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Abstract – A closed form solution for characterizing voltage-based
signals in an RLC tree is presented. This closed form solution is
used to derive figures of merit to characterize the effects of
inductance at a specific node in an RLC tree. The effective damping
factor of the signal at a specific node in an RLC tree is shown to be
a useful figure of merit. As the effective damping factor of a signal
increases, an RC model is sufficiently accurate to characterize that
waveform. The rise time of the input signal driving an RLC tree is
another factor characterizing the importance of inductance. As the
rise time of the input signal becomes much larger than the effective
LC time constant at a specific node within an RLC tree, the signal
at this node does not exhibit the effects of inductance. Evidence is
provided showing that using a single line analysis to determine the
importance of including inductance to characterize a tree
structured interconnect line is invalid in many cases and can lead
to erroneous conclusions.

I. Introduction
Inductance is becoming increasingly important with faster on-chip

rise times and longer wire lengths. Wide wires are frequently
encountered in clock distribution networks and in upper metal layers.
These wires are low resistive lines that can exhibit significant inductive
effects. Furthermore, performance requirements are pushing the
introduction of new materials for low resistance interconnect [1] and
new dielectrics to reduce interconnect capacitance. These technological
advances significantly reduce the RC time constants of the interconnect
which, as will be shown, increases the importance of on-chip
inductance.

The importance of on-chip inductance for single lines has been
characterized in [2]-[5]. However, the nets in a VLSI circuit are often
structured as trees rather than as single lines. It is shown here that the
branches of a tree can not be treated as single lines for the purpose of
evaluating the importance of inductance. Rather, the entire tree should
be examined for inductance effects as a single entity since there is a
large interaction among the different branches.

The focus of this paper is the introduction of simple figures of
merit that can be used as criteria to determine which nets (and trees in
general) require more accurate RLC models. A second order
approximation for a signal at a certain node of an RLC tree is described
in section II. The effective damping factor of a signal at a particular
node of a tree and the rise time of the input signal are used to derive
two figures of merit that describe the relative importance of inductance
for the signal at this node. These figures of merit are presented in
section III. In section IV, examples of RLC trees are used to illustrate
the error encountered in treating a branch of a tree as a single line.
Finally, some conclusions are offered in section V.

II. Second Order Approximation for RLC Trees
A second order transfer function that approximates a higher order

transfer function at a certain node of an RLC tree is introduced in this
section. Wyatt [6] developed a first order approximation for RC trees
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based on the Elmore delay [7] assuming that the system has only one
dominant pole. To characterize a non-monotonic response, at least a
second order approximation is needed because a non-monotone
response involves complex poles which appear in conjugate pairs for a
real system. Thus, a second order system of the form described by
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can approximate a system with a non-monotonic response. Therefore, it
is necessary to find a value of ζ and ω

n
 that makes the second order

approximation as accurate as possible as compared to the exact transfer
function.

Matching the moments of a transfer function to the moments of a
higher order system permits the transfer function to approximate the
system [8]-[13]. The greater the number of moments that are matched,
the better the transfer function approximates the system. Applying the
moment matching method, the transfer function in (1) is expanded in
powers of s where the first two moments of the transfer function are
equated to the first two moments of the non-monotonic system, m1

 and
m2

. The expansion of the transfer function in (1) is
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The parameters that characterize the second order approximation of a
non-monotone system, ζ and ω

n
, can be calculated in terms of the

moments of the non-monotonic system and are
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Hence, for a system with a non-monotone response, a second order
approximation can be found if the first and second moments of the
system are known.

Fig. 1. General RLC tree.

For the general RLC tree shown in Fig. 1, the first and second
moments of a general RLC tree at node i are
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where Rik
 (Lik

) is the common resistance (inductance) from the input to
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nodes i and k. For example, R77 = R1 + R3+R7, R67 = R1 + R3, and R27 = R1.
The summation variable k operates over all the capacitors in the circuit.

The first term in im2
 can be approximated by 
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approximation is particularly accurate for balanced trees. Thus, the
second moment of gi(s) can be approximated by
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Substituting the first and second moments for a general RLC tree
into (3), ζi and ωni to characterize a second order approximation of the
transfer function at node i are
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This second order approximation of an RLC tree has the same accuracy
characteristics of the Wyatt approximation for an RC tree [6].

The second order approximation is compared in Fig. 2 to AS/X
[14] simulations of the output node 7, V7, of the tree shown in Fig. 1. A
balanced tree is used. The supply voltage is 2.5 volts. A step input is
applied to the RLC tree. Note the accuracy that the second order
approximation exhibits as compared to AS/X simulations for the case
of a balanced tree. If the tree is unbalanced, the second order
approximation is less accurate. Wyatt’s approximation is also shown in
Fig. 2. Note that Wyatt’s approximation fails to match the response of
an RLC tree with significant inductance effects.

