
Orthogonal Code Generator for 3G Wireless Transceivers
Boris D. Andreev, Edward L. Titlebaum, and Eby G. Friedman

Department of Electrical and Computer Engineering

University of Rochester
Rochester, New York 14627

{bandreev, tbaum, friedman} @ece.rochester.edu

ABSTRACT
Orthogonal variable spreading factor (OVSF) codes are standard

in third generation UMTS cellular systems. The efficient generation
of these codes is essential for reducing the area and power of
wireless transceivers. In this paper, the basic properties of this
family of codes are analyzed from an RTL perspective and two
efficient hardware code generators are proposed. Tradeoffs and
design solutions as well as low power considerations are discussed.
These results represent the first reported implementation of an
OVSF code generator.1*

Categories and Subject Descriptors
B.5.1 [RTL Implementation] Design: Arithmetic and Logic Units
B.6.0 [Logic Design] General
B.7.m [Integrated circuits] Miscellaneous

General Terms: Design

Keywords: OVSF codes, CDMA, VLSI, 3GPP, UMTS, WCDMA

1. INTRODUCTION
Modern CDMA cellular systems employ spread spectrum

technology to provide multiuser access. In particular, direct
sequence spread spectrum has been adopted for improved spectral
efficiency, ease of digital implementation, and soft capacity limit.
Each user employs a noiselike wideband signal occupying the
entire allocated frequency band for as long as necessary. In this
way, each user contributes to the background noise affecting all
other users. This additional interference limits the overall system
capacity but because time and bandwidth resources are virtually
unlimited, the resulting capacity is significantly greater than in
conventional cellular systems. In the UMTS (Universal Mobile
Telecommunication System) wireless standard, part of the Third
Generation Partnership Project (3GPP), the spectrum spreading
applied to the symbols in the physical channels consists of two
operations [1]. The first is the channelization operation, which
transforms every data symbol into a number of chips, thereby
increasing the signal bandwidth. The number of chips per data
symbol is called the spreading factor (SF). The channelization

* This research is supported in part by the Semiconductor Research
Corporation under Contract No. 99-TJ-687, the DARPA/ITO under AFRL
Contract F29601-00-K-0182, grants from the New York State Office of
Science, Technology & Academic Research to the Center for Advanced
Technology – Electronic Imaging Systems and to the Microelectronics
Design Center, and by grants from Xerox Corporation, IBM Corporation,
Intel Corporation, Lucent Technologies Corporation, Eastman Kodak
Company, and Photon Vision Systems, Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’03, April 28-29, Washington, DC, USA.
Copyright 2003 ACM 1-58113-677-3/03/0004…$5.00.

OVSF codes achieve orthogonality between a user’s different
physical channels. The second operation is the scrambling
operation, where a scrambling code is applied to the spread signal
in order to distinguish signals from asynchronous users. With
channelization, data symbols on the in-phase (I) and quadrature-
phase (Q) branches are independently multiplied with an
orthogonal variable spreading factor (OVSF) code. One control
channel and up to six data channels can be simultaneously
transmitted. The real-valued chip streams on the I- and Q-branches
are combined and treated as a complex-valued stream of chips.
With the scrambling operation, the resultant complex signal is
multiplied by a complex-valued scrambling code.

An overview of the 3GPP standard defining the OVSF codes is
presented in section 2. The generation of OVSF codes for 3GPP
systems is considered from an RTL perspective in section 3. Two
alternative techniques for designing a hardware OVSF code
generator are proposed in sections 4 and 5. The first technique,
described in section 4, refers to a standalone logic circuit achieving
the target function. A more efficient approach is discussed in
section 5, which requires, however, a change in the system software
to support a logic circuit of reduced complexity. Power dissipation
issues are discussed in section 6. Results from the synthesis of the
proposed code generator are reported in section 7 and some related
system level issues are discussed in section 8. Final remarks are
offered in section 9 to conclude the paper.

