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Abstract

A retiming algorithm is presented which includes the
effects of variable register, clock distribution, and inter-
connect delay. These delay components are incorporated
into retiming by assigning Register Electrical Character-
istics (RECs) to each edge in the graph representation of
the synchronous circuit. A matrix (called the Sequential
Adjacency Matrix or SAM) is presented that contains all
path delays. Timing constraints for each data path are de-
rived from this matrix. Vertex lags are assigned ranges
rather than single values as in standard retiming algo-
rithms. The approach used in the proposed algorithm is
to initialize these ranges with unbounded values and con-
tinuously tighten these ranges using localized timing con-
straints until an optimal solution is obtained. The algo-
rithm is demonstrated on modified MCNC benchmark cir-
cuits and both increased clock frequencies and elimination
of all race conditions are observed.

1 Introduction

Retiming is a sequential optimization technique used to
increase the clock frequency of synchronous circuits by
relocating the registers in the circuit while maintaining the
original function and latency of the system. In retiming
algorithms proposed to date, variable register, clock dis-
tribution, and interconnect delays are essentially ignored.
Without including these delay components, standard re-
timing algorithms are not sufficiently accurate for building
practical high speed circuits. For this reason, clock distri-
bution, variable register, and interconnect delay must be
integrated into the retiming process in order to ensure that
retiming becomes a practical and useful design method-
ology.

Both register and interconnect delay are similar in mag-
nitude to the delay of the logic elements. Also, variations
in clock delay between widely separated registers may cre-
ate clock skews which can drastically affect circuit opera-
tion. Undesirable clock skew can produce a net negative
delay within a local data path. This implies the existence
of a race condition, which must be avoided as a condition
imposed on the retiming process.
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In most retiming algorithms proposed to date, registers
are assumed to have zero delay (e.g., [1, 2]) or equal delay
(e.g., [3]). In [3], the set-up (t;) and hold (¢,) times are
non-zero constant values, creating an effective clock period
of Tpp +ts +t,, where Tpp is the worst case path delay
of the synchronous circuit. Since constant register delays
are assumed throughout the circuit, ¢, + t, is added to
each individual local data path, biasing the clock period
by this amount. However, this simple summation is not
sufficiently accurate since each local data path may have
a different register delay.

Integrating clock skew into the retiming process was
first proposed in [4, 5]. The authors of this paper origi-
nally introduced the strategy of integrating clock skew and
variable register delays into retiming by attaching electri-
cal information to the edges of the graph representing the
synchronous circuit [6]. These delay parameters are de-
fined as Register Electrical Characteristics (RECs) in this
original work and are adhered to herein. Following this
work, the integration of clock skew into retiming was dis-
cussed in [7]. In this paper, constraints are placed on the
clock skew to permit the use of standard linear program-
ming methods. Variable register and interconnect delays
were not considered. In [8], a branch and bound algorithm
is briefly introduced to solve the general retiming problem
while considering non-zero clock skew, variable register,
and interconnect delay. In general, there has been a grow-
ing interest in making retiming into a more practical and
useful design methodology, evidenced by [1-10].

In this paper, a retiming algorithm is presented which
incorporates variable register and interconnect delay and
non-zero localized clock skew. Either rising edge or falling
edge triggered D flip flops and a single phase clock is
assumed throughout the synchronous digital circuit. To
accomplish the integration of variable clock distribution,
interconnect, and register delays into the retiming process,
a path between logic elements is defined in this paper as
the traversal from weighted edge to weighted edge, an
edge being interpreted as a connection between logic ele-
ments containing zero, one, or more registers. With this
definition, clock, register, and interconnect delays are as-
signed to each edge. Thus, as registers are shifted from
edge to edge, different clock skews and register delays are
considered in each of the local path delays. This permits
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both maximum clock periods and race conditions to be de-
tected on a path-by-path basis. This approach, therefore,
initially requires approximate (or estimated) values of reg-
ister, clock distribution, and interconnect delays which can
be replaced with more accurate values as the exploratory
retiming process becomes better specified [6, 8].