Fig. 2. AS/X simulations as compared to the second order
approximation and the Wyatt model.

III. Effect of Damping Factor and Input Rise Time
In this section a second order approximation of the signals in an

RLC tree is used to determine if the signal at a certain node exhibits
significant inductive effects. In subsection A, the effective damping
factor ζi at node i of an RLC tree is used to characterize when an RC
model is sufficiently accurate as compared to an RLC model,
permitting inductance to be neglected. In subsection B, the effect of the
input rise time on the importance of inductance is discussed.

A. Damping Factor
A step signal is used as the input to the second order

approximation of the transfer function at node i of an RLC tree to
investigate the relationship between the effective damping factor ζi and
the significance of inductance on the transient behavior of the signal at
node i. A step input is used since it eliminates the effect of the rise time
and maximizes the significance of the inductance, permitting the effect
of the damping factor to be investigated. For a step input and a supply
voltage of VDD volts, the signal at node i is
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As the damping factor increases, the importance of the inductance on
the circuit decreases. Thus, the following approximation can be made
assuming large ζi,
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With ζi > 2.5, the error due to this approximation is less than 0.7%.
With this approximation, the signal at node i can be approximated by
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For ζi > 2.5, this expression can be approximated by
, ])/exp[1()]2/1(exp[)( ∑−−=−−=
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with an error less than 8%. Note that (10) is precisely Wyatt’s
approximation for a step response at node i of an RC tree. This relation
shows that for ζi > 2.5, inductance has a minimal effect on the transient
response at node i which is similar to the response of an equivalent RC
tree where inductance is neglected. Thus, the first figure of merit
presented in this paper is
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If this inequality is satisfied, the effects of inductance at node i are
negligible. A plot of AS/X [14] simulations for the tree shown in Fig. 1
at output node 7 as compared to an equivalent tree with all inductances
equal to zero is shown in Fig. 3 for several values of ζi. The closed
form solution in (7) is also shown. Note that for ζi > 2.5, the response
of the RLC tree is almost identical to that of an equivalent RC tree in
which inductance is neglected.

 

Fig. 3. Effect of the equivalent damping factor on the accuracy of the
RLC and RC models.
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B. Input Rise Time
An exponential signal of the form,

)()]/exp(1[)( tutVtV DDin τ−−= , (12)

is used as the input to the second order approximation of the transfer
function at node i of an RLC tree to investigate the relation between the
input rise time and the effects of inductance on the transient behavior of
the signal at node i. u(t) is the unit step function, VDD

 is the supply
voltage, and the 90% rise time of this input signal is 2.3τ. With this
input signal, the response at node i of an RLC tree is
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According to Wyatt’s approximation [6], if the same input is applied to
an RC tree, the response at node i is
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When the rise time of the input signal increases, (13) approaches (17).
This trend can be seen by noting that if τ / TLCi

 and τ / TRCi
 are much

greater than one, k and k2
 tend to one and θ

2
 tends to θ

1
. Thus, if τ / TLCi

and τ / TRCi
 are both much greater than one, the response at node i of an

RLC tree does not exhibit any effects caused by inductance and an RC
tree model can be used to model the interconnect tree. These two
conditions, τ / TLCi

 and τ / TRC
, are much greater than one and can be

reduced to the first condition if the damping factor figure of merit in
(11) is considered. If ζ

i
 is greater than 2.5, inductance effects are not

significant because of the damping factor and there is no need to
determine the rise time of the input signal. If ζ

i
 is less than 2.5, then TRCi

< 5TLCi
. Thus, τ / TLCi

 < 5τ / TRCi
 is the range where the input rise time

should be evaluated (ζ
i
 < 2.5). Hence, if τ / TLCi

 is much greater than
one and ζ

i
 < 2.5, then τ / TRCi

 is also much greater than one.
The second figure of merit can be derived by assuming (τ / TLCi

) =
10 to insure sufficient accuracy. With trin

 = 2.3τ, the second figure of
merit becomes
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If this inequality is satisfied, the effects of inductance at node i can be
neglected. A plot of AS/X [14] simulations of the RLC tree shown in
Fig. 1 at output node 7 as compared to an equivalent tree with no
inductances is shown in Fig. 4 for several values of trin

. The closed form
solution (13) is also shown. ζ

i
 is kept constant at 0.5 so that the

inductance can not be ignored. Note that for trin
 / TLCi

 > 23, the response
of the RLC tree is the same as that of an equivalent RC tree in which
inductance is neglected.

Fig. 4. Effect of the rise time on the inductance effects in an RLC tree.
trin

 / TLC
 is varied from 0.1 to 25 and AS/X simulations are shown for an

RC tree and an RLC tree. (13) is also shown to illustrate the accuracy of
the closed form solution introduced here. Note that as trin

 / TLC
 increases,

the RC model approaches the RLC model. ζ
i
 = 0.5.

