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Abstract—Conventional semiconductor-based integrated cir-
cuits are gradually approaching fundamental scaling limits. Many
prospective solutions have recently emerged to supplement or
replace both the technology on which basic devices are built
and the architecture of data processing. Neuromorphic circuits
are a promising approach to computing where techniques used
by the brain to achieve high efficiency are exploited. Many
existing neuromorphic circuits rely on unconventional and useful
properties of novel technologies to better mimic the operation
of the brain. One such technology is single flux quantum
(SFQ) logic – a cryogenic superconductive technology in which
the data are represented by quanta of magnetic flux (fluxons)
produced and processed by Josephson junctions embedded within
inductive loops. The movement of a fluxon within a circuit
produces a quantized voltage pulse (SFQ pulse), resembling a
neuronal spiking event. These circuits routinely operate at clock
frequencies of tens to hundreds of gigahertz, making SFQ a
natural technology for processing high frequency pulse trains.

The similarities between SFQ and neuronal spiking has
previously been observed; however, prior proposals for SFQ
neural networks often require energy-expensive fluxon conver-
sions, involve heterogeneous technologies, or exclusively focus on
device level behavior. In this paper, a design methodology for
deep single flux quantum neuromorphic networks is presented.
Synaptic and neuronal circuits based on SFQ technology are
presented and characterized. Based on these primitives, a deep
neuromorphic XOR network is evaluated as a case study, both at
the architectural and circuit levels, achieving wide classification
margins. The proposed methodology does not employ unconven-
tional superconductive devices or semiconductor transistors. The
resulting networks are tunable by an external current, making
this proposed system an effective approach for scalable cryogenic
neuromorphic computing.

Index Terms—Neuromorphic computing, single flux quantum
logic, superconductor electronics

I. INTRODUCTION

Conventional level-based artificial neural networks – while
useful in a large number of applications – suffer from high
computational costs that may be mitigated by using alterna-
tive biomimetic architectures such as spiking neuromorphic
networks (SNNs) [1]. As the human brain can seemingly
compute similar computation at a fraction of the energy,
recent attention has gravitated towards biomimetic hardware,
emulating biology in both phenomenological behavior and
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emergent computation. Mimicking biological neuronal spiking
behavior, SNNs are a class of neural networks in which data
are encoded in a sequence of temporal spikes as opposed
to a single real-valued signal (illustrated in Fig. 1); SNNs
are therefore highly attractive for low power neuromorphic
hardware.

Operating on minimal voltage pulses that function like
neuronal spiking events, single flux quantum (SFQ) systems
are particularly attractive for developing biomimetic SNNs.
Superconducting Josephson junctions (JJs) inherently react to
and regenerate fluxons, enabling extremely energy efficient
neuronal and synaptic circuits. Whereas modern large scale
SNNs utilize inefficient packet-based routing networks [2]–
[4], SFQ may be ideally suited for ultra-fast, ultra-low power
SNN systems. While the similarities between SFQ pulses and
neuronal spiking have been explored in the literature [5]–[15],
a multilayer fully-SFQ neuromorphic network has yet to be
demonstrated.

We propose the first multi-layer fully-SFQ neuromorphic
network, enabling ultra-low-power neuromorphic computation.
The SFQ network comprises neuronal and synaptic SFQ
primitives that may be cascaded with minimal layer-to-layer
circuit design to construct several SNN architectures. SFQ
synapses emulating the stochasticity in the brain [16], [17] are
described along with SFQ leaky-integrate-and-fire (LIF) neu-
rons. These primitive synaptic and neuronal circuits directly
cascade with each other permitting the construction of deep
neuromorphic networks. A multilayer network computing the
XOR functionality is constructed and simulated showing high
non-linearity and input separation.

II. BACKGROUND

SNNs and SFQ circuits have received significant atten-
tion in the literature including proposals for SNN primitives
implemented with SFQ, as we summarize in the following
subsections.