2. OVSF CODES IN THE 3GPP STANDARD
OVSF codes are defined in the 3GPP standard [1] by the code

tree shown in Fig. 1. A channelization code Cch,SF,N is uniquely
described by two numbers: the spreading factor SF in the range
[4 - 512] = [22 - 29], and the identification (ID) number N ∈ [0,
SF – 1]. Each level in the code tree defines channelization codes of
length SF as shown in Fig. 1.

The control channel is spread by code C256,0, which consists of
256 logic zeros. When only one data channel is transmitted, data
channel1 is spread by code CSF,k where SF is the spreading factor
and k = SF / 4. When more than one data channel is transmitted, all
of the data channels have a spreading factor equal to 4. Data
channeln is spread by the code C4,k, where k = 1 if n ∈ {1, 2}, k = 3
if n ∈ {3, 4}, and k = 2 if n ∈ {5, 6}.

SF = 1 SF = 2 SF = 4

C ch,1 ,0 = (1)

C ch,2 ,0 = (1 ,1)

C ch,2 ,1 = (1 ,-1)

C ch,4,0 = (1 ,1 ,1 ,1)

C ch,4 ,1 = (1 ,1 ,-1 ,-1)

C ch,4 ,2 = (1 ,-1 ,1 ,-1)

C ch,4 ,3 = (1 ,-1 ,-1 ,1)

Fig. 1: Code tree of Orthogonal Variable Spreading Factor
(OVSF) codes [1]

229

3. RTL PERSPECTIVE ON OVSF CODES

The generation of the OVSF channelization codes is defined in
the 3GPP standard [1] by three matrix expressions. The direct
implementation of these matrix operations requires a significant
amount of resources which is convenient only for a software
realization based on a microcontroller or a digital signal processor.
In order to design an efficient hardware generator for this family of
codes, specific properties of OVSF codes are discussed in this
section.

The chip sequence is specified in the binary set {+1, –1}, while
digital CMOS logic operates on the set {0, 1}. The mapping {“+1”
→ “logic 0”} and {“–1” → “logic 1”} is therefore adopted as a
convention. The spreading codes serve as control signals for a
complex ±1 multiplier [2]. In the remainder of the paper, circuits
issues are discussed with logic levels of 0 and 1.

The binary representation of the ID number describes the
trajectory of the code generation along the OVSF code tree shown
in Fig. 1: a logic 0 for the upper branch or a logic 1 for the lower
branch. This property is illustrated by the following example:

Example: Suppose the channelization code C8,5 is required.
SF = 810 = 10002
N = 510 = 01012 = n3n2n1n0

The trajectory of code C8,5 is defined as follows:
Stage 1 – a single root, always 0
Stage 2 – lower branch, controlled by n2

Stage 3 – upper branch, controlled by n1
Stage 4 – lower branch, controlled by n0

The individual code chips are controlled by corresponding bits
in the ID number, as listed in Table 1. The OVSF chips can
therefore be produced by a XOR operation over certain bits of the
code ID number. The participation of a specific bit in the XOR
operation is periodic in time and can be controlled by a binary
counter as listed in Table 2.

Based on observations of the data listed in Tables 1 and 2, a
logic level architecture of an OVSF code generator is shown in Fig.
2. The least significant bit (LSB) of the counter enables the MSB of
N, bit n2, to be included in the XOR operation. The MSB of the
counter controls n0, which is the LSB of N.

The 3GPP standard, however, specifies that the code generator
should be capable of producing codes with a variable spreading

factor over the range SF = 4 to 512. The issue is how best to match
the number N and the binary counter in reverse order for different
spreading factors. Two techniques are suggested to accomplish this
objective:

1. Design a special counter, counting incrementally from 0 to
SF – 1. b8 is always the MSB, while the LSB is specified by
the variable spreading factor SF and is bx, where x =
log2SFmax – log2SF. In the aforementioned example, the
counter has six dummy bits (always at 0) and three active
bits. The MSB b8 controls bit n0 of the ID register, and bit b6
is the LSB of the counter, which controls bit n2.

2. Shift the code ID number such that the MSB of N is always
enabled by the LSB of the counter. In this case, a regular
binary counter is required to count between 0 and SFmax – 1.

In the following sections, the advantages and drawbacks of both
techniques are described and corresponding logic circuits are
proposed.