The paper is organized as follows. Background and
definitions of important terms used throughout the paper
are provided in Section 2. In Section 3, models of non-
zero clock skew, variable register, and interconnect delay
are presented. In Section 4, the Sequential Adjacency
Matrix (SAM) is introduced. Timing constraints, derived
from the SAM, are described in Section 5. The proposed
retiming algorithm RETSAM is presented in Section 6.
Results of applying the proposed algorithm to MCNC
benchmark circuits are presented in Section 7 and finally
some conclusions are drawn in Section 8.

2 Background and Definitions

The absolute delay of the clock signal from the global
clock source to a specific register (or memory element) is
the clock delay and is denoted as T¢p. The difference
between the clock delay of any two registers is the clock
skew between these registers, denoted as Tsgeq, - The no-
tion of localized clock skew and its application to increas-
ing the clock frequency within pipelined systems was in-
troduced by Friedman and Mulligan in [11]. They show
that only clock skew between sequentially adjacent regis-
ters (registers that receive information at successive clock
intervals and are either directly connected or connected
by logic elements) is significant in pipelined systems. A
local data path is formed between two sequentially adja-
cent registers. The local data path with the greatest delay is
the critical data path, whose delay defines the minimum
clock period of the circuit.

The definition of sequential adjacency is extended in
this paper to edges on a graph. Sequentially adjacent
edges are those edges that are connected via a fully com-
binatorial path. The last register of the initial edge and
the first register of the final edge are sequentially adjacent,
thereby making the path sequentially adjacent.

The clock skew Tsre,, between two sequentially adja-
cent edges ¢ and j is defined as

Tskew(t, 5) = Tep (i) — Tep (5)- 4))

If Tep(j) > Tep(d), the clock skew between registers i
and j is defined as being negative. Negative clock skew
occurs if the initial clock signal leads the final clock signal
of a local data path. If Tep(j) < Tep(i), the clock
skew between registers ¢ and j is positive. Positive clock
skew occurs if the initial clock signal lags the final clock
signal of a local data path. In the case that T¢p(j) equals

Tep(i), ie., the clock signal reaches the clock input of the
two registers at precisely the same time, the clock skew
is zero. .

Positive clock skew increases the path delay of a local
data path, potentially making its local data path a critical
path, whereas negative clock skew may improve circuit
speed in critical paths [5, 12], however it may also create
negative path delays, resulting in race conditions. Race
conditions are caused by early-clocking, i.e., clocking of
registers before the relevant data is successfully latched. A
race condition occurs if the skew is negative and greater in
magnitude than the total local data path delay [5, 11, 12].
Those paths with negative delay are called short paths
[13]. Similarly, a long path designates those paths with a
delay greater than the desired clock period of the circuit.

A synchronous circuit can be modeled by a graph com-
posed of a vertex set V and an edge set E. |V| and |E|
refer to the cardinalities of these sets, i.e., the number
of vertices and edges in the graph, respectively. Vertices
denote logic elements and edges denote the connection be-
tween vertices. v, and e represent vertex n and edge &,
respectively. Every edge e) connects two vertices. These
two vertices are called the start vertex and the end vertex
of e and are denoted ey.start and ej.end.

The logic element delay represented by v,, is d{v,,) and
is measured in time units (tu). The number of registers on
an edge between two vertices is represented by the weight
of the corresponding edge e; and is denoted by w(ey).
Edge-to-edge and vertex-to-vertex paths are represented
by e; ~» ¢; and v; ~ v;, respectively. The lag of a vertex
v, r(v), is defined in [1] and adhered to in this paper.
Using this definition, retiming can be defined as assigning
a lag to each vertex using the following formula,

wy(e) = w(e) + r(u) — r(v), 2

where e is an edge connecting vertices u and v and w(e)
and w, (e) are the weight of edge e before and after retim-
ing, respectively. A W matrix, defined in [1], contains all
vertex-to-vertex path weights. The elements of this matrix,
W (i,7), can be calculated as

W(i,j) =min{w(p): p:vi~v;}. 3)