A. Spiking Neuromorphic Networks

SNNs attempt to replicate biological spiking behavior so as
to unlock the ultra-low-power computation observed in biolog-
ical systems. Biological neural networks encode information
based on the frequency and relative timing of neuronal spiking



Fig. 1: Biological inspiration for spiking neuromorphic networks with SFQ. a. Conventional artificial neural network.
Information propagates through the network from left to right. The neuron states (circles) are encoded by a single real-valued
number which is modulated by downstream synapses (black and red lines) which are collected by the successive (post-synaptic)
neurons according to an activation function. b. Spiking neural network (SNN). Rather than representing information as a single
number, spiking neurons mimic biology by retransmitting spikes downstream, which are modulated by the synapse strength.
The information representation can therefore be much richer, enabling systems approaching the incredible efficiency observed
in biology.
events. This behavior is counter to conventional software
neural networks, which represent information as single-valued
numbers. Spiking neuromorphic networks are an attempt to
more richly encode information with equivalent or cheaper
hardware for more efficient, biomimetic computation.

Neurons in SNNs mimic biology by aggregating spiking
activity from upstream neurons and firing when sufficiently
stimulated, creating a spike event that is propagated down-
stream. A common neuronal model, the leaky-integrate-and-
fire (LIF) neuron, integrates input spikes into an internal
potential which leaks over time if not stimulated. When the
potential crosses the action potential threshold, the neuron
fires, resets, and begins integrating again. The LIF model is a
very common neuronal model for SNNs [1].

Synapses in SNNs mimic biology by modulating the
strengths of the connections between upstream and down-
stream neurons. Most SNNs employ synapses that mod-
ulate the amplitude of spiking events, whereas alternative
approaches may modulate spike rate or – inspired by the
prevalent stochasticity observed in biological systems [16],
[17] – stochastically gate individual synaptic spiking events,
the method used here.

B. Single Flux Quanta Circuitry

Single flux quantum logic is an emerging cryogenic technol-
ogy for highly energy efficient computing [18]. SFQ circuits
are based on Josephson junctions (JJs) and superconducting
quantum interference devices (SQUIDs), and operate with
magnetic flux quanta. The quanta are typically represented
by voltage pulses of quantized area equal to the magnetic
flux quantum (Φ0 ∼ 2.07 mV · ps) [19]. These pulses are
generated in a process often referred to as JJ switching – a
shift of superconducting phase between the terminals of the
JJ by 2π.

The primary advantage of SFQ circuits for digital logic is
the unparalleled energy efficiency. Each 2π transition of a

typical 100 µA JJ dissipates energy on the order of 2×10−19 J
[20]. Although a logic operation requires several switches, the
energy per operation is several orders of magnitude lower than
state-of-the-art CMOS logic even accounting for the cryogenic
cooling to 4.2 K (liquid helium temperature) [21].

Whereas in conventional SFQ logic, information is encoded
as the presence or absence of an SFQ pulse within a spe-
cific time period, alternative JJ-based circuits can generate
and operate on more complex SFQ pulse sequences. This
includes the generation of pulse sequences with a controllable
frequency and stochastic switching induced by thermal noise.
Both properties are exploited in this work.

Several approaches for neuromorphic computing with SFQ
circuits have been proposed, however a fully-SFQ multilayer
neuromorphic network remains to be demonstrated. Several
proposals demonstrate individual SFQ gates for neuronal [5]–
[7], [15], synaptic [7]–[9], [22], or interconnect [10] func-
tionality. Two-neuron oscillatory Hopfield networks [11], [12]
and single layer feed-forward Spiking networks [13], [23] have
been proposed, and a multi-layer feed-forward spiking network
with heterogeneous CMOS-SFQ circuitry has been demon-
strated in simulation [14]. Some of the proposed approaches
utilize magnetic Josephson junctions to gradually modify the
internal state of the gates, enabling online learning [8], [13].
Fabrication processes used to manufacture these devices are,
however, not well established, and the resulting circuits are
limited in scale. In [24], an SFQ-based methodology for
building neuromorphic networks is proposed, where a bipolar
current is used to represent a logic state, which is converted
into a train of SFQ pulses for transmission.

III. DEEP NEUROMORPHIC NETWORKS WITH SFQ
PRIMITIVE CIRCUITS

The first fully SFQ deep neuromorphic network is described
here; primitive SFQ synaptic and neuronal circuits digitally



manipulating SFQ spike sequences are described. The stochas-
tic synapse is based on a Josephson balanced comparator
[25], and the pulse trains are briefly converted into magnetic
flux within neurons before undergoing a threshold to produce
an output pulse train. The resulting network uses established
superconductive fabrication processes [26] and is tuned by an
external current, facilitating large scale integration. All of the
circuits presented here are simulated in WRspice [27] based on
the state-of-the-art MIT LL SFQ5ee fabrication process [26].

