation is passed to the top-down synthesis system,
indicating which bound of the effective permissible range is
violated. The clock skew of at least one local data path Lij within
the system may violate the upper bound of ρ(Lij), i.e.,
TSkewij > TSkewij(max). This violation is corrected by increasing the
clock period TCP, since due to monotonicity the effective
permissible clock skew range for each local data path is also
increased (TSkewij(max) is increased). The new clock skew value may
also violate the lower bound of a local data path, i.e.,
TSkewij < TSkewij(min), where TSkewij(min) ⊂ ρ(Lij).
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Figure 6: Synthesis methodology of clock distribution
networks tolerant to process variations

Two compensation techniques are used to prevent lower
bound violations, depending on where the effective permissible
range of a local data path ρ(Lij) is located within the permissible
range of the local data path, Pl(Lij). If the lower bound of ρ(Lij) is
greater than the lower bound of Pl(Lij), the clock period TCP is
increased until the race condition is eliminated, since the effective
permissible range will increase due to monotonicity. However, if
after increasing the clock period, the clock skew violation still
exists and the lower bound of the effective permissible range is
equal to the lower bound of the local data path {MIN[ρ(Lij)] =
MIN[ Pl(Lij)]}, any further increase of the clock period will not
eliminate the violation caused by not satisfying (1).

Rather, if the lower bound of ρ(Lij) is equal to the lower
bound of Pl(Lij), a safety term ζij > 0 is added to the local timing
constraint that defines the lower bound of Pl(Lij), [see (1)]. The
clock period is increased and a new clock skew schedule is
calculated for this value of the clock period. The increased clock
period is required to obtain a set of effective permissible ranges
with widths equal to or greater than the set of effective
permissible ranges that existed before the clock skew violation.
Observe that by including the safety term ζij, the lower bound of
the clock skew of the faulty local data path is shifted to the right,
moving the new clock skew schedule of the entire circuit away
from the bound violation and minimizing the likelihood of any
race conditions. This iterative process continues until the worst
case variations of the selected clock skews no longer violate the
corresponding effective permissible ranges.

4. SIMULATION RESULTS

The simulation results presented in this section illustrate the
performance improvements obtained by exploiting non-zero clock
skew while considering the effects of process parameter
variations. In order to demonstrate these performance
improvements, the suite of ISCAS-89 sequential circuits is chosen
as benchmark circuits. The unit fanout delay model (one unit
delay per gate plus 0.2 units for each fanout of the gate) is used to
estimate the minimum and maximum propagation delay of the
logic blocks. The set-up and hold times are set to zero. The
performance results are illustrated in Table 1. The number of
registers and gates within the circuit including the I/O registers
are shown in Column 2. The upper bound of the clock period



assuming zero clock skew is shown in Column 3. The clock
period obtained with intentional clock skew is shown in Column
4. The resulting performance gain is shown in Column 5. The
clock period obtained with the constraint of zero clock skew
imposed among the I/O registers is shown in Column 6 while the
performance gain with respect to a zero skew implementation is
shown in Column 7.

Table 1: Performance improvement with non-zero clock skew

circ. size TCPo TCPi gain TCP gain
#reg./#gates TSkewij = 0 TSkewij ≠ 0 (%) TSkewI/O = 0 (%)

ex1 20/- 11.0 6.3 43 7.2 35
s27 7/10 9.2 5.4 41 6.2 33
s298 23/119 16.2 11.6 28 11.6 28
s386 20/159 19.8 19.8 0 19.8 0
s444 30/181 18.6 11.1 41 11.1 41
s510 32/211 19.8 17.3 13 17.3 13
s838 67/446 27.0 13.5 50 15.6 42

The results shown in Table 1 clearly demonstrate reductions
of the minimum clock period when intentional clock skew is
exploited. The amount of reduction is dependent on the
characteristics of each circuit, particularly the differences in
propagation delay between each local data path. Note also that by
constraining the clock skew of the I/O registers to zero, circuit
speed can be improved, although less than without this constraint.

Examples of clock distribution networks which exploit
intentional clock skew and are less sensitive to the effects of
process parameter variations are listed in Table 2. The clock trees
are synthesized with the methodology presented in [7,9]. The
clock skew values are derived from a circuit simulation of the
clock path delays of a clock tree using SPICE Level-3 assuming
the MOSIS SCMOS 1.2 µm fabrication technology. The
minimum clock period assuming zero clock skew TCPo and
intentional clock skew TCPi is shown in Column 2, respectively.
The permissible range most susceptible to process parameter
variations is illustrated in Column 3. The target clock skew value
is shown in Column 4. In Columns 5 and 6, respectively, the
nominal and maximum clock skew are depicted, assuming a 15%
variation of the drain current IDO of each inverter. Note that both
the nominal and the worst case value of the clock skew are within
the permissible range. The per cent variation of clock skew due to
the effects of process parameter variations is shown in column 7.
A 20% improvement in speed with up to a 30% variation in the
nominal clock skew, and a 33% improvement in speed with up to
an 18% variation in the nominal clock skew are observed for the
example circuits listed in Table 2.

Table 2: Worst case variations in clock skew due to process
parameter variations, IDO = 15%

circuit TCP0/TCPi permissible
range

selected
clock

Simulated
skew (ns)

Error (%)

skew nom worst
case

nom worst
case

cdn 1 11/9 [-8,-2] -3.0 -3.0 -2.10 0.0 30.0
cdn 2 18/15 [-6.8, -1.4] -4.2 -4.1 -3.3 2.4 21.4
cdn 3 27/18 [-14, 2.3] 1.1 1.14 1.3 3.6 18.2

5. CONCLUSIONS

The problem of scheduling clock path delays such that
intentional localized clock skew is used to improve performance
and reliability while considering the effects of process parameter
variations is examined in this paper. A graph-based approach is
presented for determining the minimum clock period and the

permissible ranges of each local data path. The process of
determining the bounds of these ranges and selecting the clock
skew value for each local data path so as to minimize the effects
of process parameter variations is described. Rather than placing
limits or bounds on the clock skew variations, this approach
guarantees that each selected clock skew value is within the
permissible range despite worst case variations of the clock skew.

The clock skew scheduling algorithms for compensating for
process variations have been incorporated into a top-down,
bottom-up clock tree synthesis environment. In the top-down
phase, the clock skew schedule and permissible ranges of each
local data path are determined to allow the maximum variation of
the clock skew. In the bottom-up phase, possible clock skew
violations due to process parameter variations are compensated by
the proper choice of clock skew for each local data path and the
controlled increase of the clock period TCP. The clock period of a
number of ISCAS-89 benchmark circuits are minimized with this
clock scheduling algorithm. Scheduling the clock skews to make a
clock distribution network more tolerant to process parameter
variations is presented for several example networks. The results
listed in Table 2 confirm the aforementioned claim that variations
in clock skew due to process parameter variations can be both
tolerated and compensated.
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