4. TECHNIQUE 1: DESIGN OF A SPECIAL COUNTER

The design of a special counter requires less additional
hardware than a circuit that directly implements the proposed
second scheme. An SF register, holding the required spreading
factor, controls the counter cycle, while the ID register controls the
specific OVSF code. This separation of the high level parameters
SF and N provides modularity of the circuit blocks when multiple
OVSF codes are generated. A circuit solution for the counter is
proposed in Fig. 3. The LSB of the counter is specified by the only
bit of the SF register, which is logic 1. The count is from left to
right, where b8 is always the MSB.

Table1: Generation of channelization code C8,5

First generated chip Last generated chip

C8,5 = 0 1 0 1 1 0 1 0

↑

n3 = 0
always

↑
n3 ⊕ n2 =

n2

↑
n3 ⊕ n1 =

n1

↑
n3 ⊕ n2 ⊕ n1 =

 n2 ⊕ n1

↑
n3 ⊕ n0 =

n0

↑
n3 ⊕ n2 ⊕ n0

= n2 ⊕ n0

↑
n3 ⊕ n1 ⊕ n0 =

n1 ⊕ n0

↑
n3 ⊕ n2 ⊕ n1 ⊕ n0 =

n2 ⊕ n1 ⊕ n0

Table 2: Time counter and
XOR operations producing the OVSF code chips

Binary counter Operation
000 0
001 n2
010 n1
011 n2 ⊕ n1
100 n0
101 n2 ⊕ n0
110 n1 ⊕ n0
111 n2 ⊕ n1 ⊕ n0

Chip rate
counter

 n8 n7 n6 n5 n4 n3 n2 n1 n0

b0 b1 b2 b3 b4 b5 b6 b7 b8

OVSF code ID register

fchip
clock

reset

fchip / SF

OVSF
code
chips

⊕

MSB

MSB

Fig. 2: OVSF code generator

…
..

230

The gate level schematics shown in Figs. 2 and 3 provide a
general framework, amenable to logic optimization. The logic
function can be preserved if all AND gates are replaced by more
efficient (in CMOS) NAND gates. OR gates are replaced by NOR
gates. The nine-input XOR tree is optimized for area, as the delay
is not a critical factor for this application.

5. TECHNIQUE 2: MANAGING THE ID NUMBER
An alternative technique for realizing the variable spreading

factor codes is to manage the code number loaded in the ID
register. The MSB is always n8 and controlled by the LSB of a
regular binary counter 0 : (SFmax – 1). The code number is shifted
such that the LSB is ny, where y = log2SFmax – log2SF.

A significant amount of additional logic circuitry is required to
produce a variable shift (dependent on the SF) of the code number
before insertion into the ID register. The information characterizing
the spreading factor and ID number of all of the required codes is
determined at the system level. The problem of varying the
spreading factors can be efficiently resolved by system software
when saving the ID numbers in global memory. The logic shift
operations can be conveniently performed in software. Once the ID
numbers are saved in the appropriate format, the numbers are
downloaded into the ID register. The circuit shown in Fig. 2 uses a
regular binary counter. This approach is illustrated by a few
examples shown in Fig. 4, which complements the circuit
illustrated in Fig. 2.

The stored values represent information describing the
spreading factor and code ID number required to generate the code.
As shown in Fig. 4, these values do not define a single code. The

generated chip sequences are identical for codes CSF,N, C2SF,2N,
C4SF,4N, etc. These code sequences differ only by the length (SF,
2SF, 4SF, etc.), but this parameter is only important for the
sampling moment of the despreading matched filter. The code
generator continuously produces chips from the required codes.

6. POWER DISSIPATION
The power consumed by the circuit changes dynamically

according to the OVSF code being generated. The fewer the
nonzero bits in the ID register, the less activity in the entire circuit,
thereby minimizing power. The effect of a variable counter cycle
on the power consumption is described in this section. This analysis
refers to the first technique (described in section 4 and illustrated in
Figs. 2 and 3), where the counter cycle is controlled by a variable
spreading factor.