A. Data encoding with SFQ

Because of the phenomenological similarity between neu-
ronal spikes and SFQ pulses, information in the network is
represented in the timing and frequencies of SFQ pulses.
Upon sufficiently stimulating a JJ with voltage and/or bias
current, a 2π phase shift is created around a superconducting
loop, producing a corresponding SFQ voltage pulse across
the JJ, which can be propagated to stimulate downstream JJs.
As a single flux quantum is the smallest possible non-zero
voltage pulse, fluxons are ideal information carriers for SNNs,
enabling extremely low power neuromorphic processing. Fur-
thermore, information in a sequence of fluxons is not encoded
in the magnitude of the spike but rather in the spike timing as is
the case in SNNs and, more notably, the brain. Fluxons have
non-volatile attributes as well, enabling short-term memory
and the construction of low power LIF neurons.

A wide range of SNN topologies are available, all of
which are amenable to SFQ implementations. Among these
topologies are perceptron networks and feed-forward deep
neural networks; both of which can employ stationary input
spike rates for classification tasks. Recurrent neural networks
may be constructed as well, enabled by internal time delays in
fluxon propagation. Information coding in recurrent neuromor-
phic networks is dependent upon the relative timing between
spiking events. Spike-rate-coded networks – with information
encoded in the mean spike frequency – may be trained with
backpropagation similar to a level-based ANN. Online learning
using spike timing – such as spike-time-dependent plasticity
[1] – is also amenable to SFQ networks [22] and may similarly
ease training costs.

B. Stochastic-Pass Synapses

Inspired by the stochasticity in biological systems, the
stochastic-pass synapse modulates the connection between
upstream and downstream neurons by stochastically gating
fluxons. Whereas conventional synapse approaches modulate
the effective amplitude of spiking events, due to the quan-
tized nature of fluxons, it is difficult to accomplish this
without conversion between the fluxons and analog current,
thereby decreasing system efficiency. Inspired by the pervasive
stochasticity in biological systems [16], [17], the proposed
synapse stochastically gates incoming spikes, encoding the
synaptic weight in the probability that an incoming fluxon
will propagate through the synapse.

The proposed synapse is constructed from a Josephson
balanced comparator [25], [28], harnessing thermal noise for

Fig. 2: Synaptic circuit, a) schematic, and b) graph of pass-
probability with bias current. The data are presented for
IC(J1, J2) = 150 µA, input SFQ pulse frequency of 50 GHz,
and T = 4.2 K.

Fig. 3: a) Neuronal circuit. b) Neuron activation function. The
input and output rates are normalized to approximately 33.3
GHz.

true stochasticity. A Josephson balanced comparator is a pair
of serially connected JJs with the bias current, IB , applied
between these JJs, as shown in Fig. 2a. When an SFQ pulse
is applied to the input, one of the JJs within the comparator
undergoes a 2π phase shift, depending on the magnitude of
IB . For small IB , J1 switches, absorbing the input pulse,
whereas for large IB , J2 switches, propagating the input pulse
to the output. In the absence of noise current IT , the gating
functionality depends deterministically on the applied currents,
however in the presence of thermal fluctuations in the applied
currents, the balanced comparator exhibits stochastic behavior
– a “grey zone” [25]. A similar approach has been proposed
for SFQ based synapses [24], where a C-SQUID [29] is used
rather than a balanced comparator.

The synapse weight is encoded in the probability that an
input spike will propagate to the output and can be modu-
lated after fabrication by adjusting IB . Fig. 2b depicts the
probability of passing an incoming SFQ pulse to the output
as a function of bias current for specific circuit parameters,
demonstrating a continuous swing of weights between 0 (all
fluxons blocked) and 1 (all fluxons propagated).

C. Leaky Integrate-and-Fire Neurons

Neuronal LIF circuits – integrating incoming SFQ pulses
until an internal threshold is reached and outputting a resultant
SFQ spike sequence – are described here. A leaky SQUID



loop inductively coupled with a firing SQUID loop [30] to
implement integrating, leaking, and firing behavior.