3 Register Electrical Characteristics (RECs)

In order to consider the effects of clock distribu-
tion, variable register, and interconnect delay, a num-
ber set, the Register Electrical Characteristic (REC),
is assigned to each edge of the graph in the following
form: Tep @ Tset—up/Tec—~qQ — Tini1/Tint2- Tep is the
clock delay from the global clock source to each register,
Tset—up is the time required for the data at the input of a
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register to latch, Tc_,q is the time required for the data
to appear at the output of the register upon arrival of the
clock signal, and T, is the total interconnect delay along
that edge and can be considered as being composed of two
parts, Ty,¢1 and Trpsg, if there is more than one register
along that edge.

By attaching delay components to registers located on
edges (connections between logic elements), the local path
must be defined from edge-to-edge [6, 8] rather than
vertex-to-vertex, as in standard retiming algorithms [1]. A
modified version of the graph introduced in [1] is shown
in Figure 1, in which an REC is assigned to each edge. By
assigning a clock delay to each edge, the circuit is assumed
to be partitioned into regions of similar clock delay, i.e.,
registers that are located on the same edge are physically
located within the same clock delay region. Therefore,
registers that end up on the same edge after retiming are
assumed to have similar clock delay. Registers that move
to different edges are assumed to have the clock and reg-
ister delays of the new edge. Since registers on different
edges may be considered to have different clock and reg-
ister related delays, moving a register from one edge to
another edge during retiming will not only create different
local data paths with different logic, register, and intercon-
nect delays, but may also change the localized clock skew
of the new local data paths.

The local data path delay Tpp(i,j) from edges e; to
€; 1S

Tpp(i,J) = Te—q(2) + Trne2(8) + Trogic(?, j) +

. . . 4)
TIntl(]) + TSet—up(]) + TSkew(za])a

where T04:0(7, ) is the delay of the logic elements be-
tween e; and e; including the interconnect delay of the zero
weight edges along the path between these edges. If paral-
lel paths exist, minimum and maximum local data path de-
lays, Tpp,... and Tpp,, .., are defined. If Tpp . (i,5) <
0, a race condition between e; and e; exists since in this
local data path the final register is clocked before the data
signal arrives and is successfully latched.

V7 V6 V5
e9 m e8
6:0/0-1/1 5:1/1-0/1
€ e6
10:5/4-1/1 2:3/3-1/1 5:1/1-1/0
7:3/6-2/2 1:2/4-1/2

Vi el V2 €2 V3 €3 v4

Figure 1: Graph of the digital correlator [1] with added REC values

If registers R; and R; are located on the same edge
er and are sequentially adjacent, then, according to the
definition of the RECs, the clock skew between R; and
R; 1s zero from (1) since the clock delays of both registers
are the same. This assumption is made since registers on
the same edge would typically be physically close, and
therefore the difference in clock delay to each register and
the interconnect delay between these registers would be
negligible. Furthermore, since no vertices (logic elements)
exist between registers R;/and R; when both are on the
same edge, the logic délay between the two registers
is zero. Since all registers located on the same edge
are defined to have the same timing characteristics (REC
values), all sequentially adjacent registers located on the
same edge have’ a similar internal path delay. A path
composed of multiple registers on an edge could possibly
be the critical worst case path of the overall circuit and its
delay is defined as Tpp,,,.,.., (&), given by

TPDIn!ernal(ek) = TC—»Q(ek) + TSet—up(ek)~ S)

4 Sequential Adjacency Matrix (SAM)

The Sequential Adjacency Matrix (SAM or the S ma-
trix) is an |E| x |E| matrix whose element S(3, j) is the
path delay from e; to e;. The S matrix element, S(3, j),
is calculated from

S5(i,5) = max{Tpp(i,j): p:e; ~ ej A w(p)=W(, 1)}, 6)

If parallel paths exist between any two edges, the S matrix
is composed of two matrices, Spn and Sy, Equations
(7) and (8) are used to calculate the values of these two
matrices. In order to reduce the number of matrices, a
combined matrix, S’, is used. S’(%, j) contains Spn (i, j)
if Smin(i,J) contains a zero or negative entry, and con-
tains Spaz (2, j) if no zero or negative entry exists. The
importance of Sy, (7, j) is determined by whether a zero
Or negative entry exists, thereby denoting a race condi-
tion. If Spin(i,7) is completely positive, the maximum
valued entries in Sy, (%, ) limit the maximum speed of
the circuit. Equation (9) is used to calculate the combined
matrix, S’.