The switching activity is maximum when the code CSFmax,Nmax =
C512,511 is generated because the counter clock cycle is also
maximum and all of the bits of the ID register are logic one.
Alternatively, to generate C4,2, SF = 24 and N = 2, the counter
shifts from 0 to 3, and only one of the AND gates shown in Fig. 2
switches, consuming less power. Minimum power is consumed by
the circuit when C512,1 is generated. In this case, the single nonzero
bit in the ID register is enabled by the most significant counter bit
(with the lowest switching activity). Static leakage power is
negligible in the target CMOS technologies and circuit densities.

The power consumed by the code generator is the sum of the
power consumed by the individual blocks. In order to estimate the
power dissipation, the switching activity of each individual block is
determined. The initial loading of the SF and ID registers is not
considered. The switching activity of the flip flops in a B-bit binary
counter (counting from 0 to 2B – 1) is listed in Table 3.

The combined switching activity of all stages over one counter
cycle is the sum of a geometric progression with the first term
a1 = 2 and quotient q = 2,

()122
q1

q1
aS B

B

1B −=
−

−= . (1)

The switching activity of the counter over Fchip clock cycles is

() chipB

B
B

N

chip
counter F2

2

12
122

2

F
A ⋅−=−⋅= . (2)

The switching activity in a binary counter varies between Fchip
and 2Fchip, approaching the maximum as B increases. Based on this
observation and a probabilistic analysis, the switching activity
bounds are derived for all blocks. Based on the gate level power
dissipation per MHz for the target 0.18 µm CMOS technology [3],
minimum and maximum power dissipation bounds are estimated.
Power estimates for the first technique, realized by the circuits
shown in Figs. 2 and 3, are listed in Table 4. All of the data are
reported per MHz. The target technology library is discussed in the
following section.

This analysis refers to the general case of any variable cycle
counter and is particularly applicable to the circuits shown in Figs.

Table 3: Switching activity in an N-bit counter

Bit position B – 1 B – 2 … 2 1 0

Switching
 activity over one cycle

21 22 … 2B – 2 2B – 1 2B

 n8 n7 n6 n5 n4 n3 n2 n1 n0

System memory Generated OVSF codes

100000000 C4,2 or C8,4 or C16,8 or …

110000000 C4,3 or C8,6 or C16,12 or …

111000000 C8,7 or C16,14 or C32,28 or …

101000000 C8,5 or C16,10 or C32,20 or …
111100000 C16,15 or C32,30 or C64,60 or …

…

Code ID register (from Fig. 2)

Fig. 4: Realization of variable spreading factor
by shifting the ID code number at the system level

SF
register

fchip

fchip / SF

 s9 s8 ... s3 s2 0 0

MSB

FF8

D

rs

Q

Q

b8

……

Fig. 3: Chip rate counter from 0 to SF – 1
with variable location of the LSB

FF7

D

rs

Q

Q

b7 FF6

D

rs

Q

Q

b6 FF0

D

rs

Q

Q

b0

231

2 and 3. As discussed in section 5, the hardware required for the
implementation of the second technique is limited to the circuit
shown in Fig. 2. The switching activity of the counter is maximum
since the maximum cycle of SFmax = 512 is used. Significant power
and area savings, however, are realized since the SF register and
the control circuit for the counting cycle are not required. The
power dissipation is dependent on the OVSF code and, particularly,
on the number and location of the nonzero bits in the ID register.

7. LOGIC SYNTHESIS
The chip duration for UMTS systems is defined in [1] as

ns260
1084.3

1

F

1
T

6
chip

chip ≈
⋅

== . (3)

Since the critical path delay of the proposed circuit is significantly
smaller than Tchip, the primary optimization criteria for the logic
synthesis process are area and power, which are well correlated. A
sample code generator is synthesized in Cadence Ambit Buildgates
using an Artisan Components standard cell library in 0.18 µm
CMOS technology with a supply voltage of 1.8 volts [3]. For the
first technique, the total area occupied by the circuits shown in
Figs. 2 and 3 is 2100 µm2 with about 85% of the area occupied by
the three registers. Eliminating the cycle control circuit shown in
Fig. 3, the code generator based on the second technique occupies
approximately 1400 µm2

. The critical path delay in both cases is
about 1 ns, such that a large number of OVSF codes can be
produced by a single generator.