A conventional SQUID loop with a large inductance is used
to integrate incoming SFQ pulses. The input SFQ pulses are
applied across J1 or J2 (indicated in Fig. 3a) as excitatory
or inhibitory inputs respectively. As J1 switches, the fluxon
energy is stored as current in inductor L1. This energy is
accumulated with additional inputs increasing the flux stored
in the loop. A fluxon applied to the inhibitory input switches
J2 reduces the flux stored in the loop allowing neurons to
have both excitatory and inhibitory interactions.

Leaking may be implemented with the addition of a resistive
element R dissipating the energy stored in inductor L1. A
resistance on the order of a few ohms produces a linear leakage
characteristic, the timing of which can be tuned by changing
the size of the resistor. Utilizing the dynamic SFQ (DSFQ)
leakage mechanism, additional JJs may be introduced into the
loop to provide a faster reset of the circulating current [31],
[32].

When the current in the SQUID is sufficiently large, an
inductively coupled SQUID produces a firing pulse. A JJ
partially biased by an inductively coupled neuron loop current,
is shown in Fig. 3a. Due to the coupling between L1 and L2,
as L1 integrates input pulses, current in L2 simultaneously
increases. Eventually current in L2 – with contributions from
L1 and IB – is sufficiently large to switch J4 producing an
output pulse. In the case where inhibitory inputs are more
frequent than excitatory inputs, J3 will switch instead of
J4 sans output spike. Bias currents through the JJs help to
regenerate fluxons, enable signal fan-out, and improve the
cascade characteristics.

The relationship between the neuron input and output rates
is non-linear, a necessary condition for proper neural network
functionality. Fig. 3b depicts the relationship between input
and output spike rates (equivalent to the activation function
of a conventional level-based neuron if spike-rate-coding is
employed). Note the distinct non-linearity akin to a rectified
linear unit (RELU), scaled exponential linear unit (SELU),
or sigmoidal activation function. The width and slope of the
threshold region as well as the saturation characteristics are
adjusted by tuning IB , L1, L2, R, and IC(J1) (see Fig. 3a).
The threshold input rate may be tuned after fabrication through
the application of bias input sequences. At higher frequencies,
output rate saturates as J4 moves toward the resistive regime
adding additional non-linearity.

The input fan-in is realized using conventional RSFQ con-
fluence buffers (pulse mergers) [19]. These buffers exhibit a
saturating spike rate as multiple input pulses arriving in close
succession produce only one output pulse. This property assists
in the saturation of the neuronal output spike rate.

Negative weights are applied as inhibitory inputs to the
neuron. A single synapse can therefore be implemented as a
differential pair of synapse circuits connected to the excitatory
and inhibitory inputs of a neuron. Inhibitory or excitatory bias
input spike sequences may be added to adjust the neuron
threshold.

Fig. 4: XOR spiking neural network. The primary inputs, bias
input, and primary outputs are represented as spike frequencies
in proportion to the saturation output neuronal rate.

Fan-out is managed by splitter trees, which could incur well-
known area and delay overhead [10]. Multiple techniques exist
to reduce the overhead of the signal fanout in large scale SFQ
circuits [33], [34]. These techniques are primarily based on
utilizing a splitter with more than two outputs at the cost of
reduced parameter margins.

D. Cascading Synapses and Neurons for Deep Networks

The SFQ neuromorphic primitives can be cascaded to
construct deep neuromorphic networks enabling straightfor-
ward circuit design with minimal layer-to-layer tuning. As
inputs and outputs from synapses, neurons, fan-in, and fan-
out circuits are all SFQ pulses there is no need for costly
signal conversion to construct large multilayer networks.

To ensure that spiking activity is similar from layer to
layer, spiking activity can be regenerated through the use
of signal confluence and additional input spike sequences.
When an RSFQ confluence buffer merges two or more spike
sequences, the output spike rate is the combined rate of
the input sequences, increasing signal activity. Furthermore,
additional bias spike sequences may be incorporated to further
regenerate signal activity.

Layer-to-layer spiking activity can be tuned at a network-
architecture level, mitigating the need to individually tune
circuit parameters for each layer or for a specific network
architecture. Specifically, synapse weights may be tuned to
ensure that spiking activity remains within proper regions of
operation for the circuits. Furthermore, the rates of the bias
input spike sequences may be tuned through the use of synapse
circuits.