Smin(i,J) = min{Tpp(5,§) i p: ei ~ e Aw(p) = W(i,5)}, (7)

Smaz(i,5) = max{Tpp(i,j) ip: e~ e; Awlp) = W(5,5)}, (8)

lf Sm“’l(z)]) S 0

frsoN szn(za]):
S(w)—{ if Smin(i,7) > 0. ©)

Sma:c (ii j))
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Note that the S’ matrix contains information for only
those paths that can potentially cause the circuit to function
improperly. Therefore, the negative entries in the Spip
matrix override the positive entries in the corresponding
Smae matrix during the calculation of the S’ matrix. This
occurs since these negative entries flag catastrophic race
conditions. For the remainder of the paper, the notation
for the combined matrix S’ is denoted as S for simplicity.
The S matrix of the graph of Figure 1 is shown in Table 1.
The light shaded elements of the table indicate those paths
with race conditions (negative values) and the dark shaded
elements indicate those paths with a path delay greater than
the desired clock period. In this example, a target clock
period of 23 tu is assumed. Paths with zero delay are
marginal race conditions that are not permitted and would
appear as light shaded. The unshaded elements of the
table indicate those paths that neither limit the maximum
performance of the circuit nor create a catastrophic race
condition.

5 Timing Constraints

In this paper, a branch and bound algorithm is used
in which unbounded values are initially assumed for the
lag ranges. These lag ranges are tightened using timing
constraints derived from the SAM. There are four different
types of timing constraints: negative edge weight, long
path, short path, and internal path constraints. These
different types of constraints are explained in greater detail
in the following subsections.

5.1 Negative edge weight constraints

As introduced in [1], a properly retimed graph contains
no negative edge weights. Negative edge weights are

Table 1: SAM for the graph of Figure 1. Light shaded entries
represent short paths, whereas dark shaded entries represent long
paths for ¢ = 23 tu. Unshaded entries denote permissible paths.

SAM 0 el €2 e3 o4 e5 €6 e7 e8 €9 cl0

Bonm

permitted for peripheral edges in [14] in order to shift
the registers to the periphery of a synchronous circuit.
This approach permits combinatorial optimization to be
performed on the circuitry placed between the peripheral
edges. However, since the retiming algorithm described
in this paper does not exploit this feature of resynthesis,
negative edge weights are disallowed. The negative edge
weight constraint can be written as

w(e) >0,Ve€eE. (10)

5.2 Long path constraints

If a clock period ¢ is desired, then all paths with a
delay greater than ¢ must be eliminated. Long paths are
represented by entries in the S matrix that exceed a desired
clock period e. In Table 1, long paths for ¢ = 23 tu are
depicted using dark shaded elements. In order to eliminate
these long paths, the two edges that create the long path
are made nonsequentially adjacent.

Two registers are sequentially adjacent if there exists a
zero weight path between them. According to this defini-
tion, in order to make two edges, e; and e;, nonsequentially
adjacent, three approaches are possible: 1) the source or
2) the destination edges can be made zero weight, i.e., all
registers can be removed from these edges, or 3) one or
more registers can be placed within each zero weight path
between the source and destination registers. The first two
conditions exist since by eliminating the initial and/or final
register of a local data path, a longer path is created which
may have a smaller delay (due to negative clock skew).
These three conditions can be written in terms of path and
edge weights as follows:

w(e;) =0, (1)
w(e;) =0, 12)
W e;.end, ej.start) > 0. (13)

If (11) or (12) is satisfied, then no registers exist on
edge 7 or j, respectively, and therefore all local data paths
between edges i and j are eliminated. If (13) is satisfied,
all possible paths between edges ¢ and j have a weight
of at least one. This violates the definition of sequential
adjacency, i.e., no paths exist with a zero weight between
these two edges. Intuitively, it is stated in (11), (12), and
(13) that either the initial or final edge does not have any
register located on it or there is at least one register along
every path between these two edges.