IV. Examples and Results
The analysis of single lines to characterize the importance of on-

chip inductance has been previously evaluated [2]-[5]. However,
analyzing single lines to characterize the importance of inductance in
RLC trees can be invalid. To illustrate this point, values for the branch
resistances, inductances, and capacitors for the RLC tree shown in Fig.
1 are listed in Table 1. According to [2]-[5], if a single line analysis is
used for each branch, the damping factor for branch i is
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The damping factor of branch i affects the signal at node i. The single
line analysis and the RLC tree analysis introduced here are compared in
Table 2 to the tree shown in Fig. 1. The branch impedance values listed
in Table 1 are used. Note the large difference in the values of the
damping factors according to an RLC single line analysis as compared
to an RLC tree analysis. For example, at node 7, the RLC single line
analysis anticipates no significant inductance effects (ζ

7
 = 1.58) while

an RLC tree analysis anticipates large inductive effects (ζ
7
 = 0.529).

Simulations of the voltage signal at node 7 of the RLC tree shown in
Fig. 1 with the branch impedance values listed in Table 1 are shown in
Fig. 5. The voltage at node 7 exhibits high inductive effects as
anticipated by the RLC tree analysis introduced here. This simple
example demonstrates that an RLC single line analysis can lead to
erroneous conclusions in certain cases. Note also that for node 1, the
RLC single line analysis anticipates greater inductance effects (ζ

1
 =

0.176) as compared to the RLC tree analysis (ζ
1
 = 0.306).

The RLC single line analysis generates a significant difference
between the maximum and minimum damping factors (0.176 < ζ <
1.58) as compared to the difference between the maximum and
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minimum damping factors in the more accurate RLC tree analysis
(0.306 < ζ < 0.529). This behavior is caused by each line being
analyzed individually while in reality all the lines in the tree interact
significantly, distributing the effects of inductance throughout the tree.
Alternatively, the lines with higher inductive effects and the lines with
lower inductive effects influence each other, making the effect of
inductance less on those lines with higher inductance effects and more
on those lines with lower inductance effects. This phenomenon is
accurately captured by the RLC tree analysis introduced here.

Table 1. Branch impedances for the RLC tree shown in Fig. 1.
Branch R (Ω) L (nH) C (pF)

1 25 10 2
2 50 10 1
3 50 10 1
4 100 0.5 0.5
5 100 0.5 0.5
6 100 0.5 0.5
7 100 0.5 0.5

Table 2. Damping factors for the nodes of both the RLC single line and
the RLC tree analyses shown in Fig. 1.

Node ζi (RLC single
line analysis)

ζi (RLC tree
analysis)

1 0.176 0.306
2 0.25 0.441
3 0.25 0.441
4 1.58 0.529
5 1.58 0.529
6 1.58 0.529
7 1.58 0.529

Fig. 5. AS/X simulations of the output voltage at node 7 of the RLC
tree shown in Fig. 1 with the branch impedance values listed in Table 1

and the equivalent RC tree.

The effect of increasing the size of the tree is to increase the
damping factors at the nodes of the tree (and thus decrease the
importance of the inductance). If the size of a tree increases, both of the
summations ∑

k
ikk RC  and ∑

k
ikk LC  increase. As described by (6), ζi

is half the first summation over the square root of the second
summation. Thus, if the two summations increase at the same rate
while increasing the size of the tree, the net result is an increase in ζi.
For example, the damping factor at node 1 for the RLC tree shown in
Fig. 1 is
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where CT is the total capacitance of the tree. If the size of the tree

increases, CT increases which increases the damping factor at node 1.
Alternatively, if the size of the tree is smaller, the rise time of the

input signal can be much greater than TLCi which, according to the
second figure of merit in (19), eliminates the effects of inductance.
Thus, there is a range of the size of an RLC tree where inductance
effects are significant. For the special case of a single RLC line the size
is simply represented by the length of the line which is consistent with
the results described in [5], in which there is a range of interconnect
line length where inductance effects are significant.

V. Conclusions
A second order approximation of an RLC tree with the same

accuracy characteristics as the Wyatt approximation for an RC tree has
been introduced. This second order approximation is used to derive two
simple figures of merit to evaluate the significance of inductance on the
transient behavior of an RLC tree. The first figure of merit is the
damping factor of a signal at a specific node of a tree. It is shown that
as the damping factor increases, inductance effects decrease. The
second figure of merit is the rise time of the input signal as compared to
the effective LC time constant of the tree at a specific node. It is also
shown that as the input rise time increases as compared to the effective
LC time constant, the importance of inductance decreases. Evidence is
provided that using a single RLC line analysis for those branches within
an RLC tree can lead to incorrect conclusions. Finally, it is also shown
that there is a range of the size of an RLC tree where a tree can exhibit
significant inductive effects.
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