IV. CASE STUDY: DEMONSTRATION OF TWO-LAYER XOR
NEURAL NETWORK

The first demonstration of a multi-layer fully SFQ neuro-
morphic network is described here. The network is trained to
compute the XOR functionality, and demonstrates large non-
linearity and input separation.

A. Training and Weight Mapping of XOR Network

A trained neuromorphic network to compute the two bit
XOR function requires at least two layers in an ANN along
with negative weights and bias inputs. The chosen network



Fig. 5: Neuromorphic SFQ network computing a two bit XOR function with synapses in yellow, neurons in blue, fan-out in
green, and fan-in in red.

Fig. 6: Spiking behavior with different input stimuli for XOR
network.
is depicted in Fig. 4. Input neurons 0 and 1 normalize the
network inputs rates to the neuronal output levels. Due to
trained neuronal biases, neuron 2 will have a high output when
one of the two inputs is on while neuron 3 requires both inputs
to be on in order to activate. Neuron 4 uses inhibitory weights
to compute the XOR functionality, activating only if neuron
2 is active while neuron 3 is not. Neuron 4 will therefore
only turn on when exactly one of the inputs is on: the XOR
functionality.

Spike-rate-coding was chosen to map the SFQ neuromor-
phic primitives to the chosen network. As described in Section
III-A, spike rate coding supports training similar to a level-
based ANN and allows direct mapping of architecture and
trained weights between the level-based ANN and the spike-
rate-coded SNN. The two network inputs are stationary pulse
trains with rates close to neuronal saturating rates, encoding
a logic 0 (1) as a low (high) spike rate. The synapse weights
are encoded in the probability of the spike propagation. The
bias input sequences are trained to make the neurons sensitive
to different combinations of inputs, tuning the threshold input
rate of Fig. 3b to ensure large separability between the input
patterns. The network outputs may be interpreted by the
average spike rate in proportion to the saturating spike rate
of the neurons.

B. Circuit topology of multilayer network

The XOR network was directly implemented with the
SFQ primitives described in Section III. A schematic of the
neuromorphic network based on these components, computing
a two bit XOR function (presented in Fig. 4) is shown in
Fig. 5. The synaptic weights and neuronal biases are tuned by
changing the bias current.

C. Network Results

As shown in Fig. 6, the network correctly computes the
XOR function. Additionally the network is robust to variations
in the input rates, showing a large separation between classes.
A phase diagram of classification for the XOR network is
shown in Fig. 7, where the dependence of the network output
rate is shown as a function of the two input rates. It is desirable
for the high output rates corresponding to the output of logic 1
(shown in Fig. 7 in red) to map to the input rates corresponding
to logic 10 and 01. The input rates corresponding to logic 00
and 11 should produce low spike activity (shown in blue). This
classification diagram displays good separation of the output
states with respect to the input spike rates. The proposed
network is therefore robust to variations in the input rates.

V. CONCLUSIONS

The first demonstration of a fully SFQ multi-layer neuro-
morphic network is presented here along with SFQ neuro-
morphic primitive circuits that can be directly cascaded to
construct a broad range of network architectures. While the
demonstration shows one feed-forward network using spike
rate coding, the circuits are amenable to richer representations
of information in spiking neuromorphic networks including
recurrent neural networks, spike-time-dependent networks, and
online learning. As network layers can regenerate spiking
behavior, deep network architectures are readily attainable
through natural cascading of successive layers.

The proposed network – entirely based in available SFQ
technologies – has the advantage of being extremely energy
efficient as compared with conventional CMOS technologies



Fig. 7: Phase diagram of classification for XOR network
output. Red represents high output rates (between 1 and 2),
blue represents output rate between 0 and 1 with the colors in
between representing the domain boundaries. The input and
output rates are normalized to a pulse rate of approximately
33.3 GHz.

[21], [14]. Furthermore, as conversions between fluxons and
analog currents are constrained within each individual neu-
ron, the network is compact and scalable. Additionally, the
proposed scheme does not require unconventional devices or
complex 2.5-D or 3-D integration, and can be produced using
standard niobium fabrication processes.
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