5.3 Short path constraints

Short paths appear as zero or negative entries in the S
matrix. S(¢,7) < 0 indicates a short path originating at
¢; and terminating at e;. If ¢; and e; form a short path,
then the initial and the final registers of this path must be
made nonsequentially adjacent. Equations (11), (12), and
(13) are used to eliminate any catastrophic short paths (or
race conditions).

5.4 Internal path constraints

Internal Iong paths are created between two sequen-
tially adjacent registers on the same edge when the edge
weight is greater than one. Internal long path constraints
can be formulated using (5) as

w(e;) <1, Vi:Tpp e) > c. (14)

internal (
Note that internal short paths are not possible since the
clock skew between any two registers on the same edge
cannot be negative (it must be zero). Therefore, internal
short paths are not considered in this paper.

5.5 Constraints due to vertex lags

Constraints (10), (11), (12), (13), and (14) are written in
terms of edge weights, These constraints can be rewritten
as (15), (16), (17), (18), and (19), respectively, to reduce
the number of necessary operations.

r(e.start) — r(e.end) < w(e), Ve € E,  (15)
r(ei.start) — r(e;.end) = w(e;), (16)
7(ej.start) — r(ej.end) = w(e;), (17)

r(e;.end) — r(ej.start) < W(i, j) — 1, (18)

r(e;.start) — r(e;.end) > w(e;) — 1,

' (19)
V2 : TPDinternal (ez) > c.

In order to provide some intuition to (15), (16), (17),
(18), and (19), note that, given two vertices u and v, the
value r(u) — r(v) can be thought of as “the number of
registers taken out of the path p : u ~» v.” Given this
interpretation, it is implied in (15) that “the number of
registers taken from an edge e cannot be greater than the
original weight of the edge,” i.e., none of the edge weights
can be negative. In a similar manner, it is stated in (16) and
(17) that “the number of registers taken from edge e; and
e;, respectively, must be equal to the original weight of this
edge,” implicitly stating that this edge should be made zero
weight. In (18) it is stated that “the registers taken from

the path p : e; ~+ e; must be less than the original weight
of this path minus one,” implicitly stating that at least one
register should be left along any path between registers e;
and e;, thereby making this path nonsequentially adjacent.
Finally, in (19) it is implied that either zero or one register
should be left on an edge e that contains an internal long
(worst case) path.

6 Retiming Algorithm

In this section two algorithms are introduced: 1) Algo-
rithm RETSAM to perform retiming of synchronous circuits
and 2) Algorithm CHECKCP to check the feasibility of a
specific clock period. These two algorithms are explained
in the following subsections.

6.1 RETSAM: Algorithm for Retiming

Retiming a synchronous circuit is achieved by perform-
ing a binary search of all possible clock periods of the cir-
cuit. The pseudo-code of the retiming algorithm is shown
in Figure 2. The lower and upper bounds of the binary
search are CP,,;, and C Py, respectively. Initially the
lower bound is zero (Step 1). If the original graph does
not contain any race conditions, the critical path delay of
the original graph defines the upper bound of the binary
search (Step 2). The SAM is calculated in Step 3 and
used throughout the algorithm. If the original graph con-
tains one or more race conditions, the maximum value in
the SAM is used as the upper bound (Step 4). During the
binary search, a specific clock period, C P;grget, is checked
for feasibility using algorithm CHECKCP (Steps 5 and 6).
Depending on whether a solution exists (Step 7) or not
(Step 8), the lower and upper search bounds are adjusted
and the binary search continues until the minimum clock
period is determined (Step 9).