The power dissipation of the circuit varies with the required
code as discussed in the previous section. For a 0.18 µm
technology, the power dissipation is approximately 1 mW for the
first technique, assuming a standard chip rate clock of 3.84
Mchips/sec. Accounting for the reduced number of logic gates, the
second technique shown in Fig. 2 consumes about 0.9 mW.

8. SYSTEM LEVEL CONSIDERATIONS
The OVSF code generator proposed in this paper can be

applied to a number of different systems. Such systems include a
UMTS mobile terminal supporting up to six data channels or a base
station receiver processing the incoming signals from K mobile
users. System level tradeoffs are considered together with the

overall transmitter/receiver architecture. Different channelization
codes can be generated by sharing hardware. The proposed solution
produces significant savings in area and power since all
channelization codes for a single user (up to six) or multiple users
can be generated by a single circuit.

One code generator can serve both the receiver and transmitter
of a mobile terminal. As defined in the 3GPP standard [1], there is
either one code with a spreading factor in the range 4 to 512, or
there are several orthogonal codes but with SF fixed at 4. Both
techniques described in sections 4 and 5 can be applied. However,
considering the relatively small size of the transceiver circuit and
the importance of power dissipation and silicon area in portable
applications, the second technique is preferable. In certain cases,
however, a standalone solution such as the first technique can be
applicable when there is no control over the requirements of the
system software.

System specifications are different for a base station receiver,
where many codes of different spreading factors are required. The
software flexibility of the second solution is preferable due to the
reduced hardware complexity. The power efficiency of the
switching codes is enhanced as only the ID register is loaded. The
required change in system software significantly reduces the area
and power of all of the code generators in the base station.

Generally, the second technique described in section 5 offers a
better solution with increased power and area efficiency. This
method also provides more flexibility for dynamically changing the
generated code with minimum overhead in switching activity. A
change in the higher level system software is required, however, for
a shift operation before the code ID number is saved. Alternatively,
if such a requirement cannot be realized, the first solution,
discussed in section 4, can be used to design the OVSF code
generator. The additional hardware is the primary disadvantage of
the first technique.

9. CONCLUSIONS
The generation of orthogonal variable spreading factor codes

for third generation wireless systems is discussed in this paper and
two efficient solutions are proposed. The simplicity and flexibility
of the proposed circuits allow for significant area and power
savings since all of the channelization codes for a single user (up to
six) or multiple users can be produced by a single code generator.
This flexibility is essential for UMTS transceivers, since signals of
variable content and data rate requirements can be transmitted or
received by changing the number and spreading factors of the
channelization codes as specified by the 3GPP standard.

10. REFERENCES

[1] Third Generation Partnership Project; Technical Specification
Group Radio Access Network; 25.213, Spreading and
Modulation, Release 5, www.3gpp.org, September 2002.

[2] B. D. Andreev, E. G. Friedman, and E. Titlebaum, "Efficient
Implementation of a Complex ±1 Multiplier," Proceedings of
the ACM Great Lakes Symposium on VLSI, pp. 83-88, April
2002.

[3] TSMC 0.18 µm Process 1.8-Volt SAGE-XTM Standard Cell
Library Databook, Release 3.1, Artisan Components, October
2001.

Table 4: Power dissipation in OVSF generator blocks
per MHz of the chip clock rate

Artisan Components standard cell library in 0.18 µm CMOS technology [3]

Switching
activity

Power / MHz
[nW / MHz] Block

Min Max

Gate Power
[nW / MHz]

0.18 µm Min Max

Counter 1.5 2 50 75 100

SF NAND2 1 15 15 15

SF NOR2 1.5 2 15 22 30

ID NAND2 1.5 2 15 22 30

XOR block 2.5 3 40 100 120

Entire code generator 234 295

232

	Main Page
	GLSVLSI'03
	Front Matter
	Table of Contents
	Author Index