6.2 CHECKCP: Clock Period Feasibility Check

A feasibility check for a specific clock period C Pygrget
is achieved by solving the set of nonlinear inequalities for
the vertex lag ranges. If all the constraints are satisfied
for every path in the graph, the clock period is considered
feasible. Pseudo-code for the algorithm that determines
the feasibility of a clock period is shown in Figure 3.
Lag ranges are stored in an array called r[]. The timing
constraints are derived from the SAM. An approximate
solution can be obtained for the minimum clock period if
the clock period feasibility test CHECKCP is terminated
once the binary search bounds become sufficiently tight.

The most important step in CHECKCP is solving for the
vertex lags, 7(). The objective of the retiming algorithm is
to yield a set of vertex lags that satisfy (15) through (19).
To achieve this, the vertex lag ranges are initialized with
unbounded values ([—oco . .. oo]). Timing constraints are
continuously applied to these vertex lags in order to tighten
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1. CPpin =0

2. CPpqae = clock period of the original graph

3. Calculate SAM

4. If the original graph has race conditions
C Py = max {S(¢ ,JC) Vi, i},

5. Choose CPiapger = Lu—wj,

6. Check for feasibility of ¢ = CPyarger

7. If set of inequalities can be successfully
solved, then CPr,az = C Piarget

8. If not, then CPp,in = CParger

9. Continue this process until CP,,;,, = CPpas

Figure 2: Pseudo-code for RETSAM

the ranges until eventually all the constraints are satisfied.
Once the vertex lags are each defined, these lag values are
used to determine the edge weights of the retimed graph
according to (2). Table 2 exemplifies the solution method
for the vertex lags of the graph shown in Figure 1.

The following types of equality and inequalities are
created from the aforementioned timing constraints:

r(vg) — r(vs) = k, 0)

r(va) — r(v) < k, (21)
r(ve) — r(vp) = k1 or r(ve) — r(vg) = ko, (22)
r(vg) — 7(vy) = ky or r(v,) — 7(va) < ks, (23)

r(ve) — r(vy) = k1 or r(v.) — r(vg) = ko

or r(v,) — r(vy) < ks, @4

where r() are vertex lags and k,, are constant values. The
or statements that appear in (22), (23), and (24) prohibit
the use of standard linear programming methods [15] and

r0] = {0...0]

r[k] = [-o0 oo,k =1, ,E-1
Create a constraint list for clock period ¢
Adjust lags to satisfy all constraints

If all lags fixed and all constraints unsatisfied

-

N

— Clock period is not feasible
6. If all constraints are satisfied
—  Clock period is feasible
7. If c is feasible and all lags are not fixed

—  Use lower bounds of the unfixed lags

Figure 3: Pseudo-code for clock period feasibility test, CHECKCP

necessitate the use of branch and bound techniques. Note
the existence of multiple choices in each inequality.

To gain insight into how these multiple choice inequal-
ities are created, consider retiming the graph of Figure
1, for which the SAM is shown in Table 1. To achieve a
clock period of ¢ = 23 tu, the dark shaded and light shaded
paths must be avoided, since they represent long paths for
¢ = 23 tu and short paths, respectively. To avoid, for ex-
ample, the path p : es ~» eg, there exists three possible
choices, derived from (11), (12), and (13), resulting in the
multiple choice inequality,

r(3)~r(4)=1or r(0) ~r(1) =1 or r(4) - r(0) < -1, (25)

which states that to eliminate the path starting at eg and
terminating at eg, either ez or ep must be zero weight,
thereby making the path p : e3 ~» ey non-existent, or at
least one register must be placed between the initial and
terminating vertices of the path p.

To solve for a set of vertex lags that provide a proper
retiming, an inequality similar to (25) is written for each
short or long path shown in Table 1. In this algorithm, the
unbounded value [—co . . . o0] is initially assigned to each
vertex lag range. Only one vertex lag (7(0) for simplicity)
is initialized to 0 and the other lags are calculated relative
to r(0). The vertex lag non-negativity constraint from
(15) is applied to each vertex, shown in the first three
rows of Table 2, thereby further tightening the vertex lag
ranges. It is shown in row 4 that the constraint from (15)
cannot be used to further tighten the vertex lag ranges.
The long path constraints from (16), (17), and (18) are
therefore used in row 4 to further tighten the bounds.
Short paths are also eliminated using (16), (17), and (18).
Each time the bounds are tightened by applying long (or
short) path constraints, (15) is applied to the new set and
the neighboring vertex lag ranges to ensure non-negative
edge weights on each edge. The algorithm may reach a
point where the application of the constraints can no longer
tighten the bounds any further. This situation is indicated
in Table 2 by a dark shaded row, where the application of
each of the long path, short path, and non-negativity rules
cannot tighten any further the vertex lag ranges. Once this
occurs, ail possible values for each vertex lag are tested.
On the first dark shaded row in Table 2, there are two
unfixed lags with cardinalities two and three, respectively.
Therefore, 2 * 3 = 6 possible. solutions exist and must
be evaluated. If a solution is reached, the algorithm is
terminated and the resulting vertex lag ranges are used to
determine the edge weights of the retimed graph. If all
possible solutions are considered and a set of vertex lag
ranges cannot be determined that satisfy all constraints, a
solution for that specific clock period does not exist.
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Table 2: Example solution for ¢ =

23. A single value is

shown for equal lower and upper bounds.

Constraint Type r(0) | (1) r(2) 1(3) r(4) r(5) 1(6) r(7)

0 —00..00 | —00..00 | —00..00 | —00..00 —00..00 —00..00 —00..00
r(0)-r(1)<1 Negativity on e 0 —1..00 —00..00 | —00..00 | —00..00 —00..00 —00..00 —00..00
r(1)-r(7)<0 Negativity on e7 0 —1..00 —00..00 | —0..00 | —00..00 —00..00 —00..00 —1..00
Negativity on eq, e, €3, €4, €5, €, €7, €3, €9 0 -1..0 -2..0 -3..1 —4..0 -3..0 -2..0 -1..0
r(1)-1(7)=0 or r(7)-r(1)<0 | Long path: e;—ey 0 -1 -2..0 -3..1 -4..0 -3..0 -2..0 -1
1(6)-r(7)<0 Negativity on ey 0 -1 -2..0 -3..1 —-4..0 -3..0 —2.-1 |1
1(5)-1(6)<0 Negativity on eg 0 -1 -2..0 -3..1 —4..0 -3.-1 -2..-1 -1
r(4)-r(5)<0 Negativity on ey4 0 -1 —-2..0 -3..1 —4.-1 -3.—-1 —2.-1 -1
r(3)-r(5)<0 Negativity on es 0 -1 -2..0 -3.-1] -4..-1 -3..—1 -2.-—1 -1
1(2)-1(6)<0 Negativity on eg 0 -1 —2.-1}=-38.—-1}| —4..—-1 -3.-1 -2.-—1 -1
1(2)-1(6)=0 or r(7)-r(0)=0 | Long path: eg—e;g | O -1 —2.-1}-3.-1]—-4..—-1 -3.—-1 2 -1
or r(6)-1(7)<-1
1(5)-r(6)<0 Negativity on eg 0 -1 —2.-1|-3.—-1| —4..—-1 -3.-2 -2 -1
1(4)-r(5)<0 Negativity on ey 0 -1 -2.-11-3.-1]| —4..—-2 ~3..—-2 -2 -1
1(3)-r(5)<0 Negativity on es 0 -1 —2.-1|-3.-2|—-4.-2 [ -3.-2 -2 -1
1(2)-1(6)<0 Negativity on eg 0 -1 -2 ~3.-2| —4..—-2 -3.—2 -2

r(2)-1(3)=1 or 1(3)-1(4)=1

Short path: e;—e3

Condition 1 satisfied

r(3)-r(4)<1

Negativity on e3

e ENRE | 2 | 2 | 2 1

r(3)-r(4)=1 or r(6)-r(7)=0
or r(4)-1(6)<-1

8

Long path: e3—eg

Constraints are not satisfiable

7 Experimental Results

The retiming algorithm RETSAM is implemented in
C on a SUN 4 workstation.

To permit evaluating the

final column lists the clock period of the benchmark cir-
cuits that were retimed using standard retiming algorithms
without considering RECs.

In these circuits, the average register delay (Tc—q +

proposed retiming algorithm, modified MCNC benchmark
circuits [16, 17] have been analyzed using this algorithm
and compared with an implementation of the Leiserson-
Saxe retiming algorithm [1]. The resulting clock periods
of the retimed benchmark circuits are reported.

The application of RETSAM to the example MCNC
benchmark circuits are described in Table 3. The initial
five columns describe the properties of the modified bench-
mark circuits. These properties are 1) the name of the
benchmark example as it appears in the MCNC archive,
2) the number of edges and 3) vertices in the graph of
each circuit, 4) the latency of the circuit, and 5) the origi-
nal clock period. The sixth column contains the minimum
clock period of the retimed circuit using RETSAM. The

Tset—up) of each circuit is added to each local data path to
compensate for the effects of the variable register delays,
i.e,, the register delay of each local data path is assumed
to be constant and equal to the average register delay of
the retimed circuit with variable REC values. As shown
in Table 3, the minimum clock period of the majority
circuit from LGSynth89 derived from RETSAM is less
than from existing retiming algorithms. This occurs since
localized negative clock skew [5, 12] subtracts delay from
the critical path such that the worst case path delay is
smaller, thereby causing the minimum clock period to be
less. Also, note that no race conditions are exant in those
circuits retimed by RETSAM, a conclusion that cannot be
drawn with other retiming algorithms.
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8 Conclusions

A retiming algorithm is presented which considers vari-
able clock distribution, register, and interconnect delay. To
permit the consideration of these delay components, reg-
ister electrical characteristics (RECs) are attached to each
edge and the original path delays are redefined to be from
edge-to-edge rather than vertex-to-vertex. A set of inequal-
ities are created based on these edge-to-edge path delays,
permitting the determination of the minimum clock period
of the retimed synchronous circuit. An iterative method
using ranges of vertex lags rather than constant vertex lags
is presented to solve for the edge weights. ,

The limitations and advantages of the retiming algo-
rithm are compared using a set of modified MCNC bench-
mark circuits. The results of applying RETSAM to the
benchmark circuits show that a more accurate and general-
ized retiming can be performed than with existing retiming
algorithms which do not consider variable clock distribu-

Table 3: Results of the application of the
retiming algorithm to MCNC benchmark circuits

I Graph properties
Initial Tep After Tep
Example Edges Vertices Latency TCP ) Retiming (tu) TSKEW=0
TrEg=const

()

LGSynth89 - mutti-level (netblif)

Cc17 26 19 6 92 29 25
bl 34 19 5 80 33 28
cm138a 62 29 4 110 43 38
cmd2a 65 34 3 101 46 38
cm82a 59 37 4 139 47 40
majority 26 17 s 103 13 35

LGSynth91 - multi level (blif}

c17 19 12 5 63 32 26

bl 16 10 2 50 33 24
cm42a 49 18 4 8 35 32
cm82a 22 12 3 49 28 26
cm85a 70 36 3 102 51 40
cml50a 69 38 2 2R 56 48
cmiSla 38 22 3 93 41 36
decod 89 24 4 69 43 37
parity 47 32 2 77 49 36

tcon 65 34 2 40 34 24

Figure 1 with the added REC values

4" I 23 19

* denotes a graph that has race conditions before retiming

1591 11 8 4

tion, register, and interconnect delay. Additionally, the
clock period can be further minimized due to localized
negative clock skew. Finally, catastrophic clock skew in-
duced race conditions are detected and eliminated.
Summarizing, modified MCNC benchmark circuits have
been retimed using a new algorithm which considers the
effects of variable clock distribution, register, and intercon-
nect delay on local data paths. This algorithm represents a
significant generalization of existing retiming algorithms,
permitting the use of retiming for the automated synthesis
of higher speed, more reliable pipelined digital systems.
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